JPH03185719A - Diffusion furnace - Google Patents

Diffusion furnace

Info

Publication number
JPH03185719A
JPH03185719A JP32512689A JP32512689A JPH03185719A JP H03185719 A JPH03185719 A JP H03185719A JP 32512689 A JP32512689 A JP 32512689A JP 32512689 A JP32512689 A JP 32512689A JP H03185719 A JPH03185719 A JP H03185719A
Authority
JP
Japan
Prior art keywords
quartz tube
oxygen
reaction
furnace
diffusion furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32512689A
Other languages
Japanese (ja)
Inventor
Tadashi Daimon
大門 直史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP32512689A priority Critical patent/JPH03185719A/en
Publication of JPH03185719A publication Critical patent/JPH03185719A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent entry of oxygen into a reaction quartz tube and enable a stable semiconductor wafer processing wherein the wafer is not subjected to high temperature oxygen when it goes in and out of a furnace by placing at the reaction quartz tube and its port to the furnace a separate additional quartz tube with the same shape. CONSTITUTION:A cylindrical additional quartz tube 11 in contact with an inlet of a cylindrical reaction quartz tube 1 having a diameter equal to that of the reaction quartz tube 1 and length of 3 to 5 times the diameter is provided. In this case, the additional quartz tube 11 placed at the inlet of the reaction quartz tube shifts the position of oxygen entry to the right in the figure by its length and a temperature in the oxygen entry part is sufficiently low so that a wafer is not subjected to high temperature oxygen when it goes in and out of a furnace. Thus stable semiconductor wafer processing is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体製造装置に関し、特に拡散炉の構造に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to semiconductor manufacturing equipment, and particularly to the structure of a diffusion furnace.

〔従来の技術〕[Conventional technology]

第3図は従来の一例を示す拡散炉の概略断面図である。 FIG. 3 is a schematic cross-sectional view of a conventional diffusion furnace.

従来、この種の拡散炉は、第3図に示すように、石英ポ
ート5に乗せられた半導体ウェーハ6を収納する反応用
石英管1と、この反応用石英管1の外周囲にある加熱用
のヒータ3と、反応石英管lの一端の開口部に設けられ
たスカベンジャ4と、この開口部に隣接して設けられた
受皿7と、反応用石英管1の他端に設けられたガス導入
口2とから構成されている。次に、半導体ウェーハに不
純物を拡散する場合を説明すると、石英ポート5に半導
体ウェハ6を立て、それを反応石英管1内に入れて、4
所定の温度でガラスで処理して行なわれている。このと
き、ガス導入管2より反応石英管内へN2ガスを流し、
炉口3A部から反応石英管内への空気のまわりこみを防
止している。
Conventionally, this type of diffusion furnace includes a reaction quartz tube 1 for storing a semiconductor wafer 6 placed in a quartz port 5, and a heating tube located around the outer periphery of the reaction quartz tube 1, as shown in FIG. , a scavenger 4 provided at the opening at one end of the reaction quartz tube l, a saucer 7 provided adjacent to this opening, and a gas inlet provided at the other end of the reaction quartz tube 1. It consists of a mouth 2. Next, to explain the case of diffusing impurities into a semiconductor wafer, the semiconductor wafer 6 is placed in the quartz port 5, placed in the reaction quartz tube 1, and
This is done by treating glass at a predetermined temperature. At this time, N2 gas is flowed into the reaction quartz tube from the gas introduction tube 2,
This prevents air from entering the reaction quartz tube from the furnace opening 3A.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述した従来の拡散炉では、炉口3Aか
ら反応石英管1へ空気がまわりこむ距離は、通常反応石
英管径の3倍程度である。近年のように、ウェーハの大
口径化になると、この距離も大きくなる傾向にある。こ
のときに問題となるのは、まわりこみ空気内の酸素であ
り、このまわりこむ距離が長くなるほど反応石英管内の
温度の高い部分に酸素が存在することになる。
However, in the conventional diffusion furnace described above, the distance that air goes around from the furnace opening 3A to the reaction quartz tube 1 is usually about three times the diameter of the reaction quartz tube. In recent years, as wafers have become larger in diameter, this distance has also tended to become larger. At this time, the problem is the oxygen in the surrounding air, and the longer the distance of the surrounding air, the more oxygen will be present in the higher temperature parts of the reaction quartz tube.

