JPH02301023A - Lens focusing actuator - Google Patents

Lens focusing actuator

Info

Publication number
JPH02301023A
JPH02301023A JP12071189A JP12071189A JPH02301023A JP H02301023 A JPH02301023 A JP H02301023A JP 12071189 A JP12071189 A JP 12071189A JP 12071189 A JP12071189 A JP 12071189A JP H02301023 A JPH02301023 A JP H02301023A
Authority
JP
Japan
Prior art keywords
magnet
cylindrical
movable part
objective lens
magnetized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12071189A
Other languages
Japanese (ja)
Inventor
Tsugio Ide
次男 井出
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12071189A priority Critical patent/JPH02301023A/en
Publication of JPH02301023A publication Critical patent/JPH02301023A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an actuator with simple structure and miniaturized and of light weight by using a cylindrical magnet separated to two areas and in which each part is radial-magnetized in directions opposite to each other as a movable part, and supporting the movable part with a superconducting bearing. CONSTITUTION:An objective lens 1 is fixed on the cylindrical magnet 2, and the movable part consisting of the objective lens 1 and the magnet 2 is supported so that it can be moved rectilinearly at a contactless state in the direction of cylindrical shaft made of a superconductor, and the focal point of a laser beam can be moved in a focusing direction. Since the shaft and the bearing 3 are formed in contactless type, no friction occurs, and stable rectilinear motion can be obtained even a device is driven at high speed. The magnet 2 is separated to two areas in the direction of cylindrical shaft, and it is radial-magnetized so that each magnetizing direction can be set in the directions opposite to each other, and protective rings 4 and 5 are provided at the end faces of the magnet 2 in the direction of cylindrical shaft, and coils 8 and 9 are provided at the outside of the magnet, and a magnetic circuit is comprised of a yoke 10, and focusing is performed by permitting currents in opposite directions to flow on the two coils 8 and 9 and displacing a movable magnet in a fine distance in the neighborhood of a neutral position.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光メモリ装置の光学ヘッドに用いられる磁石
可動型のレンズフォーカシングアクチュエータ(以下L
FAと記す)に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a magnet movable lens focusing actuator (hereinafter referred to as L) used in an optical head of an optical memory device.
(denoted as FA).

[従来の技術] 従来、光メモリ装置におけるLFAは、特開昭63−1
0331号公報等に記載されているようにコイル可動型
で、支持バネを有する構造のものが多かった。
[Prior art] Conventionally, LFA in an optical memory device is disclosed in Japanese Patent Application Laid-Open No. 63-1.
As described in Publication No. 0331, many of them were of a movable coil type and had a structure with a support spring.

[発明が解決しようとする課題] しかし従来技術では、可動コイルへの給電線の断線や、
コイルの過熱による接着不良及びそれに伴うコイルの熱
変形が起こり易い、また、給電線の接続処理は複雑で手
間のかかるもので、給電方式によっては給電線そのもの
が可動部の高速での動作に悪影響を及ぼすという課題を
有する。またコイル形状のばらつきのため可動部質量の
アンバランスが生じ易く、それにより高次共振が発生す
るなど高速動作の妨げになる。従って、光ディスクの回
゛転数が上げられずデータの転送速度が制限されること
になる。更にコイル仕様(巻数、線径等)の変更が可動
部の質量変化につながることから、コイルの最適仕様を
捜すためにアクチュエータの設計変更を伴うカットアン
ドトライの繰り返しが必要となる。また、支持バネによ
る高次共振のため高速応答性が悪くなる。
[Problems to be solved by the invention] However, in the conventional technology, disconnection of the power supply line to the moving coil,
Bonding failure due to overheating of the coil and associated thermal deformation of the coil are likely to occur.Furthermore, the process of connecting the power supply line is complicated and time-consuming, and depending on the power supply method, the power supply line itself may have a negative effect on the high-speed operation of the moving parts. It has the problem of causing problems. In addition, variations in the coil shape tend to cause an imbalance in the mass of the movable part, which causes high-order resonance and other problems that impede high-speed operation. Therefore, the rotational speed of the optical disk cannot be increased, and the data transfer speed is limited. Furthermore, since changes in coil specifications (number of turns, wire diameter, etc.) lead to changes in the mass of the movable part, it is necessary to repeatedly cut and try with changes in the design of the actuator in order to find the optimum specifications for the coil. Furthermore, high-speed response deteriorates due to high-order resonance caused by the support spring.

