JPH03184677A - Method for joining metallic sintered material, pulley made of metallic sintered material and production thereof - Google Patents

Method for joining metallic sintered material, pulley made of metallic sintered material and production thereof

Info

Publication number
JPH03184677A
JPH03184677A JP32094789A JP32094789A JPH03184677A JP H03184677 A JPH03184677 A JP H03184677A JP 32094789 A JP32094789 A JP 32094789A JP 32094789 A JP32094789 A JP 32094789A JP H03184677 A JPH03184677 A JP H03184677A
Authority
JP
Japan
Prior art keywords
sintered
protrusion
members
metal
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32094789A
Other languages
Japanese (ja)
Other versions
JP2536200B2 (en
Inventor
Yasushi Nishikura
西倉 靖
Koki Yanagawa
柳川 弘毅
Toru Kono
河野 通
Rokuro Sato
佐藤 録郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP1320947A priority Critical patent/JP2536200B2/en
Publication of JPH03184677A publication Critical patent/JPH03184677A/en
Application granted granted Critical
Publication of JP2536200B2 publication Critical patent/JP2536200B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Pulleys (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To prevent the degradation in the toughness of a joined part by pressurizing and pressing the projections on the joint surface of one metallic sintered material to the joint surface of the other metallic sintered material and energizing the two members to each other. CONSTITUTION:The metallic sintered material and the other metallic sintered material or metallic material are joined. The projections 1 are, thereupon, formed on the joint surface of at least one metallic sintered material. The projections 1 are pressurized and pressed to the joint surface of the other metallic sintered material or metallic material. The two members are simultaneously energized to each other and are thereby heated without melting the projections 1, by which the two members are joined. The energization quantity between the members of the iron alloy sintered materials is specified to 1.5 to 2.6kA/mm<2> nominal current density divided by the front end area of the projections prior to welding. Problems, such as impairment of the appearance of the product by the generation of spatters, are eliminated in this way.

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、金属焼結材の接合方法と、金属焼結材製プー
リおよびその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a method for joining sintered metal materials, a pulley made of sintered metal materials, and a method for manufacturing the same.

「従来の技術」 従来より、金属材同士の簡便な接合方法としてプロジェ
クション溶接法が周知である。
"Prior Art" Projection welding has been well known as a simple method for joining metal materials together.

このプロジェクション溶接法は、一方の部材の接合部に
突起(プロジェクション)を形成し、他の部材の接合面
と加圧当接させたうえ、両部材を電極間にはさんで交流
または直流電流を通電し、その抵抗加熱により前記突起
を溶融させ、両部材を接合する方法である。
This projection welding method involves forming a protrusion (projection) at the joint of one member, bringing it into pressure contact with the joint surface of the other member, and then sandwiching both members between electrodes and applying alternating current or direct current. This is a method of joining both members by applying electricity and melting the protrusion through resistance heating.

「発明が解決しようとする課題」 ところで、従来のプロジェクション溶接法を金属焼結材
の接合に適用しようとすると、以下のような問題が生じ
る。
"Problems to be Solved by the Invention" By the way, when trying to apply the conventional projection welding method to joining sintered metal materials, the following problems arise.

■ 接合部の溶融により空孔中のガスが膨張して接合部
内にブローホールが生じ、接合強度が低下する。また、
溶融した金属が電極間の加圧あるいは空孔から噴出する
ガスにより吹き飛ばされ、スパッタを生じて製品の美観
を損ねる。
- Gas in the pores expands due to melting of the joint, creating a blowhole within the joint, reducing joint strength. Also,
The molten metal is blown away by the pressure between the electrodes or the gas ejected from the holes, causing spatter and detracting from the aesthetic appearance of the product.

■ 溶融後は接合部が急冷されるため、接合部の靭性が
著しく低下するうえ、接合部に生じる応力によりクラッ
クが生じるおそれもある。
■ After melting, the joint is rapidly cooled, which significantly reduces the toughness of the joint, and the stress generated in the joint may cause cracks.

したがって従来では、プロジェクション溶接法により焼
結材を接合した例は殆どなく、一般には手間とコストの
かかる電子ビーム溶接法が用いられている。
Therefore, in the past, there have been almost no examples of joining sintered materials by projection welding, and electron beam welding, which is laborious and costly, is generally used.

