JPH03186468A - Unmanned self-traveling vehicle - Google Patents

Unmanned self-traveling vehicle

Info

Publication number
JPH03186468A
JPH03186468A JP1326711A JP32671189A JPH03186468A JP H03186468 A JPH03186468 A JP H03186468A JP 1326711 A JP1326711 A JP 1326711A JP 32671189 A JP32671189 A JP 32671189A JP H03186468 A JPH03186468 A JP H03186468A
Authority
JP
Japan
Prior art keywords
self
lever
propelled vehicle
propelled
unmanned self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1326711A
Other languages
Japanese (ja)
Other versions
JP2769636B2 (en
Inventor
Yosuke Shiotani
陽右 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Star Seiki Co Ltd
Original Assignee
Star Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Star Seiki Co Ltd filed Critical Star Seiki Co Ltd
Priority to JP1326711A priority Critical patent/JP2769636B2/en
Publication of JPH03186468A publication Critical patent/JPH03186468A/en
Application granted granted Critical
Publication of JP2769636B2 publication Critical patent/JP2769636B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Vehicle Body Suspensions (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Manipulator (AREA)
  • Platform Screen Doors And Railroad Systems (AREA)

Abstract

PURPOSE:To assure safe running by providing driven wheels and driving wheels on both ends of the first lever with its intermediate section swayably supported on both sides of the front section of a car body frame, and supporting the driven wheels on the second lever swayably supported on the intermediate section of the rear section of the car body frame. CONSTITUTION:The intermediate sections of the first levers 5 extended in the running direction on both sides of the front section of the main body frame 3 of an unmanned self-traveling vehicle are swayably supported on shafts 7, the first driven wheels 9 are rotatably supported on the front end section of the lever 5, and driving wheels 11 connected to the rotary shafts of electric motors 13 are rotatably supported on the rear end section respectively. The intermediate section of the second lever 15 extended in the direction perpendicular to the running direction is swayably supported on the rear intermediate section of the main body frame 3 around a shaft 18, and the second driven wheels 17 are pivotally supported on both end sections of the lever 15. The electric motors 13 are driven and controlled so that the light radiated from the light emitting member 19a of a running path detecting device provided at the front end section of the main body frame 3 and reflected by a running path is received by a corresponding light receiving member 19b.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

この発明は、走行路を自動的に検出して自走する無人自
走車、詳しくは走行面に対する接地性が高く、安定走行
が可能な懸架装置を備えた無人自走車に関する。
The present invention relates to an unmanned self-propelled vehicle that automatically detects a running path and travels on its own, and more particularly to an unmanned self-propelled vehicle that has a suspension system that has high ground contact with a running surface and enables stable running.

【従来技術】[Prior art]

従来の無人自走車としては、走行方向の前方に駆動輪お
よび操舵輪を兼ねた一つの前輪と後方に二つの従動輪と
を備えた3輪構造の自走車、あるいは走行方向の前方お
よび後方に夫々二つの従動輪を備えるとともに中間位置
に二つの駆動輪とを備えた6輪構造の自走車等が知られ
ている。 そして前者にあっては回転駆動およびぜ操舵駆動される
前輪により走行方向を決定しながら、また後者にあって
は中間部に位置する夫々の駆動輪の回転数の差により走
行方向を決定しながら自走するように構成されている。
Conventional unmanned self-propelled vehicles include three-wheeled self-propelled vehicles with one front wheel that serves as a driving wheel and a steering wheel at the front in the direction of travel, and two driven wheels at the rear; 2. Description of the Related Art Self-propelled vehicles having a six-wheel structure are known, each having two driven wheels at the rear and two driving wheels at an intermediate position. In the former, the running direction is determined by the front wheels driven by rotation and steering, and in the latter, the running direction is determined by the difference in the rotational speed of each drive wheel located in the middle. It is configured to be self-propelled.

