JPH02301024A - Galvanomirror - Google Patents

Galvanomirror

Info

Publication number
JPH02301024A
JPH02301024A JP12071089A JP12071089A JPH02301024A JP H02301024 A JPH02301024 A JP H02301024A JP 12071089 A JP12071089 A JP 12071089A JP 12071089 A JP12071089 A JP 12071089A JP H02301024 A JPH02301024 A JP H02301024A
Authority
JP
Japan
Prior art keywords
permanent magnet
coil
galvanomirror
movable part
pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12071089A
Other languages
Japanese (ja)
Inventor
Tsugio Ide
次男 井出
Eiji Natori
栄治 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12071089A priority Critical patent/JPH02301024A/en
Publication of JPH02301024A publication Critical patent/JPH02301024A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a galvanomirror with simple structure and miniaturized and of light weight by using a radial multipole-magnetized permanent magnet in a movable part, and supporting the movable part with a superconducting shaft. CONSTITUTION:The galvanomirror is provided with a cylindrical permanent magnet 1 on which a mirror 5 is fixed and radial magnetization are applied on multiple poles, a supporting shaft 2 consisting of a superconducting material via the inner peripheral plane of the magnet 1 and a constant gap, and the tooth 8 for a couple of magnetic pole of the permanent magnet 1 via the outer peripheral plane of the permanent magnet 1 and the constant gap. The tooth 8 is part of a stator core 3, and is formed in such structure that it is excited in the same pole with an excitation coil 4. A state where the tooth 8 of the stator core 3 is confronted with a boundary position between an N pole and an S pole becomes the rocking center of the permanent magnet 1, and rotational displacement is generated in two directions from the rocking center with the direction of a coil current in the permanent magnet 1, and the optical axis of a laser beam made incident on the mirror 5 fixed on the permanent magnet can be rocked. Thereby, it is possible to obtain the galvanomirror without generating the thermal deformation and a defect in sticking in the coil 4 and with simple structure and miniaturized and of light weight.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、光メモリ装置のレーザビームのトラッキング
制御に用いる磁石可動型のガルバノミラ−(以下GMと
記す)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a movable magnet type galvanomirror (hereinafter referred to as GM) used for tracking control of a laser beam of an optical memory device.

[従来技術] 従来、光メモリ装置の光学ヘッドに用いられるGMは、
例えば特開昭63−12334号公報等に見られるよう
に可動部がコイルで、可動部を弾性部材を用いて結合す
る構成のものが多かった。
[Prior Art] Conventionally, the GM used in the optical head of an optical memory device is
For example, as seen in Japanese Unexamined Patent Application Publication No. 63-12334, there were many configurations in which the movable part was a coil and the movable part was connected using an elastic member.

[発明が解決しようとする課題] しかし従来技術では、可動コイルへの給電線の断線や、
コイルの過熱による接着不良及びそれに伴うコイルの熱
変形が起こり易い、また、給電線の接続処理は複雑で手
間のかかるもので、給電方式によっては給電線そのもの
が可動部の高速での動作に悪影響を及ぼすという課題を
有する。またコイル形状のばらつきのため可動部質量の
アンバランスが生じ易、く、それにより高次共振が発生
するなど高速動作の妨げになる。従って、光ディスクの
回転数が上げられずデータの転送速度が制限されること
になる。更にコイル仕様(巻数、線径等)の変更が可動
部の質量変化につながることから、コイルの最適仕様を
捜すためにアクチュエータの設計変更を伴うカットアン
ドトライの繰り返しが必要となる。また、弾性部材によ
る高次共振のため高速応答性が悪くなり、弾性部材の加
工精度を厳しく管理しないと動特性のバラツキがきわめ
て大きくなり安定した特性が得られにくく、組立工程も
複雑で手−間のかかるものであった。
[Problems to be solved by the invention] However, in the conventional technology, disconnection of the power supply line to the moving coil,
Bonding failure due to overheating of the coil and associated thermal deformation of the coil are likely to occur.Furthermore, the process of connecting the power supply line is complicated and time-consuming, and depending on the power supply method, the power supply line itself may have a negative effect on the high-speed operation of the moving parts. It has the problem of causing problems. In addition, variations in the coil shape tend to cause unbalance in the mass of the movable part, which causes high-order resonance and impedes high-speed operation. Therefore, the rotational speed of the optical disc cannot be increased, and the data transfer speed is limited. Furthermore, since changes in coil specifications (number of turns, wire diameter, etc.) lead to changes in the mass of the movable part, it is necessary to repeatedly cut and try with changes in the design of the actuator in order to find the optimum specifications for the coil. In addition, high-speed response deteriorates due to high-order resonance caused by the elastic member, and unless the machining accuracy of the elastic member is strictly controlled, variations in dynamic characteristics become extremely large, making it difficult to obtain stable characteristics.The assembly process is also complicated and requires manual labor. It was time-consuming.

そこで本発明はこのような課題を解決するためのもので
、その目的とするところは、可動部の高次共振が発生し
にくく、可動部へ給電する必要のない組立容易な構造と
することにより、高速動作性の優れたGMを提供すると
ころにある。これにより、信頼性が高くデータ転送速度
の速い光メモリ装置の実現が可能となる。
The present invention is intended to solve these problems, and its purpose is to provide an easy-to-assemble structure in which high-order resonance in the movable parts is less likely to occur and there is no need to supply power to the movable parts. , provides a GM with excellent high-speed operation. This makes it possible to realize an optical memory device with high reliability and high data transfer speed.

[課題を解決するための手段] 本発明のGMは、光メモリ装置のレーザビームのトラッ
キング制御手段として永久磁石を可動部の一部とする構
造のGMにおいて、 ミラーが固定されラジアル着磁を多極に施した円筒状の
永久磁石と該永久磁石の内周面と一定の空隙を介した超
伝導材料からなる支持軸と、前記永久磁石の外周面と一
定の空隙を介して前記永久磁石の磁極対数の歯を有し、
該歯が励磁コイルにより同極に励磁される構造のステー
タコアを有することを特徴とする。
[Means for Solving the Problems] The GM of the present invention has a structure in which a permanent magnet is part of a movable part as a tracking control means for a laser beam of an optical memory device, in which a mirror is fixed and radial magnetization is multipolarized. A support shaft made of a superconducting material is connected to a cylindrical permanent magnet with a constant gap between the inner peripheral surface of the permanent magnet, and a magnetic pole of the permanent magnet is connected through a constant gap to the outer peripheral surface of the permanent magnet. has logarithmic teeth,
The stator core is characterized in that the teeth are excited to the same polarity by an excitation coil.

[作用] 本発明の上記の禰成によれば、ラジアル多極着磁された
永久磁石とステータコアの歯の間に働く磁気力によって
可動部の中立保持及び微小回転が可能である。また、永
久磁石と超伝導材料からなる支持軸のマイスナー効果に
よって可動部を非接触で支持することができる。
[Function] According to the above-mentioned aspects of the present invention, the movable part can be kept neutral and rotated minutely by the magnetic force acting between the radially multipolarized permanent magnet and the teeth of the stator core. Further, the movable part can be supported without contact due to the Meissner effect of the support shaft made of a permanent magnet and a superconducting material.

[実施例] 以下本発明を実施例に基づき詳細に説明する。[Example] The present invention will be described in detail below based on examples.