そこで本発明はこのような課題を解決するためのもので
、その目的とするところは、支持バネが無く、可動部へ
給電する必要のない構造とすることにより、高速動作性
の優れたLFAを提供するところにある。これにより、
信頼性が高くデータ転送速度の速い光メモリ装置の実現
が可能となる。
Therefore, the present invention is intended to solve these problems, and its purpose is to provide an LFA with excellent high-speed operation by creating a structure that does not have a support spring and does not require power supply to the movable parts. It's there to provide. This results in
It becomes possible to realize an optical memory device with high reliability and high data transfer speed.

[課題を解決するための手段] 本発明のLFAは、光学ヘッドの対物レンズを駆動する
LFAにおいて、 (a)前記対物レンズが固定され、円筒軸方向に三領域
に分割され各々逆向きにラジアル着磁を施した円筒形状
の磁石、 (b)該磁石の外周面または内周面と所望の隙間をなし
て前記光学ヘッドの固定部側に設けられだ円筒形状の超
伝導体、 (C)前記磁石の回りに一定距MllIfflれ、前記
固定部側に設置されたコイル及びヨーク を備えたことを特徴とする。
[Means for Solving the Problems] The LFA of the present invention is an LFA that drives an objective lens of an optical head. a magnetized cylindrical magnet; (b) a cylindrical superconductor provided on the fixed portion side of the optical head with a desired gap between the outer peripheral surface or the inner peripheral surface of the magnet; (C) The present invention is characterized in that it includes a coil and a yoke that are spaced a certain distance MllIffl around the magnet and are installed on the fixed part side.

[作用] 本発明の上記の構成によれば、二つの領域に分けられ各
々逆向きにラジアル着磁された円筒形状の磁石とその外
側のコイル及びヨークにより、磁石を中立保持し更に中
立位置近傍で円筒軸方向に駆動することができる。また
、磁石の外周あるいは内周面近傍に超伝導体を設置する
ことにより、マイスナー効果を用いて磁石を軸方向に直
動可能に非接触で支持することができる。
[Function] According to the above configuration of the present invention, the cylindrical magnet divided into two regions and radially magnetized in opposite directions, and the coil and yoke on the outside of the cylindrical magnet maintain the magnet neutrally and further maintain the magnet near the neutral position. can be driven in the axial direction of the cylinder. Furthermore, by installing a superconductor near the outer circumference or inner circumferential surface of the magnet, the magnet can be supported in a non-contact manner so as to be able to move linearly in the axial direction using the Meissner effect.

[実施例] 以下本発明を実施例に基づいて詳細に説明する。[Example] The present invention will be described in detail below based on examples.