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、上記した前者にあっては走行面に対して
前輪および後輪の夫々を確実に接地させることができる
は反面、前輪が一輪構造であるため、安定性が悪く、特
に重量物を搭載した状態でカーブ走行する際、搭載物の
重心移動により転倒するおそれを有している。従って三
輪構造の無人自走車にあっては、重量物を無人搬送する
用途には適用できない問題を有している。 また、後者にあっては、走行面は必ずしも平坦でないた
め、中間部に位置する両側の駆動輪を走行面へ確実に接
地させることができない。この自走車にあっては、自走
車の走行方向が駆動輪の回転数の差により決定されるた
め、走行面に対して駆動輪が接地していないと、走行方
向自体を決定できず、走行路から逸脱するおそれを有し
ている。このため、走行路に沿って自走車を確実に走行
させることができない問題を有している。 本発明は、上記した従来の欠点を解決するために発明さ
れたものであり、その目的とするところは、走行面に対
して全ての車輪を接地させることにより安定性に優れて
いるとともに重量物をも確実に搬送することが可能な懸
架装置を備えた無人自走車を提供することにある。
However, although the former mentioned above allows each of the front and rear wheels to be securely in contact with the running surface, on the other hand, the front wheel has a single-wheel structure, resulting in poor stability, especially when carrying heavy objects. When driving around a curve in this condition, there is a risk of the vehicle overturning due to the shift of the center of gravity of the loaded object. Therefore, the three-wheeled unmanned self-propelled vehicle has a problem in that it cannot be used for unmanned transportation of heavy objects. Furthermore, in the latter case, since the running surface is not necessarily flat, the drive wheels on both sides located in the middle cannot be reliably grounded on the running surface. In this self-propelled vehicle, the running direction of the self-propelled vehicle is determined by the difference in the rotation speed of the drive wheels, so if the drive wheels are not in contact with the running surface, the running direction itself cannot be determined. , there is a risk of deviating from the driving path. For this reason, there is a problem in that the self-propelled vehicle cannot be reliably driven along the travel path. The present invention was invented in order to solve the above-mentioned conventional drawbacks, and its purpose is to provide excellent stability by keeping all wheels in contact with the running surface, and to improve the stability of heavy loads. An object of the present invention is to provide an unmanned self-propelled vehicle equipped with a suspension device capable of reliably transporting objects.

【問題点を解決するための手段】[Means to solve the problem]

このため本発明は、走行面に設けられた被検出媒体を検
出手段により検出しながら走行方向を決定して自走可能
な無人自走車において、本体フレームの一方の走行方向
側の両側にて中間部が回動可能に支持されるとともに走
行方向へ延びる第1の1ツバ−の一端にて走行方向に向
かって回転可能に支持された第1の従動輪および他端に
て走行方向に向かって回転可能に支持された駆動輪と、
前記駆動輪を所定の方向へ回転駆動する電動モータと、
本体フレームの他方の走行方向側にて中間部が回動可能
に支持されるとともに走行方向と直交する方向へ延びる
第2のレバーの両端部に、走行方向に向かって回転可能
に支持された第2の従動輪とから無人自走車を構成する
ことを特徴としている。
For this reason, the present invention provides an unmanned self-propelled vehicle that is capable of self-propelling by determining the traveling direction while detecting a medium to be detected provided on the traveling surface using a detection means. A first driven wheel whose intermediate portion is rotatably supported and extends in the traveling direction; a first driven wheel rotatably supported in the traveling direction at one end; and a first driven wheel rotatably supported in the traveling direction at the other end; a drive wheel rotatably supported;
an electric motor that rotationally drives the drive wheel in a predetermined direction;
A second lever rotatably supported in the running direction is attached to both ends of a second lever whose intermediate portion is rotatably supported on the other running direction side of the main body frame and extends in a direction perpendicular to the running direction. The feature is that an unmanned self-propelled vehicle is constructed from two driven wheels.