そこで、前記問題を解決して焼結材のプロジェクション
溶接を可能とするため、特開昭58−13480号公報
では、接合する一対の金属焼結材のうち熱容量が大きい
側の接合面に突起を形成し、各部材の接合面での昇温速
度の差を小さくし、各接合面での溶融程度を均一にして
前記各問題を改善する提案がなされている。
Therefore, in order to solve the above problem and enable projection welding of sintered materials, Japanese Patent Application Laid-Open No. 13480/1983 proposes to provide a projection on the joining surface of a pair of sintered metal materials that has a larger heat capacity. Proposals have been made to improve the above-mentioned problems by reducing the difference in heating rate at the joining surfaces of each member and making the degree of melting uniform at each joining surface.

また、特開昭58−13482号公報では、真空中でプ
ロジェクション溶接を行なうことにより、予め金属焼結
材の気孔中のガスを抜き、前記問題を改善する方法が開
示されている。
Further, Japanese Patent Application Laid-Open No. 58-13482 discloses a method of eliminating the gas in the pores of a sintered metal material in advance by performing projection welding in a vacuum to improve the above-mentioned problem.

しかしこれらの方法も、接合部を溶融する点では従来法
と変わりがなく、若干の改善効果はあるものの依然とし
てスパッタやブローホールの発生が確認され、根本的な
解決には至らないことが判明した。
However, these methods are no different from conventional methods in terms of melting the joint, and although there are some improvements, spatter and blowholes are still observed, and it has been found that they do not provide a fundamental solution. .

そこで本発明者らは、従来あまり顧みられていないプロ
ジェクション溶接時の接合面の温度条件について詳細な
検討を試み、その結果、接合部すなわち突起の加熱温度
を従来法よりも低く設定し、突起を溶融しない条件で一
種の拡散接合を行なうことにより、ブローホール等の発
生なしに金属焼結材を強固に接合することが可能である
との新規な知見を得た。
Therefore, the present inventors conducted a detailed study on the temperature conditions of the joint surface during projection welding, which had not been given much attention in the past.As a result, the heating temperature of the joint, that is, the protrusion, was set lower than in the conventional method, and the protrusion was We have obtained new knowledge that by performing a type of diffusion bonding under conditions that do not melt, it is possible to firmly bond sintered metal materials without generating blowholes.

「課題を解決するための手段」 本発明は上記知見に基づいてなされたもので、以下、そ
の具体的な構成を説明する。
"Means for Solving the Problems" The present invention has been made based on the above findings, and the specific configuration thereof will be described below.

この方法では、接合すべき金属焼結材の接合面に突起を
一体形成するとともに、この突起を他方の金属焼結材ま
たは金属材の接合面に加圧当接させつつ両部材の間に通
電し、前記突起を溶融することなく突起を潰して、両部
材の接合面を拡散接合することを特徴としている。
In this method, a protrusion is integrally formed on the joint surface of the sintered metal materials to be joined, and the protrusion is brought into pressure contact with the joint surface of the other sintered metal material or metal material while electricity is applied between the two members. The method is characterized in that the projections are crushed without being melted, and the bonding surfaces of both members are diffusion-bonded.

接合時の突起の状態を直接観測することは実際には困難
であるが、通電量を増減して実験を行ない、接合後の接
合部に溶融跡が見られない接合条件を選択すれば、最適
通電量が容易jこ設定できる。
Although it is actually difficult to directly observe the state of the protrusions during bonding, it is possible to conduct experiments by increasing and decreasing the amount of current applied, and to select bonding conditions that do not show any melting traces at the bonded portion after bonding. The amount of energization can be easily set.

なお、ここでいう溶融とは、焼結材の不均質性等に起因
する局部的かつ微視的な溶融を含まないものとする。
Note that melting here does not include localized and microscopic melting due to non-uniformity of the sintered material.

本発明者らは、Fe−2wt%Cu−0,7wt%C1
Fe−3wt%Ni−0,4wt%C5Fe−0,1w
t%C等の鉄系合金について実験を行ない、この種の鉄
系合金においては、通電量を溶接前の突起の先端面積で
除した公称電流密度が1.5〜2.6KA/mm2であ
る場合に突起(接合部)が溶融せず、ブローホールやス
パッタ等の問題も生じず、十分な接合強度が得られるこ
とを見出だした。1.5KA/I11未満では突起が完
全に潰れず、十分な接合強度が得られない。また、2.
6KA/xi”より大であると接合部が溶融してスパッ
タやブローホールを生ずる。
The present inventors discovered that Fe-2wt%Cu-0,7wt%C1
Fe-3wt%Ni-0,4wt%C5Fe-0,1w
Experiments were conducted on iron-based alloys such as t%C, and it was found that for this type of iron-based alloy, the nominal current density, which is the amount of current divided by the area of the tip of the protrusion before welding, is 1.5 to 2.6 KA/mm2. It has been found that sufficient bonding strength can be obtained without the protrusions (joint parts) melting and without causing problems such as blowholes and spatter. If it is less than 1.5KA/I11, the protrusion will not be completely crushed and sufficient bonding strength will not be obtained. Also, 2.
If it is larger than 6KA/xi'', the joint will melt and cause spatter or blowholes.