第1図は、本発明のLFAの一実施例における主要断面
図である。全ての部品は、リング形状をしている。対物
レンズ1は円筒形状の磁石2に固定されている。この対
物レンズと磁石からなる可動部は、超伝導体よりなる円
筒形状の軸受け3により円筒軸方向に直進運動可能なよ
うに非接触状態で支持され、レーザビームの焦点がフォ
ーカシング方向に移動することができる。このように超
伝導材料と磁石を用いた非接触型の軸と軸受けとなって
いるため摩擦がなく、高速駆動を行なっても安定した直
進運動が得られる0本実施例では超伝導体の軸受けを磁
石の外周側に設置したが内周側に設置した場合にも同様
に非接触状態で支持できる。磁石は第1図に示すように
円筒軸方向(図に於て上下方向)に二つの領域に分けら
れ各々の領域の着磁方向が逆向きになるようにラジアル
着磁されている。磁石の円筒軸方向端面には、ストッパ
ー6.7に磁石が直接衝突するのを防ぐために保護リン
グ4.5がついている。磁石の外側にはコイル8,9が
配され、ヨーク10によって磁気回路を構成している。
FIG. 1 is a main sectional view of an embodiment of the LFA of the present invention. All parts are ring-shaped. The objective lens 1 is fixed to a cylindrical magnet 2. This movable part consisting of an objective lens and a magnet is supported in a non-contact state by a cylindrical bearing 3 made of a superconductor so that it can move linearly in the direction of the cylinder axis, and the focal point of the laser beam moves in the focusing direction. I can do it. Since the shaft and bearing are non-contact using superconducting materials and magnets, there is no friction and stable linear motion can be obtained even during high-speed driving. Although it was installed on the outer circumferential side of the magnet, it can be similarly supported in a non-contact state even if it is installed on the inner circumferential side. As shown in FIG. 1, the magnet is divided into two regions in the cylindrical axis direction (vertical direction in the figure) and radially magnetized so that the magnetization direction of each region is opposite. A protective ring 4.5 is attached to the cylindrical end face of the magnet in order to prevent the magnet from directly colliding with the stopper 6.7. Coils 8 and 9 are arranged outside the magnet, and a yoke 10 constitutes a magnetic circuit.

二つのコイルに逆向きの電流を流すことによって可動磁
石が中立位置付近で微小に変位し、光ディスクの面振れ
に対応した制御電流を流すとフォーカシングが行なわれ
る。
By passing currents in opposite directions through the two coils, the movable magnet is slightly displaced near the neutral position, and focusing is performed by passing a control current corresponding to the surface runout of the optical disk.

次に、本実施前で用いた磁石と超伝導体について述べる
。高い磁気性能の異方性磁石が生産性よく製造できるS
m−Go系樹脂結合型磁石が非常に有利である。また、
この磁石は軽量でかつ高い寸法精度を容易に出すことが
できる0本実施例では、Sm−Co系樹脂結合型圧縮成
形磁石を用いたが、磁石材料ならびに成形方法はこれに
制限されない、まず組成がS m (CO@、5r2c
 u ++、isF e@、222 r a、@2s)
 s、zsとなるように原料を誘導炉で溶解し、得られ
たインゴットをArガス雰囲気中で1120〜1180
℃で5時間溶体化処理を行ない、その後850’Cで4
時間時効処理を行なった。この2−17系希土類金属間
合金を、平均粒径が20μm(フィッシャーサブシーブ
サイダーによる)となるように粉砕し、この粉末98重
量%に熱硬化性である2液性工ポキシ樹脂2重量%を結
合材として加え混合した磁石組成物を、粉末成形磁場プ
レス装置で磁場中で配向させ円筒形状に成形した後、キ
ュア処理を行なった。これに二つの領域のラジアル着磁
を施した。超伝導体は臨界温度が高いものが望ましく、
本実施例では酸化物超伝導体を用いたがこれに限られる
ものではない、まず、組成がB i +、4P b s
、ss r zCa2c ua Ovとなるように各成
分の酢酸塩を純水に入れ攪拌分散させる。この液体をド
ライスブイシー法により乾燥させると同時に燃焼させ微
粉末を得る。
Next, we will discuss the magnets and superconductors used before this implementation. S allows for highly productive production of anisotropic magnets with high magnetic performance.
m-Go resin-bonded magnets are very advantageous. Also,
This magnet is lightweight and can easily achieve high dimensional accuracy. In this example, an Sm-Co resin bonded compression molded magnet was used, but the magnet material and molding method are not limited thereto. is S m (CO@, 5r2c
u ++, isF e@, 222 r a, @2s)
The raw material is melted in an induction furnace so that it becomes 1120 to 1180
Solution treatment was carried out at 850'C for 5 hours, followed by 4 hours at 850'C.
Time aging treatment was performed. This 2-17 rare earth intermetallic alloy is pulverized to an average particle size of 20 μm (by Fischer subsieve cider), and 98% by weight of this powder is mixed with 2% by weight of a thermosetting two-component engineered poxy resin. A magnetic composition prepared by adding . This was subjected to radial magnetization in two areas. It is desirable that the superconductor has a high critical temperature.
Although an oxide superconductor was used in this example, it is not limited to this. First, the composition is B i +, 4P b s
, ss r zCa2c ua Ov The acetate salts of each component are added to pure water and stirred and dispersed. This liquid is dried using the dry-sew-sea method and simultaneously combusted to obtain a fine powder.