【発明の作用】[Action of the invention]

本発明は上記のように構成されるため、走行路にそって
自走する際に、走行方向の前方あるいは後方に夫々取り
付けられた従動輪あるいは駆動輪が凹所もしくは凸所に
位置したとき、これら従動輪あるいは駆動輪が取り付け
られるレバーが走行方向もしくは走行方向と直交する方
向に対して回動可能に支持されているため、例えば、凹
所に位置した従動輪の反対側に取り付けられた駆動林あ
るいは従動輪が該凹所に応じて移動され、走行面に対す
る接地状態が保持される。このため、走行面が凹凸状で
あっても、全ての車輪を確実に接地させることができ、
高い走行安定性を得ることができるとともに重量物を搭
載した際においても店頭を防止することができる。
Since the present invention is configured as described above, when the present invention is self-propelled along a running path, when the driven wheels or the driving wheels attached to the front or rear in the running direction are located in a concave or convex place, Since the levers to which these driven wheels or driving wheels are attached are supported so as to be rotatable in the direction of travel or in the direction perpendicular to the direction of travel, for example The forest or driven wheel is moved according to the recess, and is maintained in contact with the running surface. Therefore, even if the running surface is uneven, all wheels can be reliably grounded.
High running stability can be obtained, and even when heavy objects are loaded, it is possible to prevent the vehicle from collapsing.