電流は交流または直流のいずれでもよいが、交流の方が
電流量等の接合条件を厳密に制御しやすい利点がある。
The current may be either alternating current or direct current, but alternating current has the advantage that bonding conditions such as the amount of current can be more precisely controlled.

また通電時間は従来のプロジェクション法と同様でよい
Further, the energization time may be the same as that of the conventional projection method.

なお、本発明で公称電流密度を用いるのは、プロジェク
ション接合時には接合の進行につれ接合面積が増加し、
接触部の電気抵抗が変化して電流密度を厳密に規定する
ことができないからである。
Note that the reason why the nominal current density is used in the present invention is that during projection bonding, the bonding area increases as the bonding progresses;
This is because the electrical resistance of the contact portion changes, making it impossible to strictly define the current density.

そこで本発明では、溶接前の突起の先端面積により通電
量を除した値を公称電流密度と定義し、その値により電
流密度を限定している。
Therefore, in the present invention, the value obtained by dividing the amount of current by the area of the tip of the protrusion before welding is defined as the nominal current density, and the current density is limited by that value.

接合時の加圧力は従来のプロジェクション溶接法と同程
度でよい。加圧力を変えても接合状態への影響は殆どな
いことが本発明者らの実験で確かめられた。ただし加圧
力が極端に不足した場合には、突起と接合面との間で放
電が生じて好ましくない。この下限値は焼結材の材質や
寸法等により決定される。
The pressure applied during joining may be approximately the same as that of conventional projection welding. Experiments conducted by the present inventors have confirmed that changing the pressurizing force has almost no effect on the bonding state. However, if the pressing force is extremely insufficient, electrical discharge will occur between the protrusion and the bonding surface, which is undesirable. This lower limit value is determined by the material, dimensions, etc. of the sintered material.

突起の先端面の大きさは、接合に使用する接合機の通電
容量を前記公称電流密度で除して決定される。また突起
の形成位置は、突起が各接合面の間で鼓状に潰れて四方
にバランス良く平坦に広がり、良好な接合強度が得られ
るように考慮して決定される。
The size of the tip surface of the protrusion is determined by dividing the current carrying capacity of the bonding machine used for bonding by the nominal current density. Further, the position where the protrusions are formed is determined in such a way that the protrusions collapse into a drum-like shape between the joint surfaces and spread flatly in a well-balanced manner in all directions, so that good joint strength can be obtained.

突起の縦断面形状は、先端面に向けて窄まる断面テーパ
状であることが望ましく、テーバ角度は接合面の垂線に
対して15〜40°であることが望ましい。15°未満
ではプレス時や取り扱い時に突起に欠けが生じやすく、
40°を越えると鼓状に突起が潰れに<<、接合時の後
半で電流密度が不足し、良好な拡散接合が行なえない。
The vertical cross-sectional shape of the protrusion is preferably tapered toward the distal end surface, and the Taper angle is preferably 15 to 40 degrees with respect to the perpendicular to the joint surface. If it is less than 15 degrees, the protrusions are likely to chip during pressing or handling.
If the angle exceeds 40°, the protrusion will collapse into a drum-like shape, and the current density will be insufficient in the latter half of the bonding process, making it impossible to perform good diffusion bonding.

なお、この金属焼結材と接合すべき金属焼結材または金
属材の接合面は、完全な平坦面であってもよいし、前記
突起と対向する位置に凹部を形成し、この凹部と突起と
嵌合することにより位置決めが行なえるようにしてもよ
い。
Note that the joining surface of the sintered metal material or the metal material to be joined to this sintered metal material may be a completely flat surface, or a recessed portion may be formed at a position facing the protrusion, and the recessed portion and the protrusion may be formed. The positioning may be performed by fitting the holder with the holder.

「実施例」 次に、実施例を挙げて本発明の効果を実証する。"Example" Next, examples will be given to demonstrate the effects of the present invention.

(実施例り 第1図および第2図に示す形状および寸法のテストピー
スを、P e−2wt%Cu−0,7wt%Cの金属焼
結材で成形した。焼結密度は6 、759/c1、気孔
率14vo1%だった。突起lの寸法は、幅1jIff
×高さ1xxX長さ4xxである。
(Example) A test piece having the shape and dimensions shown in Fig. 1 and Fig. 2 was molded with a metal sintered material of Pe-2wt%Cu-0,7wt%C.The sintered density was 6,759/ c1, the porosity was 14vo1%.The dimensions of the protrusion l were the width 1jIff
x height 1xx x length 4xx.