次にこの微粉末を800°Cの酸素雰囲気中で2時間仮
焼する。更に焼成後の微粉末を円筒形状にプレスした後
、845℃の空気中で焼結させた。
Next, this fine powder is calcined in an oxygen atmosphere at 800°C for 2 hours. Further, the fired fine powder was pressed into a cylindrical shape, and then sintered in air at 845°C.

このようにして得られた磁石と超伝導体の軸受けを用い
た本発明のLFAを光学ヘッドに搭載し液体窒素温度に
冷却すると、可動部の動特性は非常に優れた高速応答性
を示した。尚、トラッキングは対物レンズに入射するレ
ーザビームの角度をガルバノミラ−によって微小に振る
ことで行なった0本発明は、可動部の中立保持にバネな
どの支持部材を用いないため組立が容易で、従来問題と
なっていた支持部材の高次共振が避けられ、中立保持の
ための支持バネや複雑な磁気回路を必要としないため光
学ヘッドが小型化・軽量化される。
When the LFA of the present invention using the thus obtained magnet and superconductor bearing was mounted on an optical head and cooled to liquid nitrogen temperature, the dynamic characteristics of the moving part showed extremely excellent high-speed response. . Note that tracking is performed by slightly changing the angle of the laser beam incident on the objective lens using a galvano mirror.The present invention does not use supporting members such as springs to maintain the neutral position of the movable part, so assembly is easy, and compared to conventional methods. The problematic high-order resonance of the support member can be avoided, and the optical head can be made smaller and lighter because there is no need for support springs or complicated magnetic circuits to maintain neutrality.

更に可動部を非接触で支持しているため摺動面のスティ
ックスリップを回避して安定した高速動作が得られる。
Furthermore, since the movable part is supported in a non-contact manner, stick-slip on the sliding surface can be avoided and stable high-speed operation can be achieved.

また全部品をリング形状とすることが可能で寸法精度の
高精度化が容易に達成でき、質量バランスの良い構造が
実現され、不要な寄生振動がない。
In addition, all parts can be made into ring shapes, making it easy to achieve high dimensional accuracy, realizing a structure with good mass balance, and eliminating unnecessary parasitic vibrations.

以上、可動磁石と超伝導体を用いることによりLFAの
小型化・高性能化が可能となる。また、本発明のLFA
とミラーのみをキャリッジに搭載し、半導体レーザやホ
トダイオード等の光学系、トラッキングアクチュエータ
を固定することによりアクセス部を軽量化でき、高速ア
クセスも容易になる。
As described above, by using a movable magnet and a superconductor, it is possible to downsize and improve the performance of the LFA. Moreover, the LFA of the present invention
By mounting only the mirror and mirror on the carriage, and fixing the optical system such as a semiconductor laser and photodiode, as well as the tracking actuator, the weight of the access section can be reduced and high-speed access can be facilitated.

[発明の効果] 以上子したように本発明によれば、二つの領域に分けら
れ各々逆向きにラジアル着磁された円筒形状の磁石を可
動部に用い、超伝導軸受けにより可動部を支持すること
により以下のような利点を生ずる。
[Effects of the Invention] As described above, according to the present invention, a cylindrical magnet divided into two regions and radially magnetized in opposite directions is used for the movable part, and the movable part is supported by a superconducting bearing. This brings about the following advantages.

(1)給電線の断線が無い。(1) There is no disconnection in the power supply line.

(2)給電線の接続処理が無いので組立が容易である。(2) Assembly is easy because there is no connection process for power supply lines.

(3)コイルの熱変形と接着不良の心配が無い。(3) There is no need to worry about thermal deformation of the coil or poor adhesion.

(4)可動部の質量バランスが良い。(4) Good mass balance of moving parts.

(5)支持バネが無い。(5) There is no support spring.