【実施例】【Example】

以下、本発明の一実施例を図面に従って説明する。 第1図は本発明に係る無人自走車の概略を示す路体斜視
図、第2図は懸架装置を示す路体平面図であり、無人自
走車1の本体フレーム3の、例えば走行方向の前方両側
には走行方向へ延びる第1のレバー5の中間部が軸7を
介して夫々回動可能に支持されている。そして各第1の
レバー5の走行方向前端部には第1の従動輪9が走行方
向へ夫々回転可能に支持されている。また、各第1のレ
バー5の走行方向後端部には駆動輪11が夫々回転可能
に支持され、夫々の駆動輪11には夫々の第1のレバー
5に取付けられた電動モーター13が夫々連結されてい
る。そして各電動モーター13の駆動に伴って夫々の駆
動輪11が正逆方向へ回転される。 前記本体フレーム3の走行方向の後方中間部には、走行
方向と直交する方向へ延びる第2のレバー15の中間部
が軸18を中心に回動可能に支持され、該レバー15の
両端部には第2の従動輪17が走行方向に向かって回転
可能に夫々支持される。 前記本体フレーム3の走行方向前端の中間部には、走行
路検出装置1.9が取付けられ、該走行路検出装置9は
走行面に向かって光を照射する2個の発光部材19aと
、発光部材19aから照射されて走行路から反射された
光を検出する2個の受光部材19bとから構成されてい
る。これらの発光部材1.9 aと受光部材1.9bと
は検出される走行路の幅に応じた間隔をおいて対の関係
で取付けられ、夫々の発光部材19aから照射されて走
行路から反射された反射光が、常には対応する夫々の受
光部材19bに入射されるように取付けられている。 すなわち、駆動輪11に連結された電動モータ13は夫
々の発光部材19aから照射されて走行路から反射され
た反射光が常に対応する受光部材19bに入射されるよ
うに駆動制御される。そして直進走行する無人自走車が
走行路のカーブにさしかかったとき、一方の発光部材1
9aから照射された光が走行路以外の箇所に照射され、
受光部材19bへ入射されなくなる。このとき、制御装
置(図示せず)は走行路から外れた側の電動モータ13
を他方の電動モータ13より高速駆動し、発光部材19
aから照射された光の反射光が対応する受光部材1.9
 bに入射されるように制御することにより走行路に沿
って自走させる。 次に、上記のように構成された無人自走車の作用を第3
図および第4図に従って説明する。 先ず、平坦な走行面を走行する場合を説明すると、各第
1および第2のレバー5・15の回動中心から等しい距
離をおいた位置に従動輪9と駆動輪11および2個の従
動輪17が夫々取り付けられているため、走行面に対し
て2個の従動輪9と駆動輪11および従動輪1,7が夫
々接地される。 このため、走行面に対してすべての車輪を接地させた状
態で走行させることができ、高い走行安定性を得ること
ができる。 次に、凹凸状の走行面を走行する場合を説明すると、例
えば第3図に示すように、一方の第1の1ツバ−5の一
端部に取付けられた従動輪9が走行面の凹所31に位置
シ、たとき、第1のレバー・5は軸7を中心に従動輪9
が下方に位置するように回動される。このとぎ、第Jの
レバー5に対して従動輪9ど駆動輪11、との取付は間
隔が等しく設定されているため、第↓のレバー5の回動
に伴って駆動輪11が従動輪9と等(7い距離にて上方
へ移動]7て走行面に対する駆動輪13の接地状態が維
持される。 これにより走行面に対して夫々の従動輪9・17および
駆動輪11の6輪の接地状態が維持され、高い走行安定
性を得ている。 なお、第4図に示すように、前記従動輪9が走行面の晶
析33に位置した際においては、前述した作用と反対に
第1のレバー5が反対方向へ回動され、走行面に対して
全ての車輪を接地させることができる。また、同様に、
従動輪17が走行路の凹所あるいは晶析に位置したとき
、第2のレバー15が所定の方向へ回動して走行面に対
する全ての車輪の接地状態を維持することができる。 この結果、無人自走車1が走行面の凹所31に位置した
際において走行面に対して常に6輪の全部を接地させる
ことができ、駆動輪11の回転駆動力を付与して自走す
ることができるとともに走行安定性を高めることができ
る。 このように本実施例は、従動輪9と駆動輪11および従
動輪1.7が取付けられる第1および第2のレバー5・
1−5が夫々回動可能に支持されているため、従動輪9
・〕7および駆動輪IJが走行面の凹所あるいは雪折に
位置したときにおいても、全ての車輪を走行面へ接地さ
せることができ、無人自走車1を安定走行させることが
できる。 き、走行時における転倒などを防止することができる。 上記説明は、発光部材19aから照射されて走行路から
反射された光が、常に受光部材19bに受光されるよう
に夫々の駆動輪11の回転数を駆動制御して自走させる
ものとしたが、走行面に敷設された電磁波誘導線からの
電磁波あるいは磁力発生部材からの磁気を常に検出する
ように各駆動輪11の回転数を駆動制御して自走させる
走行形式の無人自走車1であってもよい。
An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view of a road body schematically showing an unmanned self-propelled vehicle according to the present invention, and FIG. 2 is a plan view of a road body showing a suspension system. Intermediate portions of first levers 5 extending in the running direction are rotatably supported via shafts 7 on both front sides of the vehicle. A first driven wheel 9 is supported at the front end of each first lever 5 in the running direction so as to be rotatable in the running direction. Further, a drive wheel 11 is rotatably supported at the rear end of each first lever 5 in the running direction, and an electric motor 13 attached to each first lever 5 is attached to each drive wheel 11. connected. As each electric motor 13 is driven, each drive wheel 11 is rotated in forward and reverse directions. An intermediate portion of a second lever 15 extending in a direction perpendicular to the traveling direction is supported rotatably around a shaft 18 at the rear intermediate portion of the main body frame 3 in the traveling direction. The second driven wheels 17 are supported rotatably in the running direction. A running path detection device 1.9 is attached to the intermediate portion of the front end of the main body frame 3 in the running direction, and the running path detection device 9 includes two light emitting members 19a that emit light toward the running surface, and a light emitting member 19a that emits light toward the running surface. It is composed of two light receiving members 19b that detect the light emitted from the member 19a and reflected from the traveling path. The light-emitting member 1.9a and the light-receiving member 1.9b are installed in pairs with an interval corresponding to the width of the road to be detected, and the light emitted from each light-emitting member 19a is reflected from the road. The light receiving member 19b is attached so that the reflected light is always incident on the corresponding light receiving member 19b. That is, the electric motor 13 connected to the driving wheel 11 is controlled so that the reflected light emitted from each light emitting member 19a and reflected from the traveling path is always incident on the corresponding light receiving member 19b. When the unmanned self-propelled vehicle that is traveling straight approaches a curve on the road, one of the light emitting members 1