石英ポートを人出炉する時、この高温酸素にウェーハが
さらされる。このためウェー71は酸化されることにな
る。従って、ウェーノ)を全く酸化(はとんどわずかで
も)させたくない工程の場合には問題となる。また、例
えば、ゲート酸化工程等の薄くて精密な膜厚をフントロ
ールする場合には、バラツキの要因となる。例えば炉芯
管径20cmの場合、酸素まわりこむ距離は、約60c
mとなり、1000℃で使用する炉では、その点の温度
は500℃以上になり、ポートの人出4毎に500℃以
上の酸素でウェーノ1がさらされることになる。
When the quartz port is exposed to the furnace, the wafer is exposed to this high temperature oxygen. Therefore, the wafer 71 will be oxidized. Therefore, it becomes a problem in the case of a process in which it is desired to avoid oxidizing the waeno at all (even if only slightly). Further, for example, when controlling a thin and precise film thickness in a gate oxidation process, etc., it becomes a factor of variation. For example, if the furnace core tube diameter is 20 cm, the distance for oxygen to go around is approximately 60 cm.
m, and in a furnace used at 1000°C, the temperature at that point will be 500°C or higher, and Waeno 1 will be exposed to oxygen at 500°C or higher for every 4 people at the port.

本発明の目的は、かかる問題を解決する拡散炉を提供す
ることである。
An object of the present invention is to provide a diffusion furnace that solves this problem.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の拡散炉は、円筒状の反応用石英管の入口部に接
するとともにその直径が前記反応用石英管と同一径でか
つその長さが直径の3〜5倍である円筒状の付属石英管
を備え構成される。
The diffusion furnace of the present invention includes a cylindrical attached quartz tube that is in contact with the inlet of the cylindrical quartz tube for reaction, has the same diameter as the quartz tube for reaction, and has a length of 3 to 5 times the diameter. It consists of a tube.

〔実施例〕 次に、本発明について図面を参照して説明する。〔Example〕 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を示す拡散炉の概略断面図で
ある。この拡散炉は、スカベンジャ4に接して付属用石
英管11を設けたことである。それ以外は従来例と同じ
である。この付属用石英管11の直径は、反応用石英管
と同じ直径であり、例えば、その直径は20cmで、そ
の長さは4倍の80cmである。また、この付属用石英
管11はスカベンジャ4への排気口12の機能を持って
いる。
FIG. 1 is a schematic sectional view of a diffusion furnace showing an embodiment of the present invention. This diffusion furnace is provided with an accessory quartz tube 11 in contact with the scavenger 4. Other than that, it is the same as the conventional example. The diameter of this accessory quartz tube 11 is the same as that of the reaction quartz tube, for example, its diameter is 20 cm, and its length is 80 cm, which is four times as long. Further, this accessory quartz tube 11 has the function of an exhaust port 12 to the scavenger 4.

ここで、この拡散炉での空気(即ち酸素)のまわりこみ
について考えてみる。この実施例の場合は、空気まわり
こみ口が付属用石英管11の端1Aとみなされるので、
酸素まわりこみ長は、LAから60cmの所IBとなる
。この点は、この付属用石英管11内部であるので、は
ぼ室温に近い温度となっており、従来法のように人出4
時、高温酸素にウェーハがさらされないことがわかる。
Let us now consider the circulation of air (that is, oxygen) in this diffusion furnace. In the case of this embodiment, the air inlet is considered to be the end 1A of the attached quartz tube 11, so
The oxygen wrap-around length is IB at 60 cm from LA. Since this point is inside the attached quartz tube 11, the temperature is close to room temperature, and unlike the conventional method, the number of people is 4.
It can be seen that the wafer is not exposed to high temperature oxygen at this time.

すなわち、反応石英管炉口に設置した付属用石英管11
が、その長さ分だけ酸素まわりこみ位置を右側にシフト
させたことになり、その酸素まわりこみ部の温度が十分
低くなっているので、入出力4時の問題が起きないこと
がわかる。
That is, the attached quartz tube 11 installed at the reactor quartz tube furnace mouth
However, since the oxygen wrapping position has been shifted to the right by that length, and the temperature of the oxygen wrapping portion has become sufficiently low, it can be seen that the problem at input/output 4 does not occur.

第2図は本発明の他の実施例を示す拡散炉の概略断面図
である。この拡散炉は、付属用石英管11の中央部にN
2ガスの導入口21を設けたものである。この実施例の
場合は、前述の実施例よりも酸素まわりこみ防止効果は
大となり、酸素まわりこみ長は、空気まわりこみ口から
20cm程度の場所2Bとなる。この部分の温度は、前
述の実施例よりも低く、はとんど室温となる。
FIG. 2 is a schematic sectional view of a diffusion furnace showing another embodiment of the present invention. This diffusion furnace has N in the center of the attached quartz tube 11.
Two gas inlets 21 are provided. In the case of this embodiment, the effect of preventing oxygen leakage is greater than in the previous embodiment, and the oxygen leakage length is approximately 20 cm from the air circulation inlet 2B. The temperature in this part is lower than in the previous embodiment, almost at room temperature.

また、本発明は拡散炉について説明したがHotWal
lタイプの減圧CVD炉にも適用可能なことは容易に推
察できる。
Furthermore, although the present invention has been described with reference to a diffusion furnace, HotWal
It can be easily inferred that this method can also be applied to an L type low pressure CVD furnace.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、反応用石英管とその炉口
に、それとは別の同一形状の付属用石英管(N2ガス導
入口があればより良い)を設置することにより、反応用
石英管内への酸素のまわりこみを防止でき、よって人出
4時に高温酸素にウェーハがさらされない安定した半導
体ウェーハ処理が可能となる拡散炉が得られるという効
果がある。
As explained above, in the present invention, by installing a separate quartz tube for reaction and an attached quartz tube of the same shape (it is better if there is an N2 gas inlet) at the mouth of the quartz tube for reaction, This has the effect of providing a diffusion furnace that can prevent oxygen from leaking into the tube, thereby enabling stable semiconductor wafer processing in which wafers are not exposed to high-temperature oxygen when people are out at 4 o'clock.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す拡散炉の概略断面図、
第2図は本発明の他の実施例を示す拡散炉の概略断面図
、第3図は従来の一例を示す拡散炉の概略断面図である
。 1・・・・・・反応用石英管、2・・・・・・ガス導入
部、3・・・・・・ヒータ、4・・・・・・スカベンジ
ャ、5・・・・・・石英ホード、6・・・・・・半導体
ウェーハ 7・・・・・・受皿、11・・・・・・付属
用石英管、12・曲・スカベンジャ用口、21・・・・
・・導入口。
FIG. 1 is a schematic sectional view of a diffusion furnace showing one embodiment of the present invention;
FIG. 2 is a schematic sectional view of a diffusion furnace showing another embodiment of the present invention, and FIG. 3 is a schematic sectional view of a diffusion furnace showing a conventional example. 1...Quartz tube for reaction, 2...Gas introduction part, 3...Heater, 4...Scavenger, 5...Quartz hoard , 6...Semiconductor wafer 7...Saucer, 11...Quartz tube for attachment, 12.Block/scavenger opening, 21...
...Introduction port.

Claims (1)

【特許請求の範囲】[Claims]  円筒状の反応用石英管の入口部に接するとともにその
直径が前記反応用石英管と同一径でかつその長さが直径
の3〜5倍である円筒形状の付属石英管を備えることを
特徴とする拡散炉。
It is characterized by comprising a cylindrical attached quartz tube that is in contact with the inlet of the cylindrical reaction quartz tube, has the same diameter as the reaction quartz tube, and has a length 3 to 5 times the diameter. diffusion furnace.
JP32512689A 1989-12-14 1989-12-14 Diffusion furnace Pending JPH03185719A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32512689A JPH03185719A (en) 1989-12-14 1989-12-14 Diffusion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32512689A JPH03185719A (en) 1989-12-14 1989-12-14 Diffusion furnace

Publications (1)

Publication Number Publication Date
JPH03185719A true JPH03185719A (en) 1991-08-13

Family

ID=18173370

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32512689A Pending JPH03185719A (en) 1989-12-14 1989-12-14 Diffusion furnace

Country Status (1)

Country Link
JP (1) JPH03185719A (en)

Similar Documents

Publication Publication Date Title
US4203387A (en) Cage for low pressure silicon dioxide deposition reactors
JPH03185719A (en) Diffusion furnace
JPH0369117A (en) Manufacturing apparatus of semiconductor device
JP2502692B2 (en) Diffusion furnace device
JPS551130A (en) Furnace core pipe for manufacturing semiconductor
JPS5856341A (en) Heat treatment and heat treatment device
JPH05291161A (en) Vertical type diffusion device
JPS6310519A (en) Semiconductor manufacturing equipment
JPH0574757A (en) High pressure oxidation furnace for semiconductor device
JPH11329986A (en) Semiconductor manufacturing apparatus
JPS5860543A (en) Processing device for semiconductor wafer
JPH01260815A (en) Heat treatment device for semiconductor substrate
JPH05152229A (en) Heat treatment furnace
JPH08316156A (en) Apparatus for manufacturing semiconductor device
JPH04364028A (en) Heat treatment
JPH01198477A (en) Low pressure vapor growth device
JPS60211913A (en) Processing device
JPS60227415A (en) Vapor growth apparatus
JPS5922114Y2 (en) heat treatment equipment
JPS5821173Y2 (en) Furnace tube
JPH0496321A (en) Heater for manufacturing semiconductor
JPH03194924A (en) Vertical processing equipment
JPS62252932A (en) Heat-treating apparatus for semiconductor wafer
JPS6378518A (en) Manufasture of semiconductor device
JPS54154267A (en) Heat treatment method of wafer