第1図は、本発明のGMの一実施例を示す断面図である
。1はラジアル方向に多極着磁された円筒状の永久磁石
、2は超伝導材料からなる支持軸、3はステータコア、
4がコイルである0本構成では、永久磁石のN極とS極
の境界位置にステータコアの歯が対向している状態が永
久磁石の揺動中心となり、永久磁石はコイル電流の方向
によって揺動中心から両方向に回転変位を生じ、これに
固定されたミラー5に入射したレーザビームの光軸を振
ることができる。第2図(a)、(b)、(C)に歯8
と永久磁石1の対向状態を示す0図中永久磁石に表示さ
れている極は、円筒外周面に現われる極で、内周面に1
よ逆の極が発生している。第2図(a)は中立状態でコ
イル電流が流れていない状態である。 (b)はコイル
電流を流した場合で、コイル電流によって発生するトル
クと、永久磁石がステータコアの歯と引き合う力が一致
する位置で安定する。 (C)はコイル電流を増やした
場合で、次の中立状態に移動してしまうので必要に応じ
て揺動部の回転角を規制するストッパを設けることによ
ってこの中立状態の移動を防ぐことができる。但しスト
ッパを設けるか否かは単に構造上の問題で本発明の基本
的な技術範囲に影響を与えるものではない、尚永久磁石
の着磁極数は、必要な揺動角に応じて決定することがで
き、第2図に示した例に制限されない、また、支持機構
については超伝導材料と永久磁石を用いた非接触型の軸
と軸受けとなっているため高速駆動を行なっても安定し
た回転が得られる。尚、第1図の左右方向の支持につい
ても円筒状の永久磁石1と支持軸2及び板厚方向に着磁
された円盤状の永久磁石6とリング状の超伝導体7を用
いて行なっている。
FIG. 1 is a sectional view showing an embodiment of the GM of the present invention. 1 is a cylindrical permanent magnet magnetized with multiple poles in the radial direction, 2 is a support shaft made of superconducting material, 3 is a stator core,
In the 0-wire configuration where 4 is a coil, the state where the teeth of the stator core face the boundary between the N and S poles of the permanent magnet becomes the center of swing of the permanent magnet, and the permanent magnet swings depending on the direction of the coil current. Rotational displacement occurs in both directions from the center, and the optical axis of the laser beam incident on the mirror 5 fixed thereto can be swung. Teeth 8 in Fig. 2 (a), (b), and (C)
The poles shown on the permanent magnet in Figure 0, which shows the facing state of permanent magnet 1, are the poles that appear on the outer peripheral surface of the cylinder, and the poles that appear on the inner peripheral surface.
The opposite polarity is occurring. FIG. 2(a) shows a state in which the coil current is not flowing in a neutral state. (b) shows the case where a coil current is passed, and the motor becomes stable at a position where the torque generated by the coil current and the force of attraction between the permanent magnet and the teeth of the stator core match. (C) is a case where the coil current is increased, and the coil will move to the next neutral state, so if necessary, it is possible to prevent this shift from the neutral state by providing a stopper that regulates the rotation angle of the swinging part. . However, whether or not to provide a stopper is simply a structural issue and does not affect the basic technical scope of the present invention.The number of magnetized poles of the permanent magnet should be determined according to the required swing angle. The support mechanism is a non-contact type shaft and bearing using superconducting materials and permanent magnets, so stable rotation can be achieved even during high-speed driving. is obtained. The support in the left-right direction in FIG. 1 is also carried out using a cylindrical permanent magnet 1, a support shaft 2, a disk-shaped permanent magnet 6 magnetized in the thickness direction, and a ring-shaped superconductor 7. There is.

次に、本実施例で用いられた永久磁石と超伝導体につい
て述べる。高い磁気性能の異方性磁石が生産性よく製造
できるSm−Go系樹脂結合型磁石が非常に有利である
。更にこの永久磁石は軽量でかつ高い寸法精度を容易に
出すことができる。
Next, the permanent magnet and superconductor used in this example will be described. Sm-Go resin bonded magnets are very advantageous because they can produce anisotropic magnets with high magnetic performance with good productivity. Furthermore, this permanent magnet is lightweight and can easily achieve high dimensional accuracy.

本実施例では、Sm−Go系樹脂結合型圧縮成形磁石を
用いたが、磁石材料ならびに成形方法はこれに限られな
い、まず組成がS m (CO11,8?2c u@、
@sF e @、22Zr s、52s) *、s5と
なるように原料を誘導炉で溶解する。そのインゴットを
Arガス雰囲気中で1120〜1180℃で5時間溶体
化処理を行ない、その後850℃で4時間時効処理を行
なった。こうして得られた2−17系希土類金属間合金
を、平均粒径が20μm(フィッシャーサブシーブサイ
ダーによる)となるように粉砕し、この粉末98重量%
に熱硬化性である2液性工ポキシ樹脂2重量%を結合材
として加え混合した磁石組成物を、粉末成形磁場プレス
装置で磁場中で配向させ円筒形状に成形した後、キュア
処理を行なった。これにラジアル方向の多極着磁を施し
た。
In this example, a Sm-Go resin bonded compression molded magnet was used, but the magnet material and molding method are not limited to this.
@sF e @, 22Zr s, 52s) *, The raw material is melted in an induction furnace so that it becomes s5. The ingot was subjected to solution treatment at 1120 to 1180°C for 5 hours in an Ar gas atmosphere, and then aged at 850°C for 4 hours. The 2-17 rare earth intermetallic alloy thus obtained was ground to an average particle size of 20 μm (by Fischer subsieve cider), and the powder was 98% by weight.
A magnet composition prepared by adding 2% by weight of a thermosetting two-component engineered poxy resin as a binder was oriented in a magnetic field using a powder molding magnetic field press machine, molded into a cylindrical shape, and then cured. . This was subjected to multi-pole magnetization in the radial direction.