The light irradiated from 9a is irradiated to areas other than the driving path,
The light is no longer incident on the light receiving member 19b. At this time, a control device (not shown) controls the electric motor 13 on the side away from the traveling path.
is driven at a higher speed than the other electric motor 13, and the light emitting member 19
Light receiving member 1.9 to which the reflected light of the light irradiated from a corresponds
By controlling the beam so that it is incident on point b, it is made to run on its own along the travel path. Next, we will explain the operation of the unmanned self-propelled vehicle configured as described above in the third section.
This will be explained according to the figures and FIG. First, to explain the case of traveling on a flat running surface, the driven wheels 9, 11, and two driven wheels are placed at equal distances from the center of rotation of each of the first and second levers 5 and 15. 17, the two driven wheels 9 and driving wheels 11 and the driven wheels 1 and 7 are respectively grounded with respect to the running surface. Therefore, the vehicle can be driven with all wheels in contact with the running surface, and high running stability can be achieved. Next, to explain the case of traveling on an uneven running surface, for example, as shown in FIG. 31, the first lever 5 moves the driven wheel 9 around the shaft 7.
is rotated so that it is positioned downward. At this point, since the driven wheels 9 and 11 are attached to the J-th lever 5 at equal intervals, as the ↓-th lever 5 rotates, the driving wheels 11 are attached to the driven wheels 9. (Moves upward at a distance of 7) At 7, the grounding state of the driving wheels 13 with respect to the running surface is maintained. As a result, the six wheels of the respective driven wheels 9 and 17 and the driving wheel 11 are kept in contact with the running surface. The ground contact state is maintained and high running stability is obtained.As shown in FIG. 1 lever 5 is rotated in the opposite direction, all wheels can be brought into contact with the running surface.Similarly,
When the driven wheels 17 are located in a recess or a crystallization area of the running road, the second lever 15 is rotated in a predetermined direction so that all the wheels can be maintained in contact with the running surface. As a result, when the unmanned self-propelled vehicle 1 is located in the recess 31 of the running surface, all six wheels can always be in contact with the running surface, and the rotational driving force of the drive wheels 11 is applied to the self-propelled vehicle 1. It is possible to improve running stability. In this way, in this embodiment, the driven wheels 9, the driving wheels 11, and the first and second levers 5 and 7 to which the driven wheels 1.7 are attached are connected.
1-5 are rotatably supported, so that the driven wheels 9
Even when the driving wheels IJ and 7 are located in a depression in the running surface or a snow break, all wheels can be grounded to the running surface, and the unmanned self-propelled vehicle 1 can run stably. This can prevent falls while driving. In the above description, it is assumed that the rotation speed of each drive wheel 11 is controlled so that the light emitted from the light emitting member 19a and reflected from the running path is always received by the light receiving member 19b, and the drive wheels 11 are driven by themselves. , an unmanned self-propelled vehicle 1 that is self-propelled by controlling the rotation speed of each drive wheel 11 so as to constantly detect electromagnetic waves from an electromagnetic wave guide wire laid on a running surface or magnetism from a magnetic force generating member. There may be.