次いで、このテストピースを、同一の材質からなる外径
30JIIX厚さ+33131の焼結板と同心に合わせ
て接合機にセットし、公称直流電流密度を7通りに変え
(AI−A7)、それぞれ3回づつプロノエクンヨン接
合した。
Next, this test piece was set in a bonding machine so as to be concentric with a sintered plate made of the same material and having an outer diameter of 30JIIX and a thickness of 33131, and the nominal DC current density was changed to 7 ways (AI-A7), and 3 Pronoe kyung yong was connected one time at a time.

その結果、公称電流密度が1.5KA/III”未満の
AI、A2  では突起Iが完全に潰れず、第5図に示
すように接合部IAの面積が小さかった。公称電流密度
が1.5〜2.6KA/xi’のA3〜A5では、第6
図に示すように突起1が完全に潰れて十分な接合面積が
得られ、しかも溶融部が見られなかった。さらに公称電
流密度を高めた八〇お上びA7では、第7図に示すよう
に接合部の外周側に溶融部(斜1部)が生じ、その内部
にブローホールが生じた。この結果は以後の実施例につ
いても同様である。
As a result, when the nominal current density was less than 1.5 KA/III'', the projection I was not completely crushed, and the area of the joint IA was small as shown in Figure 5.The nominal current density was 1.5 KA/III''. In A3 to A5 of ~2.6KA/xi', the 6th
As shown in the figure, the protrusion 1 was completely crushed, a sufficient bonding area was obtained, and no melted portion was observed. In the case of 80 and A7 in which the nominal current density was further increased, as shown in FIG. 7, a melted part (diagonal part 1) was formed on the outer peripheral side of the joint, and a blowhole was formed inside the melted part. This result holds true for subsequent examples as well.

次に、接合したテストピースと焼結板とを引張強度試験
機にセットし、引張破断荷重を測定した。
Next, the joined test piece and sintered plate were set in a tensile strength testing machine, and the tensile breaking load was measured.

以上の結果を平均した数値を第1表に示す。Table 1 shows the average values of the above results.

(実施例2) 焼結剤をFe−3wt%Ni−0,4wt%Cに変更し
た点以外は実施例Iと全く同じ条件で、公称直流電流密
度を7通りに変え、それぞれ3回づつプロジェクション
接合した。実施例1と同じ試験をした結果を第2表に示
す。
(Example 2) The conditions were exactly the same as in Example I except that the sintering agent was changed to Fe-3wt%Ni-0.4wt%C, and the nominal DC current density was changed in 7 ways, and projection was performed 3 times each. Joined. The results of the same test as in Example 1 are shown in Table 2.

(実施例3) 焼結材の材質をFe−0,1vt%Cに変更した点以外
は実施例Iと全く同じ条件で、公称直流電流密度を7通
りに変え、それぞれ3回づつプロジェクション接合した
。結果を第3表に示す。
(Example 3) The nominal DC current density was changed in 7 ways and projection bonding was performed 3 times each under the same conditions as in Example I except that the material of the sintered material was changed to Fe-0, 1vt%C. . The results are shown in Table 3.

(実施例4) 焼結材をFe−2wt%Cu−0,7wt%Cにすると
ともに、テストピースの形状を第3図および第4図のよ
うに変更し、プロジェクション接合した。
(Example 4) The sintered material was changed to Fe-2wt%Cu-0.7wt%C, the shape of the test piece was changed as shown in FIGS. 3 and 4, and projection bonding was performed.

実施例1と同様の実験を行なった結果を第4表に示す。Table 4 shows the results of an experiment similar to Example 1.

(実施例5) 実施例Iと同じテストピースと、溶製材(S S 41
)とのプロジェクション接合を行なった。溶製材の寸法
は外径40×厚さ3xxである。他の条件は実施例1と
同様とした。結果を第5表に示す。
(Example 5) The same test piece as in Example I and melted lumber (SS 41
) was used for projection splicing. The dimensions of the ingot material are outer diameter 40 x thickness 3xx. Other conditions were the same as in Example 1. The results are shown in Table 5.

(実施例6) 第8図に示す焼結材製のプーリ本体2と、第9図に示す
フランジ3との接合を試みた。
(Example 6) An attempt was made to join the pulley body 2 made of sintered material shown in FIG. 8 and the flange 3 shown in FIG. 9.