(6)構造が簡単で、小型・軽量である。(6) Simple structure, small size, and light weight.

(7)可動部に摩擦が無い。(7) There is no friction in the moving parts.

従って、高速応答性に優れ信頼性が高いLFAが得られ
る0本発明のLFAは、コンピュータメモリ、光デイス
クファイル、CD、CD−ROM、LVDなどの光メモ
リ装置に応用することが可能で、装置の高性能化や小型
化などの多大な効果を有するものである。
Therefore, the LFA of the present invention, which provides an LFA with excellent high-speed response and high reliability, can be applied to optical memory devices such as computer memory, optical disk files, CDs, CD-ROMs, and LVDs, and can be applied to optical memory devices such as computer memories, optical disk files, CDs, CD-ROMs, and LVDs. It has great effects such as higher performance and smaller size.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のLFAの一実施例を示す主要断面図
。 1 ・・・・・ 対物レンズ 2 ・・・・・ 磁石 3 ・・・・・ 軸受け 8.9 ・・・・ コイル 10・・・・・ ヨーク 以上
FIG. 1 is a main sectional view showing an embodiment of the LFA of the present invention. 1 ... Objective lens 2 ... Magnet 3 ... Bearing 8.9 ... Coil 10 ... More than yoke

Claims (1)

【特許請求の範囲】[Claims] (1)光学ヘッドの対物レンズを駆動するレンズフォー
カシングアクチュエータにおいて、(a)前記対物レン
ズが固定され、円筒軸方向に二領域に分割され各々逆向
きにラジアル着磁を施した円筒形状の磁石、 (b)該磁石の外周面または内周面と所望の隙間をなし
て前記光学ヘッドの固定部側に設けられた円筒形状の超
伝導体、 (c)前記磁石の回りに一定距離離れ、前記固定部側に
設置されたコイル及びヨーク を備えたことを特徴とするレンズフォーカシングアクチ
ュエータ。
(1) In a lens focusing actuator that drives an objective lens of an optical head, (a) a cylindrical magnet to which the objective lens is fixed, divided into two areas in the cylindrical axis direction and radially magnetized in opposite directions; (b) a cylindrical superconductor provided on the fixed part side of the optical head with a desired gap from the outer peripheral surface or inner peripheral surface of the magnet; (c) a cylindrical superconductor provided at a fixed distance around the magnet; A lens focusing actuator characterized by comprising a coil and a yoke installed on the fixed part side.
JP12071189A 1989-05-15 1989-05-15 Lens focusing actuator Pending JPH02301023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12071189A JPH02301023A (en) 1989-05-15 1989-05-15 Lens focusing actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12071189A JPH02301023A (en) 1989-05-15 1989-05-15 Lens focusing actuator

Publications (1)

Publication Number Publication Date
JPH02301023A true JPH02301023A (en) 1990-12-13

Family

ID=14793104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12071189A Pending JPH02301023A (en) 1989-05-15 1989-05-15 Lens focusing actuator

Country Status (1)

Country Link
JP (1) JPH02301023A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017924A (en) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd Miniature camera
JP2015114651A (en) * 2013-12-16 2015-06-22 オリンパス株式会社 Drive unit, optical unit, imaging device and endoscope
WO2015118711A1 (en) * 2014-02-06 2015-08-13 オリンパス株式会社 Optical unit and endoscope
WO2016098225A1 (en) * 2014-12-18 2016-06-23 オリンパス株式会社 Optical unit and endoscope
WO2016166857A1 (en) * 2015-04-15 2016-10-20 オリンパス株式会社 Optical unit and endoscope
CN106233181A (en) * 2014-05-22 2016-12-14 奥林巴斯株式会社 Camera head, endoscope