また、超伝導材料1よ臨界温度が高いものが望ましく、
本実施例では酸化物超伝導体を用いたがこれに限られる
ものではない、まず組成がBi+、aPbs、sS r
 2Ca2c u 30 vとなるように各成分の酢酸
塩を純水に入れ攪拌分散させる。この液体をドライスブ
イシー法により乾燥させると同時に燃焼させ微粉末を得
る0次にこの微粉末を800℃の酸素雰囲気中で2時間
仮焼する。更に焼成後の微粉末を支持軸の形状にプレス
した後、845°Cの空気中で焼結させた。
Also, it is desirable that the critical temperature is higher than that of superconducting material 1.
Although an oxide superconductor was used in this example, it is not limited to this. First, the composition is Bi+, aPbs, sS r
The acetate salts of each component are added to pure water and stirred and dispersed so that the amount becomes 2 Ca2 cu 30 v. This liquid is dried by the Drais Buissie method and simultaneously combusted to obtain a fine powder. Next, this fine powder is calcined in an oxygen atmosphere at 800° C. for 2 hours. Furthermore, the fired fine powder was pressed into the shape of a support shaft, and then sintered in air at 845°C.

このようにして得られた永久磁石と超伝導軸を用いた本
発明のGMを光学ヘッドに搭載し液体窒素温度に冷却し
、対物レンズに入射するレーザビームの角度を微小に振
ることでトラッキングを行なった。動特性は非常に優れ
た高速応答性を示した0本発明は、可動部の中立保持に
バネなどを用いないため組立が容易で、従来問題となっ
ていた高次共振が避けられる。また可動部を非接触で支
持することができるため不要な寄生振動や摩擦を回避し
て安定した高速動作が得られる。
The GM of the present invention using the permanent magnet and superconducting shaft thus obtained is mounted on an optical head, cooled to liquid nitrogen temperature, and tracking is performed by slightly changing the angle of the laser beam incident on the objective lens. I did it. The dynamic characteristics showed very good high-speed response.The present invention is easy to assemble because it does not use springs to maintain the movable part neutral, and high-order resonance, which has been a problem in the past, can be avoided. Furthermore, since the movable parts can be supported without contact, unnecessary parasitic vibrations and friction can be avoided and stable high-speed operation can be achieved.

[発明の効果] − 以上示したように本発明によれば、ラジアル多極着磁さ
れた永久磁石を可動部に用い、超伝導軸により可動部を
支持することにより以下のような利点を生ずる。
[Effects of the Invention] - As shown above, according to the present invention, the following advantages are produced by using a radially multipolar magnetized permanent magnet in the movable part and supporting the movable part by a superconducting shaft. .

(1)給電線の断線が無い。(1) There is no disconnection in the power supply line.

(2)給電線の接続処理が無いので組立が容易である。(2) Assembly is easy because there is no connection process for power supply lines.

(3)コイルの熱変形と接着不良の心配が無い。(3) There is no need to worry about thermal deformation of the coil or poor adhesion.

(4)支持バネが無い。(4) There is no support spring.

(5)構造が簡単で、小型・軽量である。(5) Simple structure, small size, and light weight.

(6)可動部を非接触で支持するため不要な寄生振動や
摩擦がない。
(6) Since the movable parts are supported without contact, there is no unnecessary parasitic vibration or friction.