プーリ本体2はF e −2vt%Cu−0,7wt%
C製で、一端に同軸なフランジ部2Aが一体形成された
円柱状をなし、その中心には中心孔4が形成されている
。フランジ部2Aの外径はl 40 xx。
Pulley body 2 is F e -2vt%Cu-0.7wt%
It is made of C and has a cylindrical shape with a coaxial flange portion 2A integrally formed at one end, and a center hole 4 is formed in the center. The outer diameter of the flange portion 2A is l 40 xx.

ベルト巻回部の外径は128xxで、中心孔4の周囲に
は軽量化用の空孔5が形成されている。さらに、プーリ
本体2の他端面には、外周縁と平行に6つの円弧状の突
起6が等間隔で形成されており、これら突起6の寸法は
幅0.5xxx高さIjIjI×長さ8肩lである。一
方、フランジ3は溶製材(SS41)製のもので、厚さ
2.5■、外径140mm、内径12(lyuである。
The outer diameter of the belt winding portion is 128xx, and a cavity 5 for weight reduction is formed around the center hole 4. Further, on the other end surface of the pulley main body 2, six arcuate protrusions 6 are formed at equal intervals in parallel with the outer periphery, and the dimensions of these protrusions 6 are width 0.5xxx height IjIjI x length 8 shoulders. It is l. On the other hand, the flange 3 is made of molten lumber (SS41), and has a thickness of 2.5 mm, an outer diameter of 140 mm, and an inner diameter of 12 mm.

そして、実施例1と同様に7種の通電量でこれらを接合
し、第11図に示す引張強度試験機の治具7,8 間に
セットして引張破断荷重を測定した。
Then, as in Example 1, these were bonded with seven different amounts of current applied, and the tensile breaking load was measured by setting the pieces between jigs 7 and 8 of the tensile strength tester shown in FIG. 11.

その結果を第6表に示す。この例でも、公称電流密度が
1.5〜2.6KA/xx’の場合にブローホールやス
パッタが生じず、良好な接合強度が得られた。
The results are shown in Table 6. In this example as well, when the nominal current density was 1.5 to 2.6 KA/xx', no blowholes or spatters occurred, and good bonding strength was obtained.

(実施例7) 第12図ないし第14図に示す焼結材製のプーリ本体2
と、第15図および第16図に示す円環状フランジ3と
の接合を試みた。
(Example 7) Pulley body 2 made of sintered material shown in FIGS. 12 to 14
An attempt was made to join the annular flange 3 to the annular flange 3 shown in FIGS. 15 and 16.

プーリ本体2はFe−2wt%Cu−0,7wt%C製
のカップ形をなし、その中心には中心孔4が形成され、
その外径は60yx1周壁部には先端に向はテ薄肉化す
るテーバが付けられ、先端肉厚は3j11である。プー
リ本体2の端面には、外周縁と平行に6つの円弧状の突
起6が等間隔で形成され、これら突起6の寸法は幅0.
5xxx高さlRJ+×長さByzである。一方、フラ
ンジ3は溶製材(SS41)製で、厚さ2 xx、外径
65mm、内径54 xgである。
The pulley body 2 has a cup shape made of Fe-2wt%Cu-0,7wt%C, and a center hole 4 is formed in the center thereof.
Its outer diameter is 60x1.The peripheral wall has a taper that becomes thinner toward the tip, and the thickness of the tip is 3j11. On the end face of the pulley body 2, six arc-shaped protrusions 6 are formed at equal intervals parallel to the outer periphery, and the dimensions of these protrusions 6 are 0.5 mm in width.
5xxx height lRJ+× length Byz. On the other hand, the flange 3 is made of molten lumber (SS41) and has a thickness of 2 xx, an outer diameter of 65 mm, and an inner diameter of 54 x g.

そして、実施例Iと同様に7種の通電量でこれらを接合
し、第17図および第18図に示すプーリを得た後、第
19図に示す引張強度試験機の治具7.8 間にセット
して引張破断荷重を測定した。
Then, in the same manner as in Example I, these were joined at seven different current amounts to obtain the pulleys shown in FIGS. 17 and 18. After that, the pulleys shown in FIG. The tensile breaking load was measured.

その結果を第7表に示す。この例でも、公称電流密度が
1.5〜2.6KA/xx”の場合にブローホールやス
パッタが生じず、良好な接合強度が得られた。
The results are shown in Table 7. In this example as well, when the nominal current density was 1.5 to 2.6 KA/xx'', no blowholes or spatters occurred, and good bonding strength was obtained.

(以下余白) なお、本発明は上記実施例に限られることはなく、例え
ば第20図および第21図に示すように他の形式のプロ
ジェクション接合にも適用できる。
(Hereinafter, blank spaces) Note that the present invention is not limited to the above-mentioned embodiments, and can be applied to other types of projection bonding, for example, as shown in FIGS. 20 and 21.

第20図はエツジリングプロジェクション接合と称され
る方法で、金属焼結材IO?、myiJロ部11を形成
し、金属焼結材(または金属材)12のテーパ部12A
をこの開口部11に当てはめ、通電して開口部Itのエ
ツジIIAを溶融することなく加熱して接合する。この
場合、エツジIIAが突起に相当する。
Figure 20 shows a method called edge ring projection bonding, in which sintered metal IO? , myiJ bottom part 11 is formed, and the tapered part 12A of the metal sintered material (or metal material) 12 is formed.
is applied to this opening 11, and electricity is applied to heat and bond the edge IIA of the opening It without melting it. In this case, edge IIA corresponds to the protrusion.

また、第21図はインタフェレンス接合と称され、20
はガイド部、2■は遥げ溝、22は接合用突起である。
Also, FIG. 21 is called an interface junction, and 20
2 is a guide portion, 2 is an elongated groove, and 22 is a joining protrusion.

そして焼結材12を焼結材(金属材)10に向けて加圧
し通電することにより、突起22を潰して両部材10.
12を拡散接合する。
Then, by pressing the sintered material 12 toward the sintered material (metal material) 10 and applying electricity, the protrusion 22 is crushed and both members 10 are pressed.
12 is diffusion bonded.

これら地形式の接合方法においても、本発明は前記実施
例と同様の優れた効果が得られる。
Even in these types of bonding methods, the present invention can provide the same excellent effects as in the embodiments described above.

「発明の効果」 以上説明したように、本発明に係わる焼結合金材の接合
方法によれば、焼結材に形成した突起を溶融することな
く両部材の接合面に拡散させて接合するため、空孔中の
ガスによりブローホールが生じて接合面積が減少し、接
合強度が低下したり、溶融した金属が電極間の加圧また
は空孔から噴出するガスで吹き飛ばされ、スパッタを生
じて製品の美観を損ねる等の問題が生じない。
"Effects of the Invention" As explained above, according to the method for joining sintered metal materials according to the present invention, the protrusions formed on the sintered materials are diffused onto the joining surfaces of both members without melting, and the joining is performed. The gas in the pores may cause blowholes, which reduce the bonding area and reduce the bonding strength, or the molten metal may be blown away by the pressure between the electrodes or the gas ejected from the pores, causing spatter and damaging the product. There are no problems such as spoiling the aesthetic appearance of the product.

また、突起を溶融温度まで加熱しないため、接合部の靭
性低下が防止できるとともに、冷却後の接合部に生じる
応力が小さく、クラックが生じるおそれがない。
Furthermore, since the protrusions are not heated to the melting temperature, deterioration in the toughness of the joint can be prevented, and the stress generated in the joint after cooling is small, so there is no risk of cracking.