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017924A (en) * 2004-06-30 2006-01-19 Mitsumi Electric Co Ltd Miniature camera
EP3086153A4 (en) * 2013-12-16 2017-08-02 Olympus Corporation Drive unit, optical unit, imaging device, and endoscope
JP2015114651A (en) * 2013-12-16 2015-06-22 オリンパス株式会社 Drive unit, optical unit, imaging device and endoscope
CN105829939B (en) * 2013-12-16 2019-07-05 奥林巴斯株式会社 Driving unit, optical unit, photographic device and endoscope
CN105829939A (en) * 2013-12-16 2016-08-03 奥林巴斯株式会社 Drive unit, optical unit, imaging device, and endoscope
US20160282601A1 (en) * 2013-12-16 2016-09-29 Olympus Corporation Driving unit, optical unit, imaging apparatus, and endoscope
US10288867B2 (en) 2013-12-16 2019-05-14 Olympus Corporation Driving unit, optical unit, imaging apparatus, and endoscope
WO2015093101A1 (en) 2013-12-16 2015-06-25 オリンパス株式会社 Drive unit, optical unit, imaging device, and endoscope
JP2015148704A (en) * 2014-02-06 2015-08-20 オリンパス株式会社 Optical unit and endoscope
CN105934697A (en) * 2014-02-06 2016-09-07 奥林巴斯株式会社 Optical unit and endoscope
WO2015118711A1 (en) * 2014-02-06 2015-08-13 オリンパス株式会社 Optical unit and endoscope
US10120181B2 (en) 2014-02-06 2018-11-06 Olympus Corporation Optical unit and endoscope
CN106233181A (en) * 2014-05-22 2016-12-14 奥林巴斯株式会社 Camera head, endoscope
US10149606B2 (en) 2014-12-18 2018-12-11 Olympus Corporation Optical unit and endoscope
JPWO2016098225A1 (en) * 2014-12-18 2017-09-28 オリンパス株式会社 Optical unit and endoscope
DE112014006987B4 (en) 2014-12-18 2018-12-20 Olympus Corporation Optical unit and endoscope
WO2016098225A1 (en) * 2014-12-18 2016-06-23 オリンパス株式会社 Optical unit and endoscope
CN107003494B (en) * 2014-12-18 2020-06-12 奥林巴斯株式会社 Optical unit and endoscope
CN107003494A (en) * 2014-12-18 2017-08-01 奥林巴斯株式会社 Optical unit and endoscope
CN107533207A (en) * 2015-04-15 2018-01-02 奥林巴斯株式会社 Optical unit and endoscope
JPWO2016166857A1 (en) * 2015-04-15 2018-02-08 オリンパス株式会社 Optical unit and endoscope
CN107533207B (en) * 2015-04-15 2020-07-07 奥林巴斯株式会社 Optical unit and endoscope
WO2016166857A1 (en) * 2015-04-15 2016-10-20 オリンパス株式会社 Optical unit and endoscope
US10653301B2 (en) 2015-04-15 2020-05-19 Olympus Corporation Optical unit and endoscope

Similar Documents

Publication Publication Date Title
US6727617B2 (en) Method and apparatus for providing three axis magnetic bearing having permanent magnets mounted on radial pole stack
US5062095A (en) Actuator and method of manufacturing thereof
US20070205674A1 (en) Voice coil motor and method of using the same for displacement control
US6545378B2 (en) Electric spindle motor with magnetic bearing and hydrodynamic bearing
JPH02301023A (en) Lens focusing actuator
JPH0294126A (en) Object lens driving device
CN109304694B (en) Three-degree-of-freedom positioning mechanism driven by electromagnetic stress and control method
JPH02130731A (en) Lens focusing actuator
JPH0388136A (en) Lens focusing actuator
JPH02183418A (en) Optical head
JPH0470712A (en) Galvanomirror
JPH02308433A (en) Lens focusing actuator
JPH02267741A (en) Optical head
JPH02130732A (en) Lens focusing actuator
JPH03187026A (en) Galvanomirror
JPH0249223A (en) Galvanomirror
KR930000041B1 (en) Lenz operating device for optical recording
JPH01102420A (en) Galvanomirror
JPH01113930A (en) Separate type optical head
JPH01102424A (en) Galvanomirror
JPH01102748A (en) Separable optical head
JPH03150059A (en) Linear motor
JPH01102419A (en) Galvanomirror
JPH01102425A (en) Galvanomirror
JPH07153100A (en) Actuator for tracking