従って高速応答性に優れ信頼性が高いGMが得られる6
本発明のGMは、コンピュータメモリ、光デイスク7フ
イル、CD、CD−ROM、LVDなどの光メモリ装置
に応用することが可能で、装置の高性能化や小型化など
の多大な効果を有するものである。
Therefore, a GM with excellent high-speed response and high reliability can be obtained6.
The GM of the present invention can be applied to optical memory devices such as computer memory, optical disk 7 files, CDs, CD-ROMs, and LVDs, and has great effects such as improving the performance and miniaturizing the devices. be.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のGMの一実施例を示す断面図。 第2図は、GMの中立状態説明図。 1・・・・・永久磁石 2・・・・・支持軸 3・・・・・ステータコア 4・・・・・コイル 5・・・・・ミラー 8・・・・・歯(ステータコアの一部)以上 FIG. 1 is a sectional view showing an embodiment of the GM of the present invention. FIG. 2 is an explanatory diagram of GM's neutral state. 1...Permanent magnet 2...Support shaft 3... Stator core 4... Coil 5...Mirror 8...Teeth (part of stator core) or more

Claims (1)

【特許請求の範囲】[Claims] (1)光メモリ装置のレーザビームのトラッキング制御
手段として永久磁石を可動部の一部とする構造のガルバ
ノミラーにおいて、 ミラーが固定されラジアル着磁を多極に施した円筒状の
永久磁石と該永久磁石の内周面と一定の空隙を介した超
伝導材料からなる支持軸と、前記永久磁石の外周面と一
定の空隙を介して前記永久磁石の磁極対数の歯を有し、
該歯が励磁コイルにより同極に励磁される構造のステー
タコアを有することを特徴とするガルバノミラー。
(1) In a galvanometer mirror having a structure in which a permanent magnet is part of a movable part as a tracking control means for a laser beam of an optical memory device, the mirror is fixed and a cylindrical permanent magnet is radially magnetized into multiple poles, and the permanent magnet is A support shaft made of a superconducting material that is connected to the inner peripheral surface of the magnet with a certain gap therebetween, and a pair of teeth of the magnetic poles of the permanent magnet that are connected to the outer peripheral surface of the permanent magnet and have a certain gap therebetween,
A galvanometer mirror comprising a stator core having a structure in which the teeth are excited to the same polarity by an excitation coil.
JP12071089A 1989-05-15 1989-05-15 Galvanomirror Pending JPH02301024A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12071089A JPH02301024A (en) 1989-05-15 1989-05-15 Galvanomirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12071089A JPH02301024A (en) 1989-05-15 1989-05-15 Galvanomirror

Publications (1)

Publication Number Publication Date
JPH02301024A true JPH02301024A (en) 1990-12-13

Family

ID=14793078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12071089A Pending JPH02301024A (en) 1989-05-15 1989-05-15 Galvanomirror

Country Status (1)

Country Link
JP (1) JPH02301024A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107600A (en) * 1998-02-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
KR20050071868A (en) * 2004-01-05 2005-07-08 정인철 High speed laser beam deflection mirror apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6107600A (en) * 1998-02-27 2000-08-22 Mitsubishi Denki Kabushiki Kaisha Laser machining apparatus
KR20050071868A (en) * 2004-01-05 2005-07-08 정인철 High speed laser beam deflection mirror apparatus

Similar Documents

Publication Publication Date Title
US5062095A (en) Actuator and method of manufacturing thereof
JP4378327B2 (en) Drive device
JPH0294126A (en) Object lens driving device
JPH02301024A (en) Galvanomirror
JPH02301023A (en) Lens focusing actuator
JPH0470712A (en) Galvanomirror
JPH03187026A (en) Galvanomirror
JPH02130731A (en) Lens focusing actuator
JPS6299966A (en) Rotary arm apparatus
JPH02308433A (en) Lens focusing actuator
JPH02183418A (en) Optical head
JPH0255557A (en) Head access vibrating motor
JPH0388136A (en) Lens focusing actuator
JPS63255869A (en) Motor for reproducing recording disk
JPH02267741A (en) Optical head
JP3128352B2 (en) Rotating polygon mirror scanning device
JPS6353315A (en) Bearing device for rotary shaft
JPH01102748A (en) Separable optical head
JPH01102424A (en) Galvanomirror
JPH01102420A (en) Galvanomirror
JPH02130732A (en) Lens focusing actuator
JPS62125573A (en) Spindle motor
JPH01302219A (en) Swing mechanism
JPS6216056A (en) Stepping motor
JPH01137224A (en) Galvanomirror