【発明の効果】【Effect of the invention】

このため本発明は、走行面に対して全ての車輪を接地さ
せることにより安定性に優れているとともに重量物をも
確実に搬送することが可能な懸架装置を備えた無人自走
車を提供することが可能である。
Therefore, the present invention provides an unmanned self-propelled vehicle equipped with a suspension system that has excellent stability by grounding all wheels to the running surface and can reliably transport heavy objects. Is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る無人自走車の概略を示す明である
。 図中1は無人自走車、3は本体フレーム、5はレバー、
9は従動輪、11は駆動輪、13は電動モーター、15
は第2のレバーである。
FIG. 1 is a diagram schematically showing an unmanned self-propelled vehicle according to the present invention. In the figure, 1 is an unmanned self-propelled vehicle, 3 is the main body frame, 5 is a lever,
9 is a driven wheel, 11 is a driving wheel, 13 is an electric motor, 15
is the second lever.

Claims (1)

【特許請求の範囲】 1、走行面に設けられた被検出媒体を検出手段により検
出しながら走行方向を決定して自走可能な無人自走車に
おいて、 本体フレームの一方の走行方向側の両側にて中間部が回
動可能に支持されるとともに走行方向へ延びる第1のレ
バーの一端にて走行方向に向かって回転可能に支持され
た第1の従動輪および他端にて走行方向に向かって回転
可能に支持された駆動輪と、 前記駆動輪を所定の方向へ回転駆動する電動モータと、 本体フレームの他方の走行方向側にて中間部が回動可能
に支持されるとともに走行方向と直交する方向へ延びる
第2のレバーの両端部に、走行方向に向かって回転可能
に支持された第2の従動輪と、 を備えたことを特徴とする無人自走車。 2、前記検出手段は光反射可能な走行路に向かって光を
照射する発行部材と走行路からの反射光を受光する受光
部材とからなり、常には受光部材が反射光を受光するよ
うに電動モータの回転数を駆動制御して自走可能な請求
項1記載の無人自走車3、前記検出手段は敷設された電
磁波発生部材からの電磁波を検出する電磁波検出部材か
らなり、常には電磁波検出部材が電磁波発生部材からの
電磁波を検出するように電動モータの回転数を駆動制御
して自走可能な請求項1記載の無人自走車。 4、前記検出手段は敷設された磁気発生部材からの磁気
を検出する磁気検出部材からなり、常には磁気検出部材
が磁気発生部材からの磁気を検出するように電動モータ
の回転数を駆動制御して自走可能な請求項1記載の無人
自走車。
[Scope of Claims] 1. In an unmanned self-propelled vehicle capable of self-propelled by determining the traveling direction while detecting a medium to be detected provided on the traveling surface by a detection means, both sides of one traveling direction side of the main body frame. A first lever whose intermediate portion is rotatably supported by the lever and which extends in the traveling direction; a first driven wheel rotatably supported by one end of the lever; a drive wheel that is rotatably supported by the drive wheel; an electric motor that rotationally drives the drive wheel in a predetermined direction; An unmanned self-propelled vehicle, comprising: second driven wheels rotatably supported in the traveling direction at both ends of a second lever extending in orthogonal directions. 2. The detection means is composed of an emitting member that irradiates light toward the traveling path that can reflect light, and a light receiving member that receives reflected light from the traveling path, and is usually powered by a motor so that the light receiving member receives the reflected light. The unmanned self-propelled vehicle 3 according to claim 1, wherein the unmanned self-propelled vehicle 3 is capable of self-propelled by driving and controlling the rotational speed of a motor, wherein the detection means is comprised of an electromagnetic wave detection member that detects electromagnetic waves from an installed electromagnetic wave generation member, and the detection means is always configured to detect electromagnetic waves. The unmanned self-propelled vehicle according to claim 1, wherein the unmanned self-propelled vehicle is capable of self-propelled by driving and controlling the rotational speed of an electric motor so that the member detects electromagnetic waves from the electromagnetic wave generating member. 4. The detection means includes a magnetic detection member that detects magnetism from the installed magnetism generating member, and always drives and controls the rotation speed of the electric motor so that the magnetic detection member detects the magnetism from the magnetism generating member. The unmanned self-propelled vehicle according to claim 1, which is capable of self-propelled.
JP1326711A 1989-12-16 1989-12-16 Driverless car Expired - Fee Related JP2769636B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1326711A JP2769636B2 (en) 1989-12-16 1989-12-16 Driverless car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1326711A JP2769636B2 (en) 1989-12-16 1989-12-16 Driverless car

Publications (2)

Publication Number Publication Date
JPH03186468A true JPH03186468A (en) 1991-08-14
JP2769636B2 JP2769636B2 (en) 1998-06-25

Family

ID=18190823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1326711A Expired - Fee Related JP2769636B2 (en) 1989-12-16 1989-12-16 Driverless car

Country Status (1)