一方、本発明に係わる金属焼結材製プーリおよびその製
造方法によれば、従来は例えばビス止め等の機械的手法
で固定していたプーリ本体とフランジとを、簡便なプロ
ジェクション接合により十分な強度で接合できるから、
生産性の大幅な向上および製造コスト低下が図れる。
On the other hand, according to the pulley made of sintered metal material and the manufacturing method thereof according to the present invention, the pulley main body and flange, which were conventionally fixed by mechanical methods such as screws, can be joined with sufficient strength by simple projection joining. Because it can be joined with
Significant improvement in productivity and reduction in manufacturing costs can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の実施例1ないし実施例3
および実施例5に使用したテストピースの平面図および
■−■線断面図、第3図および第4図は実施例4に使用
したテストピースの平面図およびIV−ff線断面図、
第5図ないし第7図は第1図のテストピースにおける接
合状態の良否を示す平面図、第8図および第9図は実施
例6で使用したプーリ本体およびフランジの平面図、第
1O図はこれらの接合方法を示す正面図、第11図は得
られたプーリに対する接合強度測定方法を示す正面図、
第12図ないし第14図は実施例7で使用したプーリ本
体の平面図、縦断面図および底面図、第15図および第
16図は実施例7のフランジを示す平面図および縦断面
図、第17図および第18図は実施例7で得られたプー
リの平面図および縦断面図、第19図は同プーリに対す
る接合強度測定方法を示す縦断面図、第20図および第
21図はそれぞれ本発明の他の適用例を示す縦断面図で
ある。 1・・・突起、IA・・・接合部、2・・・プーリ本体
、3・・・フランジ、4・・・中心孔、5・・・軽量化
用空孔、6・・・突起、10・・・金属焼結材、11・
・・開口部、11A・・・エツジ(突起)、12・・・
金属焼結材、20・・・ガイド部、21・・・逃げ溝、
22・・・突起。
1 and 2 are examples 1 to 3 of the present invention.
3 and 4 are a plan view and a sectional view taken along the line IV-ff of the test piece used in Example 5,
Figures 5 to 7 are plan views showing the quality of the joint in the test piece shown in Figure 1, Figures 8 and 9 are plan views of the pulley body and flange used in Example 6, and Figure 1O is A front view showing these joining methods, FIG. 11 is a front view showing a method for measuring the joining strength of the obtained pulley,
12 to 14 are a plan view, a vertical sectional view, and a bottom view of the pulley body used in Example 7, and FIGS. 15 and 16 are a plan view, a vertical sectional view, and a vertical sectional view showing the flange of Example 7. Figures 17 and 18 are a plan view and a vertical cross-sectional view of the pulley obtained in Example 7, Figure 19 is a vertical cross-sectional view showing a method for measuring the bonding strength for the same pulley, and Figures 20 and 21 are from this book, respectively. FIG. 7 is a vertical cross-sectional view showing another example of application of the invention. DESCRIPTION OF SYMBOLS 1... Protrusion, IA... Joint part, 2... Pulley body, 3... Flange, 4... Center hole, 5... Hole for weight reduction, 6... Protrusion, 10 ...metal sintered material, 11.
...Opening, 11A...Edge (protrusion), 12...
Sintered metal material, 20... Guide portion, 21... Relief groove,
22... Protrusion.

Claims (5)

【特許請求の範囲】[Claims] (1)金属焼結材と、他の金属焼結材または金属材とを
接合する方法であって、 少なくとも一方の金属焼結材の接合面に突起を形成し、
この突起を他方の金属焼結材または金属材の接合面に加
圧当接するとともに両部材間に通電し、前記突起を溶融
することなく加熱して両部材を接合することを特徴とす
る金属焼結材の接合方法。
(1) A method for joining a sintered metal material and another sintered metal material or metal material, the method comprising forming a protrusion on the joining surface of at least one of the sintered metal materials,
The metal sintering method is characterized in that the protrusion is brought into pressure contact with the other sintered metal material or the joint surface of the metal material, and electricity is applied between the two members to heat the protrusion without melting and join the two members. How to join the binder.
(2)前記金属焼結材が鉄系合金焼結材である場合にお
いて、両部材間の通電量を溶接前の突起の先端面積で除
した公称電流密度を1.5〜2.6KA/mm^2とす
ることを特徴とする請求項1記載の金属焼結材の接合方
法。
(2) When the metal sintered material is an iron-based alloy sintered material, the nominal current density, which is the amount of current flowing between both members divided by the tip area of the protrusion before welding, is 1.5 to 2.6 KA/mm. 2. The method for joining sintered metal materials according to claim 1, wherein: ^2.
(3)金属焼結材製のプーリ本体と、金属製または金属
焼結材製のフランジとからなり、前記プーリ本体の他端
面に、前記フランジを金属拡散層を介して同軸に接合し
たことを特徴とする金属焼結材製プーリ。
(3) Consisting of a pulley body made of a metal sintered material and a flange made of metal or metal sintered material, the flange is coaxially joined to the other end surface of the pulley body via a metal diffusion layer. Features a pulley made of sintered metal material.
(4)金属焼結材製のプーリ本体の端面に突起を形成し
、この突起に金属製または金属焼結材製のフランジを加
圧当接するとともに両部材間に通電し、前記突起を溶融
することなく加熱して両部材を接合することを特徴とす
る金−焼結材製プーリの製造方法。
(4) A protrusion is formed on the end face of the pulley body made of sintered metal material, and a flange made of metal or sintered metal material is brought into pressure contact with this protrusion, and electricity is applied between both members to melt the protrusion. A method for manufacturing a pulley made of gold-sintered material, characterized in that both members are joined by heating without heat.
(5)前記プーリ本体が鉄系合金焼結材製である場合に
おいて、両部材間の通電量を溶接前の突起の先端面積で
除した公称電流密度を1.5〜2.6KA/mm^2と
することを特徴とする請求項4記載の金属焼結材製プー
リの製造方法。
(5) When the pulley body is made of sintered iron-based alloy material, the nominal current density calculated by dividing the amount of current between both members by the area of the tip of the protrusion before welding is 1.5 to 2.6 KA/mm^ 5. The method for manufacturing a pulley made of sintered metal material according to claim 4, wherein the pulley is made of a sintered metal material.
JP1320947A 1989-12-11 1989-12-11 Method for joining metal sintered materials, metal sintered material-made pool and method for manufacturing Expired - Lifetime JP2536200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1320947A JP2536200B2 (en) 1989-12-11 1989-12-11 Method for joining metal sintered materials, metal sintered material-made pool and method for manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1320947A JP2536200B2 (en) 1989-12-11 1989-12-11 Method for joining metal sintered materials, metal sintered material-made pool and method for manufacturing

Publications (2)

Publication Number Publication Date
JPH03184677A true JPH03184677A (en) 1991-08-12
JP2536200B2 JP2536200B2 (en) 1996-09-18

Family

ID=18127066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1320947A Expired - Lifetime JP2536200B2 (en) 1989-12-11 1989-12-11 Method for joining metal sintered materials, metal sintered material-made pool and method for manufacturing

Country Status (1)

Country Link
JP (1) JP2536200B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121575A (en) * 1994-10-24 1996-05-14 Nippon Isueede Kk Installation method of boss on pulley plate
JP2007210028A (en) * 2006-02-13 2007-08-23 Origin Electric Co Ltd Resistance welding method for highly conductive metallic material
JP2008208900A (en) * 2007-02-26 2008-09-11 Ckd Corp Flow path block and its manufacturing method
JP2011088213A (en) * 2010-11-26 2011-05-06 Origin Electric Co Ltd Resistance welding method for highly conductive metallic material
CN102059437A (en) * 2009-11-04 2011-05-18 马自达汽车株式会社 Method of bonding metallic members, and metallic bonded body

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08121575A (en) * 1994-10-24 1996-05-14 Nippon Isueede Kk Installation method of boss on pulley plate
JP2007210028A (en) * 2006-02-13 2007-08-23 Origin Electric Co Ltd Resistance welding method for highly conductive metallic material
JP2008208900A (en) * 2007-02-26 2008-09-11 Ckd Corp Flow path block and its manufacturing method
CN102059437A (en) * 2009-11-04 2011-05-18 马自达汽车株式会社 Method of bonding metallic members, and metallic bonded body
JP2011098358A (en) * 2009-11-04 2011-05-19 Mazda Motor Corp Method of bonding metallic members, and metallic bonded body
JP2011088213A (en) * 2010-11-26 2011-05-06 Origin Electric Co Ltd Resistance welding method for highly conductive metallic material

Also Published As

Publication number Publication date
JP2536200B2 (en) 1996-09-18

Similar Documents

Publication Publication Date Title
US6814544B2 (en) Method for manufacturing turbine blade and manufactured turbine blade
WO2010087508A1 (en) Indirect spot welding method
US7038160B2 (en) Method for producing permanent integral connections of oxide-dispersed (ODS) metallic materials or components of oxide-dispersed (ODS) metallic materials by welding
US20100080648A1 (en) Production method of metal product, metal product, connection method of metal component and connection structure
JP2013078793A (en) Joining method and joined component
JPH11156559A (en) Welding method of hardenable nickel base alloy
EP1149654A2 (en) Electrode geometry design for optimized aluminium resistance spot welding
JPH03184677A (en) Method for joining metallic sintered material, pulley made of metallic sintered material and production thereof
EP2487004B1 (en) Method of producing a welded article of dispersion strengthened Platinum based alloy with two steps welding
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP5573171B2 (en) Pipe for fuel tank having ring projection and welding method thereof
JP5686582B2 (en) Axle case manufacturing method
JPWO2020138468A1 (en) Manufacturing method of steel parts
JPH046467B2 (en)
JPS5890385A (en) Manufacture of composite wear resistance member
JPS5852473B2 (en) Welding method for steel materials, etc.
JPH02241675A (en) Manufacture of welded body
JP6811063B2 (en) Resistance spot welding method and resistance spot welding joint manufacturing method
JPH04356373A (en) Resistance spot welding method for aluminum materials
JPH07164156A (en) Method for joining metallic sintered member
JP2020203292A (en) Spot welding method
KR20240021321A (en) Mold structure for brazing filler wire, method for brazing filler wire using for thereof, ring filler material manufactured by using the brazing filler wire and method for ring filler material using for thereof
KR20010000609A (en) Manufacturing method of high pressure container utilizing molecule connetion
JPH04123879A (en) Resistance spot welding method
JPH1177192A (en) Energizing caulking method for aluminum alloy casting