Country Link
JP (1) JP2769636B2 (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061309U (en) * 1992-06-03 1994-01-11 株式会社岡村製作所 All-wheel grounding device for 4-wheel traveling stacker crane
JPH078141U (en) * 1993-07-13 1995-02-03 日本車輌製造株式会社 Automated guided vehicle
JPH08268269A (en) * 1995-03-30 1996-10-15 Nittetsu Mining Co Ltd Equalizer mechanism of guide sensor in automatically guided carrier
WO2002038435A1 (en) * 2000-11-09 2002-05-16 Uragami Fukashi Traveling car
EP1806210A2 (en) 2005-12-02 2007-07-11 Samsung Electronics Co., Ltd. Travelling robot
EP1806209A2 (en) 2005-11-29 2007-07-11 Samsung Electronics Co., Ltd. Travelling robot
JP2007308095A (en) * 2006-05-22 2007-11-29 Ihi Corp Traveling device
JP2010083467A (en) * 2008-09-05 2010-04-15 Yoshinobu Sato Movable working platform
CN104228998A (en) * 2014-07-04 2014-12-24 北京航空航天大学 Throwable scout robot
CN107416071A (en) * 2017-07-05 2017-12-01 广东嘉腾机器人自动化有限公司 Automatical pilot transportation vehicle
CN107521579A (en) * 2017-09-06 2017-12-29 天津朗誉科技发展有限公司 A kind of AGV transport vehicles swing-tray
CN109383662A (en) * 2017-08-09 2019-02-26 杭州海康机器人技术有限公司 A kind of automated guided vehicle
CN110949565A (en) * 2018-09-26 2020-04-03 中国科学院沈阳自动化研究所 All-terrain six-wheel moving mechanism
JP2020513375A (en) * 2016-12-14 2020-05-14 ヂュイノン ロボティクス(シャンハイ) カンパニー リミテッドZhuineng Robotics (Shanghai) Co., Ltd Carrier
EP3770046A1 (en) * 2019-07-23 2021-01-27 MAGNA STEYR Fahrzeugtechnik AG & Co KG Driverless transport system
JP6830708B1 (en) * 2020-08-20 2021-02-17 株式会社大同機械 Bogie and its wheel system
CN112722115A (en) * 2020-12-19 2021-04-30 浙江夏厦精密制造股份有限公司 Logistics robot with walking speed reducer
CN112723237A (en) * 2020-12-19 2021-04-30 浙江夏厦精密制造股份有限公司 Logistics robot with lifting speed reducer
JP2022117875A (en) * 2021-02-01 2022-08-12 株式会社大同機械 Travel control system and dolly
WO2022238005A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
EP4067214A4 (en) * 2020-02-06 2024-01-03 DMG Mori Co., Ltd. Running device
EP3800113B1 (en) * 2019-10-01 2024-03-06 Mobile Industrial Robots A/S Mobile robot with adjustable traction weights

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114156A (en) * 1982-12-21 1984-07-02 株式会社ダイフク Self-advancing cart
JPS62181415U (en) * 1986-05-09 1987-11-18
JPS6342470U (en) * 1986-09-04 1988-03-19

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59114156A (en) * 1982-12-21 1984-07-02 株式会社ダイフク Self-advancing cart
JPS62181415U (en) * 1986-05-09 1987-11-18
JPS6342470U (en) * 1986-09-04 1988-03-19

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061309U (en) * 1992-06-03 1994-01-11 株式会社岡村製作所 All-wheel grounding device for 4-wheel traveling stacker crane
JPH078141U (en) * 1993-07-13 1995-02-03 日本車輌製造株式会社 Automated guided vehicle
JPH08268269A (en) * 1995-03-30 1996-10-15 Nittetsu Mining Co Ltd Equalizer mechanism of guide sensor in automatically guided carrier
WO2002038435A1 (en) * 2000-11-09 2002-05-16 Uragami Fukashi Traveling car
US6932182B2 (en) 2000-11-09 2005-08-23 Fukashi Urakami Traveling car
EP1806209A2 (en) 2005-11-29 2007-07-11 Samsung Electronics Co., Ltd. Travelling robot
EP1806209A3 (en) * 2005-11-29 2011-07-27 Samsung Electronics Co., Ltd. Travelling robot
EP1806210A2 (en) 2005-12-02 2007-07-11 Samsung Electronics Co., Ltd. Travelling robot
EP1806210A3 (en) * 2005-12-02 2011-07-27 Samsung Electronics Co., Ltd. Travelling robot
JP2007308095A (en) * 2006-05-22 2007-11-29 Ihi Corp Traveling device
JP2010083467A (en) * 2008-09-05 2010-04-15 Yoshinobu Sato Movable working platform
CN104228998A (en) * 2014-07-04 2014-12-24 北京航空航天大学 Throwable scout robot
JP2020513375A (en) * 2016-12-14 2020-05-14 ヂュイノン ロボティクス(シャンハイ) カンパニー リミテッドZhuineng Robotics (Shanghai) Co., Ltd Carrier
CN107416071A (en) * 2017-07-05 2017-12-01 广东嘉腾机器人自动化有限公司 Automatical pilot transportation vehicle
CN109383662A (en) * 2017-08-09 2019-02-26 杭州海康机器人技术有限公司 A kind of automated guided vehicle
CN107521579A (en) * 2017-09-06 2017-12-29 天津朗誉科技发展有限公司 A kind of AGV transport vehicles swing-tray
CN110949565A (en) * 2018-09-26 2020-04-03 中国科学院沈阳自动化研究所 All-terrain six-wheel moving mechanism
EP3770046B1 (en) 2019-07-23 2022-09-14 MAGNA STEYR Fahrzeugtechnik AG & Co KG Driverless transport system
EP3770046A1 (en) * 2019-07-23 2021-01-27 MAGNA STEYR Fahrzeugtechnik AG & Co KG Driverless transport system
WO2021013970A1 (en) * 2019-07-23 2021-01-28 Magna Steyr Fahrzeugtechnik Ag & Co Kg Driverless transport system
CN114761309A (en) * 2019-07-23 2022-07-15 Fb工业自动化有限公司 Unmanned transport system
EP3800113B1 (en) * 2019-10-01 2024-03-06 Mobile Industrial Robots A/S Mobile robot with adjustable traction weights
EP4067214A4 (en) * 2020-02-06 2024-01-03 DMG Mori Co., Ltd. Running device
JP6830708B1 (en) * 2020-08-20 2021-02-17 株式会社大同機械 Bogie and its wheel system
JP2022035183A (en) * 2020-08-20 2022-03-04 株式会社大同機械 Truck and wheel system thereof
CN112723237B (en) * 2020-12-19 2022-03-22 浙江夏厦精密制造股份有限公司 Logistics robot with lifting speed reducer
CN112723237A (en) * 2020-12-19 2021-04-30 浙江夏厦精密制造股份有限公司 Logistics robot with lifting speed reducer
CN112722115A (en) * 2020-12-19 2021-04-30 浙江夏厦精密制造股份有限公司 Logistics robot with walking speed reducer
JP2022117875A (en) * 2021-02-01 2022-08-12 株式会社大同機械 Travel control system and dolly
WO2022238005A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co. Kg Mobile transport system
DE102022001550A1 (en) 2021-05-14 2022-11-17 Sew-Eurodrive Gmbh & Co Kg Mobile transport system

Also Published As

Publication number Publication date
JP2769636B2 (en) 1998-06-25

Similar Documents

Publication Publication Date Title
JPH03186468A (en) Unmanned self-traveling vehicle
JPH107043A (en) Unmanned conveying vehicle
JP2000229580A (en) Transporting means operation assembly
JPS63297165A (en) Unmanned vehicle for transportation
JP3370200B2 (en) How to determine the steering wheel steering angle of an automatic guided vehicle
JPS59153211A (en) Guiding method of unmanned carrier car
JPH0635533A (en) Tracking vehicle and link thereof
JPS6237287A (en) Wheel running device
JP2989148B2 (en) Agricultural vehicle
JP4311025B2 (en) Transport vehicle
JPS6265110A (en) Detecting method for obstacle of unmanned carrier
JPS58177783A (en) Travelling device
JPH11240446A (en) Automated guided vehicle
JPH08272443A (en) Attitude control method for unmanned carrier using front and back wheels
JPS62125947A (en) Self-propelling truck
JP2003330541A (en) Turn control method for unmanned carrier vehicle
JPH10232711A (en) Omnidirectional unmanned carrier
JPH0441370B2 (en)
JPH0234146Y2 (en)
JPH01114567A (en) Unmanned running vehicle
JPH0233607A (en) Driving method for three-wheeled unmanned vehicle
JPS61117607A (en) Steering controller of moving vehicle
JPH0348646Y2 (en)
JPS60146306A (en) Carrying device using self-traveling truck capable of lateral movement
JPH0127909B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees