JPWO2020138468A1 - Manufacturing method of steel parts - Google Patents

Manufacturing method of steel parts Download PDF

Info

Publication number
JPWO2020138468A1
JPWO2020138468A1 JP2020562530A JP2020562530A JPWO2020138468A1 JP WO2020138468 A1 JPWO2020138468 A1 JP WO2020138468A1 JP 2020562530 A JP2020562530 A JP 2020562530A JP 2020562530 A JP2020562530 A JP 2020562530A JP WO2020138468 A1 JPWO2020138468 A1 JP WO2020138468A1
Authority
JP
Japan
Prior art keywords
energization
projection
nut
steel
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020562530A
Other languages
Japanese (ja)
Other versions
JP7131634B2 (en
Inventor
元 村山
元 村山
古迫 誠司
誠司 古迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Publication of JPWO2020138468A1 publication Critical patent/JPWO2020138468A1/en
Application granted granted Critical
Publication of JP7131634B2 publication Critical patent/JP7131634B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/14Projection welding

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Resistance Welding (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

本発明は、安定して高い接合強度を得ることができる、ナット及びボルトの一方又は両方法を有する鋼部材の製造方法を提供する。鋼部材はプロジェクション溶接によって製造され、鋼部材の製造方法は、予備通電工程、70ms以上の無通電時間を有するクール工程、予備通電工程よりも高い電流を流す本通電工程を順に備える。The present invention provides a method for manufacturing a steel member having one or both methods of nuts and bolts, which can stably obtain high joint strength. The steel member is manufactured by projection welding, and the method for manufacturing the steel member includes, in order, a pre-energization step, a cool step having a non-energization time of 70 ms or more, and a main energization step in which a current higher than that of the pre-energization step is passed.

Description

本発明は鋼部材の製造方法、具体的にはナット及びボルトの一方又は両方を有する鋼部材の製造方法に関する。 The present invention relates to a method for manufacturing a steel member, specifically, a method for manufacturing a steel member having one or both of a nut and a bolt.

近年、特に自動車分野等において、車体の骨格部材で高強度鋼板を熱間プレスしたホットスタンプ材を使用する事例が見られる。また、たとえば、フロントサイドメンバーやセンターピラー、ヒンジリンフォース等の自動車用構造部材においては、ホットスタンプ材からなる部品にナットやボルトが溶接された鋼部材が用いられている。 In recent years, especially in the field of automobiles, there have been cases where hot stamping materials obtained by hot stamping high-strength steel plates are used as skeleton members of vehicle bodies. Further, for example, in structural members for automobiles such as front side members, center pillars, and hinge reinforcements, steel members in which nuts and bolts are welded to parts made of hot stamping materials are used.

ナットやボルトが溶接された鋼部材の製造には、プロジェクション溶接法により鋼板の表面にナット又はボルトを接合する方法が一般的である。プロジェクション溶接によって得られる自動車用構造部材には、鋼板とナット、ボルトとの接合強度が高く、かつ、ばらつきが小さいことが求められる。 In the production of steel members to which nuts and bolts are welded, a method of joining nuts or bolts to the surface of a steel plate by a projection welding method is common. Structural members for automobiles obtained by projection welding are required to have high joint strength between steel plates and nuts and bolts, and to have small variations.

特許文献1には、溶接部の遅れ破壊特性、静的強度特性に優れた自動車用構造部材として、高強度鋼板とナット又はボルトがプロジェクション溶接によって接合された自動車用構造部材であって、ナット又はボルトのプロジェクションの周囲に局所的に凹部が設けられた構成が開示されている。 Patent Document 1 describes a structural member for automobiles in which a high-strength steel plate and a nut or bolt are joined by projection welding as a structural member for automobiles having excellent delayed fracture characteristics and static strength characteristics of a welded portion. A configuration is disclosed in which a recess is locally provided around the projection of the bolt.

特許文献2には、優れた遅れ破壊特性、高い静的強度を得ることが可能な、ナット又はボルトを有する自動車用構造部材として、高強度鋼板とナット又はボルトがプロジェクション溶接によって接合された自動車用構造部材であって、高強度鋼板における熱影響部の板厚方向の深さを所定の範囲とする構成が開示されている。 Patent Document 2 describes for automobiles in which a high-strength steel plate and a nut or bolt are joined by projection welding as a structural member for an automobile having a nut or a bolt capable of obtaining excellent delayed fracture characteristics and high static strength. Disclosed is a structural member having a structure in which the depth of a heat-affected zone in a high-strength steel plate in the plate thickness direction is within a predetermined range.

特許文献3には、ナットまたはボルトの化学成分、ならびに、高強度鋼板の引張強さ、板厚、炭素当量を規定して接合部の硬さと靭性を適度に制御し、さらに、ナットまたはボルトと高強度鋼板との接合部の面積と、ナットまたはボルトの呼び径部分の面積との比を適正範囲で規定することで、トルク剥離強さおよび押込み剥離強さ等の静的強度に優れたプロジェクション溶接継手を製造する方法が開示されている。 Patent Document 3 specifies the chemical composition of nuts or bolts, as well as the tensile strength, plate thickness, and carbon equivalent of high-strength steel plates to appropriately control the hardness and toughness of joints, and further, with nuts or bolts. By specifying the ratio of the area of the joint with the high-strength steel plate to the area of the nominal diameter of the nut or bolt within an appropriate range, projection with excellent static strength such as torque peeling strength and indentation peeling strength A method of manufacturing a welded joint is disclosed.

特許第5626025号公報Japanese Patent No. 5626025 特許第5613521号公報Japanese Patent No. 5613521 特開2012−157900号公報Japanese Unexamined Patent Publication No. 2012-157900

例えば自動車用構造部材には、亜鉛系めっき鋼板を熱間プレスしたホットスタンプ材を使用することもある。表面に亜鉛系めっきが形成されたホットスタンプ材にナット又はボルトをプロジェクション溶接で接合する場合は、表面に亜鉛系めっきが形成されていないホットスタンプ材にプロジェクション溶接を行う場合と比べて、接合強度のばらつきが発生しやすくなる。また、自動車用構造部材以外においても、表面に亜鉛系めっきが形成された鋼材にナット又はボルトをプロジェクション溶接で接合する場合は、同様に接合強度のばらつきが発生しやすくなる。ここで、亜鉛系めっきとは、亜鉛を含むめっきを意味する(以下、同じ)。 For example, a hot stamping material obtained by hot-pressing a galvanized steel sheet may be used as a structural member for an automobile. When nuts or bolts are joined by projection welding to a hot stamping material with zinc-based plating on the surface, the joining strength is higher than when projection welding is performed on a hot stamping material without zinc-based plating on the surface. Variation is likely to occur. In addition to structural members for automobiles, when nuts or bolts are joined to a steel material having zinc-based plating formed on its surface by projection welding, variations in joining strength are likely to occur as well. Here, zinc-based plating means plating containing zinc (hereinafter, the same applies).

一定の接合強度を確保するために個別にアーク溶接等の他の接合プロセスを用いると、その分、コスト高となる。その結果、部材によって、高強度鋼板を用いることが阻害される。 If other joining processes such as arc welding are individually used to secure a certain joining strength, the cost will increase accordingly. As a result, the member hinders the use of high-strength steel sheets.

本発明は、上記の課題を解決し、亜鉛系めっきを有する鋼材にプロジェクション溶接によりナット、ボルトを接合する場合、安定して高い接合強度(具体的には押込み剥離強度)を得ることができるナット及びボルトの一方又は両方を有する鋼部材の製造方法を提供することを課題とする。 The present invention solves the above-mentioned problems, and when a nut or a bolt is joined to a steel material having zinc-based plating by projection welding, a nut capable of stably obtaining a high joining strength (specifically, indentation peeling strength). An object of the present invention is to provide a method for manufacturing a steel member having one or both of the bolts and bolts.

本発明者らは、亜鉛系めっき鋼材にナットやボルトをプロジェクション溶接で接合する場合に、安定して、高い接合強度を得る方法について、鋭意検討した。その結果、接合強度のばらつきの原因となるのは、鋼材表面に存在する高抵抗体である酸化被膜であることが確認できた。 The present inventors have diligently studied a method for stably obtaining high joint strength when nuts and bolts are joined to a zinc-based plated steel material by projection welding. As a result, it was confirmed that the cause of the variation in the bonding strength is the oxide film, which is a high resistor existing on the surface of the steel material.

本発明者らは、さらに検討を進め、本発明をなした。その要旨は以下のとおりである。 The present inventors further studied and made the present invention. The summary is as follows.

(1)表面に亜鉛系めっきを有する鋼材と、複数のプロジェクションを備えたナット又はボルトを、加圧しながら通電加熱を行うプロジェクション溶接によって接合する、ナット及びボルトの一方又は両方を有する鋼部材の製造方法であって、予備通電工程、クール工程、及び本通電工程を順に備え、前記予備通電工程では、前記複数のすべてのプロジェクションの高さが予備通電工程の前と比較して0.7〜0.9倍となるように通電を行い、前記クール工程は、70ms以上の無通電とする時間を有し、前記本通電工程では、前記予備通電工程よりも高い電流を流すことを特徴とするナット及びボルトの一方又は両方を有する鋼部材の製造方法。 (1) Manufacture of a steel member having one or both of nuts and bolts by joining a steel material having zinc-based plating on the surface and nuts or bolts having a plurality of projections by projection welding in which energization heating is performed while pressurizing. The method includes a pre-energization step, a cooling step, and a main energization step in order. In the pre-energization step, the heights of all the plurality of projections are 0.7 to 0 as compared with those before the pre-energization step. The nut is energized so as to be 9.9 times, and the cooling step has a time of 70 ms or more to be de-energized, and the main energizing step causes a higher current to flow than the pre-energizing step. And a method of manufacturing a steel member having one or both of bolts.

(2)前記クール工程における前記無通電とする時間が400ms以下であることを特徴とする前記(1)のナット及びボルトの一方又は両方を有する鋼部材の製造方法。 (2) The method for manufacturing a steel member having one or both of the nut and the bolt according to the above (1), wherein the time for de-energizing in the cooling step is 400 ms or less.

(3)前記鋼材の接合前の引張強さが1100MPa以上であることを特徴とする前記(1)又は(2)のナット及びボルトの一方又は両方を有する鋼部材の製造方法。 (3) A method for manufacturing a steel member having one or both of the nuts and bolts of the above (1) or (2), wherein the tensile strength of the steel material before joining is 1100 MPa or more.

(4)前記鋼材の常温における接触抵抗が1mΩ以上であることを特徴とする前記(1)〜(3)のいずれかのナット及びボルトの一方又は両方を有する鋼部材の製造方法。 (4) A method for manufacturing a steel member having one or both of the nuts and bolts according to any one of (1) to (3) above, wherein the contact resistance of the steel material at room temperature is 1 mΩ or more.

本発明によれば、亜鉛系めっきを有する鋼材にプロジェクション溶接によりナット、ボルトを接合する場合であっても、安定して、高い接合強度(具体的には押込み剥離強度)を得ることができる。 According to the present invention, even when nuts and bolts are joined to a steel material having zinc-based plating by projection welding, stable and high joining strength (specifically, indentation peeling strength) can be obtained.

プロジェクション溶接において、各プロジェクションに流れる電流の大きさの差を模式的に示す図であり、(a)は本発明の場合で、予備通電によって、プロジェクションから鋼板に電流が流れることで鋼板表面の酸化被膜が破壊されて除去又は薄膜化され、プロジェクションからの電流が流れる領域での抵抗が均一化されて、その後の本通電で各プロジェクションに電流が均一に流れる様子を示す図である。(b)は、従来の場合で、鋼板表面の酸化被膜の厚さにばらつきがあり、各プロジェクションに流れる電流に差がある様子を示す図である。鋼板表面の酸化被膜の厚さのばらつきと各プロジェクションでの電流の流れ方の関係を説明するための図であり、ナット孔とネジ山および鋼板に予成形されたねじ孔は省略している。It is a figure which shows the difference in the magnitude of the electric current flowing through each projection schematically in the projection welding, and (a) is the case of this invention, and the current flows from the projection to the steel sheet by the pre-energization, and the surface of the steel sheet is oxidized. It is a figure which shows how the film is broken and removed or thinned, the resistance in the region where the current from a projection flows is made uniform, and the current flows uniformly to each projection by the subsequent main current energization. FIG. (B) is a diagram showing how the thickness of the oxide film on the surface of the steel sheet varies and the current flowing through each projection differs in the conventional case. It is a figure for demonstrating the relationship between the variation in the thickness of the oxide film on the surface of a steel sheet, and the flow of a current in each projection, and the nut hole and the screw thread and the screw hole preformed in the steel sheet are omitted. ナットのプロジェクションの高さを説明する図である。ナットに成形されたねじ孔は省略している。It is a figure explaining the height of the projection of a nut. The screw holes formed in the nut are omitted. 接触抵抗の測定方法を説明する図である。It is a figure explaining the measuring method of contact resistance. 実施例における、押込み剥離試験後の破断面を示す写真である。It is a photograph which shows the fracture surface after the indentation peeling test in an Example. 実施例における、クール工程の無通電時間と片側工程能力指数との関係を示すグラフである。It is a graph which shows the relationship between the non-energized time of a cool process, and one-side process capability index in an Example.

はじめに、本発明者らが本発明に至った検討内容について説明する。以下、亜鉛系めっきホットスタンプ材にナットをプロジェクション溶接で接合する場合について説明するが、ボルトを接合する場合であっても同様である。また、亜鉛系めっきホットスタンプ材に限られず、亜鉛系めっきを有する鋼材に接合する場合も同様である。なお鋼材とは、鋼板、および鋼板を成形した成形体等を含む鋼製品を指す。 First, the contents of the study that the present inventors have led to the present invention will be described. Hereinafter, a case where a nut is joined to a zinc-based plated hot stamping material by projection welding will be described, but the same applies even when a bolt is joined. Further, the present invention is not limited to the zinc-based plated hot stamping material, and the same applies to the case of joining to a steel material having zinc-based plating. The steel material refers to a steel product including a steel plate and a molded product obtained by molding the steel plate.

本発明者らは、亜鉛系めっきホットスタンプ材にプロジェクション溶接によりナットを接合する際に、接合強度にばらつきが生じるのは、鋼板表面に高抵抗体である酸化被膜が存在するためと考えた。より具体的には、以下のとおりである。 The present inventors considered that the reason why the bonding strength varies when a nut is bonded to a zinc-based plated hot stamping material by projection welding is that an oxide film, which is a high resistor, is present on the surface of the steel sheet. More specifically, it is as follows.

特に亜鉛系めっき鋼板を熱間プレスした場合、鋼板の表面には酸化被膜が生じる。酸化被膜は厚さが一定に形成されるのではなく、ある程度の濃淡、つまり厚さのばらつきをもって形成される。たとえば、ナットが複数のプロジェクションを有する場合、各プロジェクションが鋼板に接する位置で酸化被膜の厚さに差があると、酸化被膜は高抵抗体であるから、比較的酸化被膜が薄い位置に接するプロジェクションに電流が流れやすくなり、各プロジェクションに流れる電流の大きさに差が生じる。 In particular, when a zinc-based plated steel sheet is hot-pressed, an oxide film is formed on the surface of the steel sheet. The oxide film is not formed with a constant thickness, but is formed with a certain degree of shading, that is, variation in thickness. For example, when the nut has multiple projections, if there is a difference in the thickness of the oxide film at the position where each projection contacts the steel plate, the oxide film is a high resistor, so the projection that contacts the position where the oxide film is relatively thin. The current easily flows through, and the magnitude of the current flowing through each projection differs.

図1はこれを模式的に示したものである。なお、図1に示すプロジェクション溶接では、上側電極11aをナット14に接触させ、下側電極11bを鋼板12に接触させ、さらにナット14が有する複数のプロジェクション15を鋼板12に接触させて、上側電極11aから下側電極11bに向けて電流16を流すことで溶接を行う。図1(a)はプロジェクション15から鋼板12に電流が流れる領域での酸化被膜13の厚さが予備通電によって均一化されており、本通電で各プロジェクション15に電流が均一に流れる様子を示す図であり、図1(b)は酸化被膜13に濃淡つまり厚さのばらつきがあり、各プロジェクション15に流れる電流に差がある図である。 FIG. 1 schematically shows this. In the projection welding shown in FIG. 1, the upper electrode 11a is brought into contact with the nut 14, the lower electrode 11b is brought into contact with the steel plate 12, and a plurality of projections 15 possessed by the nut 14 are brought into contact with the steel plate 12. Welding is performed by passing an electric current 16 from 11a toward the lower electrode 11b. FIG. 1A is a diagram showing how the thickness of the oxide film 13 in the region where the current flows from the projection 15 to the steel plate 12 is made uniform by the preliminary energization, and the current flows uniformly to each projection 15 by the main energization. FIG. 1B is a diagram in which the oxide film 13 has variations in shade, that is, thickness, and there is a difference in the current flowing through each projection 15.

図1(b)に示すように、各プロジェクション15に流れる電流16の大きさに差があると、その結果、圧接径に差が生じることとなり、接合強度にばらつきが生じる。すなわち、電流16が集中したプロジェクション15は溶接の初期に潰れ、電流16が流れにくくなったプロジェクション15は溶接の終期までプロジェクションが潰れないので、圧接の条件が各プロジェクション15で異なることとなり、圧接径に差が生じる。なお圧接径とは、プロジェクション溶接の際の電流によって溶融して潰れ鋼板12に接合されたプロジェクション15の、鋼板12との接合面の径を指す。 As shown in FIG. 1 (b), if there is a difference in the magnitude of the current 16 flowing through each projection 15, the pressure contact diameter will be different as a result, and the bonding strength will vary. That is, the projection 15 in which the current 16 is concentrated is crushed at the initial stage of welding, and the projection 15 in which the current 16 is difficult to flow is not crushed until the end of welding. Makes a difference. The pressure contact diameter refers to the diameter of the joint surface of the projection 15 that is melted by the electric current during projection welding and joined to the crushed steel plate 12 with the steel plate 12.

本発明者らは、これを確認するために、亜鉛系めっき鋼板に熱間プレスを施した亜鉛系めっきホットスタンプ材について、そのままプロジェクション溶接でナットをとりつけた場合と、ショットブラストにより表面の酸化被膜を取り除いた後にプロジェクション溶接でナットをとりつけた場合について、押込み剥離試験により接合強度を比較した。 In order to confirm this, the present inventors have attached a nut to a zinc-based plated hot stamping material that has been hot-pressed on a zinc-based plated steel sheet by projection welding as it is, and an oxide film on the surface by shot blasting. When the nut was attached by projection welding after removing the above, the joint strength was compared by the indentation peeling test.

その結果、ショットブラストにより酸化被膜を取り除いた場合、多数のプロジェクション溶接を行った際に、接合強度のばらつきが小さくなり、接合強度の平均値も大きくなることが確認された。また、観察の結果、ショットブラストを行わずそのままプロジェクション溶接でナットをとりつけた場合は各プロジェクション位置での接合面積(圧接径)が不均一となっていることが確認された。 As a result, it was confirmed that when the oxide film was removed by shot blasting, the variation in the bonding strength became small and the average value of the bonding strength became large when a large number of projection weldings were performed. In addition, as a result of observation, it was confirmed that the joint area (pressure contact diameter) at each projection position was non-uniform when the nut was attached by projection welding as it was without shot blasting.

以上より、亜鉛系めっきホットスタンプ材にプロジェクション溶接により溶接ナットを接合した場合の接合強度のばらつきは、表面の酸化被膜の存在に起因するものであることが確認できた。 From the above, it was confirmed that the variation in the joining strength when the welding nut was joined to the zinc-based plated hot stamping material by projection welding was due to the presence of the oxide film on the surface.

ただし、ショットブラストにより酸化被膜を除去する方法は、工程を1つ追加することとなり、コスト高となる問題を解決できないため、本発明者らは、溶接条件を変えることにより、プロジェクション溶接における本通電工程の前に酸化被膜を除去又は薄膜化して、各プロジェクションから電流が流れる領域の酸化被膜の厚さを均一化する方法を検討し、本発明をなしたものである。以下、本発明について説明する。 However, the method of removing the oxide film by shot blasting requires an additional step and cannot solve the problem of high cost. Therefore, the present inventors change the welding conditions to carry out the main energization in projection welding. The present invention has been made by examining a method of removing or thinning the oxide film before the step to make the thickness of the oxide film uniform in the region where current flows from each projection. Hereinafter, the present invention will be described.

本発明の鋼部材の製造方法は、表面に亜鉛系めっきを有する鋼材と、複数のプロジェクションを備えたナット又はボルトを、加圧しながら通電加熱を行うプロジェクション溶接によって接合して、ナット及びボルトの一方又は両方を有する鋼部材を製造する方法である。その際、ナット又はボルトをプロジェクション溶接により接合するための通電を行う工程(本通電工程)の前に、予備通電工程として、鋼材とナット又はボルトにおける複数のプロジェクションとを接触させた状態で加圧し、本通電よりも低い電流を流す工程、及びクール工程として通電を行わない工程を設ける。 In the method for manufacturing a steel member of the present invention, a steel material having zinc-based plating on its surface and a nut or bolt having a plurality of projections are joined by projection welding in which energization heating is performed while pressurizing, and one of the nut and the bolt is joined. Or it is a method of manufacturing a steel member having both. At that time, before the step of energizing to join the nut or bolt by projection welding (main energizing step), as a preliminary energizing step, pressure is applied in a state where the steel material and a plurality of projections of the nut or bolt are in contact with each other. , A process of passing a current lower than the main energization and a process of not energizing are provided as a cool process.

予備通電工程において、各プロジェクション15と接する鋼板12の酸化被膜13を破壊して除去又は薄膜化する。酸化被膜13は固有抵抗値が高く、分布も一様とは限らないため、予備通電工程で酸化被膜13を破壊して除去又は薄膜化することにより、各プロジェクション15から電流16が流れる領域の酸化被膜13の厚さが均一化され、各プロジェクション15の接触点の電流経路での抵抗がほぼ均一化する。そのため、接合部を形成するための本通電工程では、図1(a)に示すように、各プロジェクション15における電流16の密度が均一となり、各点で均一な接合部が形成可能となる。 In the pre-energization step, the oxide film 13 of the steel sheet 12 in contact with each projection 15 is destroyed and removed or thinned. Since the oxide film 13 has a high intrinsic resistance value and the distribution is not always uniform, the oxide film 13 is destroyed and removed or thinned in the pre-energization step to oxidize the region where the current 16 flows from each projection 15. The thickness of the coating film 13 is made uniform, and the resistance in the current path at the contact point of each projection 15 is made uniform. Therefore, in the main energization step for forming the joint portion, as shown in FIG. 1A, the density of the current 16 in each projection 15 becomes uniform, and a uniform joint portion can be formed at each point.

本通電での電流密度を均一化するためには、ナットが有する複数のすべてのプロジェクションのプロジェクション高さ(図2参照)が予備通電開始前の0.7〜0.9倍となるようにする。複数あるすべてのプロジェクションのプロジェクション高さが予備通電開始前の0.7〜0.9倍となるようにするには、予備通電工程での電流の大きさ、通電時間、および加圧力等を調整して行う。 In order to make the current density uniform in the main energization, the projection height (see FIG. 2) of all the projections of the nut should be 0.7 to 0.9 times that before the start of the pre-energization. .. In order to make the projection height of all multiple projections 0.7 to 0.9 times that before the start of pre-energization, adjust the current magnitude, energization time, pressurization, etc. in the pre-energization process. And do it.

ここで、複数あるすべてのプロジェクションのプロジェクション高さが予備通電開始前の0.7〜0.9倍となるよう、予備通電工程を実施する方法について説明する。該方法としては、平板である鋼板を用いて予備通電のみのテスト溶接を行い、予備通電工程の各種条件を予め決定する方法が挙げられる。なお、テスト溶接での予備通電工程の前後でのプロジェクション高さは、平板である鋼板を用いて予備通電のみのテスト溶接を行い、予備通電の前後で、たとえば、ノギスやレーザ式の計測器で測定すればよい。このテスト溶接により、すべてのプロジェクションの高さが予備通電開始前の0.7〜0.9倍となる予備通電電流、通電時間、および加圧力を決定し、その予備通電電流、通電時間、および加圧力を用いて、以降のプロジェクション溶接を行えばよい。 Here, a method of carrying out the pre-energization step will be described so that the projection height of all the plurality of projections is 0.7 to 0.9 times that before the start of the pre-energization. Examples of the method include a method in which test welding of only pre-energization is performed using a flat steel plate, and various conditions of the pre-energization process are determined in advance. For the projection height before and after the pre-energization process in test welding, test welding with only pre-energization is performed using a flat steel plate, and before and after pre-energization, for example, with a caliper or a laser-type measuring instrument. You just have to measure. This test weld determines the pre-energization current, energization time, and pressure that all projection heights are 0.7 to 0.9 times higher than before the start of pre-energization, and the pre-energization current, energization time, and energization time. Subsequent projection welding may be performed using the pressing force.

予備通電工程の前後のプロジェクション高さは、たとえば、ナット又はボルトが鋼板に接した状態で、それぞれのプロジェクションの位置で、鋼板とプロジェクションを含めたナット又はボルトとの全体の厚さを測定し、この全体の厚さから鋼板の厚さとナット又はボルトのプロジェクションを除いた部分の厚さとを引いた値として求められる。 For the projection height before and after the pre-energization process, for example, with the nut or bolt in contact with the steel plate, the total thickness of the steel plate and the nut or bolt including the projection is measured at each projection position. It is calculated as the value obtained by subtracting the thickness of the steel plate and the thickness of the portion excluding the projection of the nut or bolt from this total thickness.

予備通電後のプロジェクションのプロジェクション高さが予備通電開始前の0.9超〜1.0倍の範囲では、予備通電によって、酸化被膜を破壊し、除去又は薄膜化する効果がほとんど得られない。そのため、各プロジェクション(3または4個の場合が多い)位置における電流密度が均一にならない。予備通電後のプロジェクションのプロジェクション高さが予備通電開始前の0.7倍未満となると、プロジェクションの潰れが大きくなりすぎ、本通電工程において必要な電流密度が得られなくなり、適切な溶接が行われなくなる。 When the projection height of the projection after the pre-energization is in the range of more than 0.9 to 1.0 times that before the start of the pre-energization, the effect of destroying, removing or thinning the oxide film by the pre-energization is hardly obtained. Therefore, the current densities at each projection (often 3 or 4) positions are not uniform. If the projection height of the projection after the pre-energization is less than 0.7 times that before the start of the pre-energization, the projection collapses too much, the current density required in the main energization process cannot be obtained, and appropriate welding is performed. It disappears.

予備通電工程の電流値は本通電工程の電流値より低く、たとえば、本通電工程の電流値の1/3〜1/5とすることができる。具体的には、予備通電工程においてプロジェクション1つあたりの電流値を1.0〜1.4kAとすることができる。予備通電の工程に要する時間は数十ms程度であり、プロジェクション溶接を行う装置で行うので、コストに大きく影響はしない。 The current value in the pre-energization step is lower than the current value in the main energization step, and can be, for example, 1/3 to 1/5 of the current value in the main energization step. Specifically, the current value per projection can be set to 1.0 to 1.4 kA in the preliminary energization step. The time required for the pre-energization process is about several tens of ms, and since it is performed by a device that performs projection welding, it does not significantly affect the cost.

予備通電工程と本通電工程の間には、70ms以上無通電とする(つまり通電を行わない)時間である無通電時間を有する工程(クール工程)を設ける。クール工程では電流を0とすれば、加圧した状態は保持したままでよい。クール工程を設けることにより、各プロジェクションの温度が均一化されて、プロジェクション中を流れる電流の流れ易さも均一化される。これにより、本通電で各プロジェクションに流れる電流が均一になり、鋼板とナットの接合強度のばらつきを低減することができ、押込み剥離強度のCp(片側工程能力指数)が上昇する。無通電時間を80ms以上、180ms以上、または200ms以上とするとより効果的である。 Between the pre-energization step and the main energization step, a step (cool step) having a non-energization time, which is a time for de-energizing (that is, not energizing) for 70 ms or more, is provided. If the current is set to 0 in the cooling process, the pressurized state may be maintained. By providing the cooling process, the temperature of each projection is made uniform, and the ease of flow of the current flowing through the projection is also made uniform. As a result, the current flowing through each projection becomes uniform during the main energization, the variation in the joint strength between the steel plate and the nut can be reduced, and the Cp (one-side process capability index) of the indentation peel strength increases. It is more effective when the non-energized time is 80 ms or more, 180 ms or more, or 200 ms or more.

クール工程の時間を長くすると特性上のデメリットは少なくない。ただし、予備通電工程から加圧力を一定とする場合、クール工程の時間を長くするとCpが低下し、またプロジェクション高さの減少が進むため、本通電工程での接合部の発熱、および温度上昇が得られにくくなるので、400ms以下、さらには360ms以下とすることが好ましい。 If the cooling process time is lengthened, there are many disadvantages in terms of characteristics. However, when the pressing force is constant from the pre-energization process, if the cooling process time is lengthened, Cp decreases and the projection height decreases, resulting in heat generation and temperature rise at the joint in the main energization process. Since it is difficult to obtain, it is preferably 400 ms or less, more preferably 360 ms or less.

以上のように、予備通電工程において、各プロジェクションと接する鋼板の酸化被膜を破壊して除去又は薄膜化し、且つクール工程で各プロジェクションの温度を均一化することにより、続く本通電工程において、各プロジェクションに電流を均一に流すことが可能となり、鋼板とナットの接合強度が高く、接合強度のばらつきが小さい鋼部材を得ることができる。一般的なプロジェクションを備えたナット又はボルトの場合、プロジェクション溶接前のプロジェクション高さは0.9〜1.0mmmmであり、本通電後のプロジェクション高さが0mm近傍となるのが好ましい。 As described above, in the pre-energization step, the oxide film of the steel sheet in contact with each projection is destroyed and removed or thinned, and the temperature of each projection is made uniform in the cool step. It is possible to apply a uniform current to the steel sheet, and it is possible to obtain a steel member having a high joint strength between the steel plate and the nut and a small variation in the joint strength. In the case of a nut or bolt having a general projection, the projection height before projection welding is 0.9 to 1.0 mm, and the projection height after main energization is preferably around 0 mm.

なお、予備通電工程の前の工程、及び本通電工程の後の工程は特に限定しない。一般的なプロジェクション溶接と同様に、圧力のみを加え、電流を流さずに保持する工程があってもよい。 The step before the pre-energization step and the step after the main energization step are not particularly limited. Similar to general projection welding, there may be a step of applying only pressure and holding the current without flowing.

本発明の鋼部材の製造方法に用いる鋼材は、表面に亜鉛系めっきを有する鋼材であれば、特に限定されない。鋼材表面に酸化被膜を生じさせやすいものとして熱間プレスがあげられ、熱間プレスは高強度鋼板に対して適用されることが多いので、特にホットスタンプ材に用いる高強度亜鉛系めっき鋼板に対して好適である。高強度の亜鉛系めっきを有する鋼材としては、たとえば接合前の引張強さが1100MPa以上の亜鉛系めっき鋼材を例示できる。 The steel material used in the method for producing a steel member of the present invention is not particularly limited as long as it is a steel material having zinc-based plating on its surface. Hot press is one of the things that easily form an oxide film on the surface of steel materials, and since hot press is often applied to high-strength steel sheets, especially for high-strength galvanized steel sheets used for hot stamping materials. Is suitable. Examples of the steel material having high-strength zinc-based plating include zinc-based plated steel materials having a tensile strength of 1100 MPa or more before joining.

また、プロジェクション溶接による接合強度のばらつきの発生は、鋼材表面にある高抵抗体の酸化被膜に起因することが多いので、常温における接触抵抗が1mΩ以上である鋼材に好適である。たとえば、亜鉛系めっき鋼板に熱間プレスを施した場合などは酸化被膜を生じやすく、接触抵抗が大きくなりやすいので、本発明に好適である。 Further, since the variation in joint strength due to projection welding is often caused by the oxide film of the high resistor on the surface of the steel material, it is suitable for the steel material having a contact resistance of 1 mΩ or more at room temperature. For example, when a zinc-based plated steel sheet is hot-pressed, an oxide film is likely to be formed and the contact resistance is likely to increase, which is suitable for the present invention.

接触抵抗の測定方法を図3に示す。表面に亜鉛系めっき33を有する1枚の鋼板32をスポット溶接用の上側電極31aおよび下側電極31bで挟む。電極に1Aの電流Iを通電する。上側電極31aと鋼板32との間の電圧V1、下側電極31bと鋼板32との間の電圧V2を測定する。 The method of measuring the contact resistance is shown in FIG. A single steel plate 32 having a zinc-based plating 33 on its surface is sandwiched between an upper electrode 31a and a lower electrode 31b for spot welding. A current I of 1 A is applied to the electrode. The voltage V1 between the upper electrode 31a and the steel plate 32 and the voltage V2 between the lower electrode 31b and the steel plate 32 are measured.

上側電極31aと鋼板32間の電気抵抗をR1、下側電極31bと鋼板32間の電気抵抗をR3、鋼板32のバルク(母材)そのものの固有抵抗に起因する抵抗をR2とする。R2はゼロと近似できる。また、上下の電極31a、31bの抵抗もゼロと近似できる。よって、測定された電圧V1、V2と電気抵抗R1、R3との間の関係は次のように近似できる。 The electric resistance between the upper electrode 31a and the steel plate 32 is R1, the electric resistance between the lower electrode 31b and the steel plate 32 is R3, and the resistance caused by the intrinsic resistance of the bulk (base material) of the steel plate 32 itself is R2. R2 can be approximated to zero. Further, the resistances of the upper and lower electrodes 31a and 31b can be approximated to zero. Therefore, the relationship between the measured voltages V1 and V2 and the electrical resistances R1 and R3 can be approximated as follows.

V1=(R1+R2)×I≒R1×I=R1×1(A)=R1
V2=(R2+R3)×I≒R3×I=R3×1(A)=R3
V1 = (R1 + R2) × I ≒ R1 × I = R1 × 1 (A) = R1
V2 = (R2 + R3) × I ≒ R3 × I = R3 × 1 (A) = R3

R1、R3のいずれか大きいほうの抵抗値を本発明での接触抵抗とする。なお、図3では両面に亜鉛系めっき33が形成された鋼板32を示すが、本発明では片面のみに亜鉛系めっきが形成された鋼板を用いてもよい。 The larger resistance value of R1 and R3 is defined as the contact resistance in the present invention. Although FIG. 3 shows a steel sheet 32 in which zinc-based plating 33 is formed on both sides, in the present invention, a steel sheet in which zinc-based plating is formed on only one side may be used.

以下、実施例を用いて、本発明をより詳細に説明する。以下の実施例は本発明の実施の態様の一例であり、本発明が以下の態様に限定されるわけではない。 Hereinafter, the present invention will be described in more detail with reference to Examples. The following examples are examples of embodiments of the present invention, and the present invention is not limited to the following embodiments.

引張強さ1.5GPa、板厚2.3mm、常温における接触抵抗が12mΩ、亜鉛系めっきを両面に有する、ホットスタンプされた鋼板に、表1に示す条件で、プロジェクション溶接により、プロジェクションを有するナットを接合した。 A nut with projection by projection welding on a hot stamped steel sheet with tensile strength of 1.5 GPa, plate thickness of 2.3 mm, contact resistance at room temperature of 12 mΩ, and zinc-based plating on both sides, under the conditions shown in Table 1. Was joined.

ナットには、JIS B 1196:2010に準拠した、接合面に略半球状のプロジェクションを備えたものを使用した。より具体的には、強度区分8Tで、3個または4個(比較例No.10がプロジェクションが4個の実施例)のプロジェクションの突出距離(プロジェクション高さ)が0.90mm又は1.00mmのナットを用いた。 The nut used was a nut having a substantially hemispherical projection on the joint surface in accordance with JIS B 1196: 2010. More specifically, in the strength category 8T, the projection distance (projection height) of 3 or 4 (Comparative Example No. 10 is an embodiment having 4 projections) is 0.90 mm or 1.00 mm. A nut was used.

本実施例では、プロジェクション溶接を行う前に、まず、鋼板にドリルでピアス孔を形成し、その後、ガイドピンを利用してピアス孔の中心と、ナットのねじ孔の中心とをおおむね一致させた状態とし、鋼板とナットとを重ね合わせた状態で、上下の電極で加圧しながら通電加熱を行ってプロジェクション溶接した。 In this embodiment, before the projection welding is performed, first, a pierced hole is formed in the steel plate by a drill, and then the center of the pierced hole is roughly aligned with the center of the screw hole of the nut by using a guide pin. In this state, the steel plate and the nut were overlapped with each other, and the upper and lower electrodes were pressurized while energizing and heating to perform projection welding.

プロジェクション溶接には定置式のプロジェクション溶接機を用い、0.5sの初期加圧の後、表1に記載の条件による予備通電工程、クール工程、本通電工程を経て、0.17s電極を保持した後、圧力を解放した。なお、全工程を通して上下の電極による加圧力を表1に記載の条件とした。表1に記載の各条件について、同じ溶接条件でプロジェクション溶接を行い、15個の供試材を作製した。 A stationary projection welder was used for projection welding, and after an initial pressurization of 0.5 s, the 0.17 s electrode was held through a preliminary energization step, a cool step, and a main energization step under the conditions shown in Table 1. Later, the pressure was released. The pressure applied by the upper and lower electrodes was set as the condition shown in Table 1 throughout the entire process. For each condition shown in Table 1, projection welding was performed under the same welding conditions to prepare 15 test materials.

予備通電工程後及び本通電工程後のプロジェクション高さは、レーザ変位計で鋼板とプロジェクションを含めたナットとの全体の厚さを測定し、この全体の厚さから鋼板の厚さとナットのプロジェクションを除いた部分の厚さとを引いた値として求めた。表1には、3個または4個ある各プロジェクション高さの15個の平均値を記載した。発明例(No.1〜No.7)においては、15個の各プロジェクション高さの予備通電前後での比がすべて、本発明範囲である0.7〜0.9に入っていることを確認した。 For the projection height after the pre-energization process and after the main energization process, the total thickness of the steel plate and the nut including the projection is measured with a laser displacement meter, and the thickness of the steel plate and the projection of the nut are calculated from this total thickness. It was calculated as the value obtained by subtracting the thickness of the excluded part. Table 1 shows the average value of 15 pieces of each projection height having 3 or 4 pieces. In the examples of the invention (No. 1 to No. 7), it was confirmed that the ratios of the 15 projection heights before and after the pre-energization were all within the range of the present invention of 0.7 to 0.9. bottom.

作製した供試材について、JIS B 1196:2010で規定された押込み剥離試験を行った。この際、鋼板とナットとを接合した供試材における鋼板側から、ピアス孔を通じてボルトをねじ込み、ボルトの頭部から圧縮荷重を付与し、ナットが剥離した際の荷重(押込み剥離強度)を測定した。表1には、15個の供試材の押込み剥離強度の平均値を記載した。また、15個の供試材の押込み剥離強度から、規格下限を10.5kNとしたときの片側工程能力指数(Cp)を求め表1に記載した。なお片側工程能力指数(Cp)とは、対象とする工程がどれだけ均一にばらつきを少なく、且つ求められる性能をもつ製品を作製することができるかを示す指標である。 The prepared test material was subjected to the indentation peeling test specified in JIS B 1196: 2010. At this time, the bolt is screwed through the piercing hole from the steel plate side of the test material in which the steel plate and the nut are joined, a compressive load is applied from the head of the bolt, and the load when the nut is peeled (pushing peel strength) is measured. bottom. Table 1 shows the average value of the indentation peel strength of the 15 test materials. In addition, the one-sided process capability index (Cp) when the lower limit of the standard was set to 10.5 kN was obtained from the indentation peel strength of 15 test materials and is shown in Table 1. The one-sided process capability index (Cp) is an index indicating how uniformly the target process has less variation and can produce a product having the required performance.

本実施例では、平均押込み剥離強度10.5kN以上、Cp1.33以上を「OK」とし、この基準を満たさなかったものを「NG」とした。 In this example, the average indentation peel strength of 10.5 kN or more and Cp of 1.33 or more were set as "OK", and those not satisfying this standard were set as "NG".

本発明の鋼部材の製造方法によれば、ナットの押込み剥離強度が、ばらつきなく、高い値で安定して得られることが確認できた。 According to the method for manufacturing a steel member of the present invention, it was confirmed that the indentation peel strength of the nut could be stably obtained at a high value without variation.

予備通電、クール工程がない従来方法(No.8)で製造した場合、押込み剥離強度の平均値は、本発明の製造方法と比べ低いものの、判定基準は超える値となった。しかしながら、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 When manufactured by the conventional method (No. 8) without the pre-energization and cooling steps, the average value of the indentation peel strength was lower than that of the manufacturing method of the present invention, but exceeded the judgment standard. However, the variation between the test materials was large, and the judgment of the one-side process capability index was "NG".

予備通電工程を備えるがクール工程がない方法(No.9、10)で製造した場合、押込み剥離強度の平均値は、本発明の製造方法の場合と同等であったが、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 When manufactured by the method (No. 9, 10) having a pre-energization step but no cooling step, the average value of the indentation peeling strength was the same as that in the case of the manufacturing method of the present invention, but between the test materials. The variation was large, and the judgment of the one-sided process capability index was "NG".

予備通電工程を備えるがクール工程がない方法で製造し、予備通電工程におけるプロジェクション高さの変化が小さい場合(No.11)、押込み剥離強度は判定基準を超えるものの低い値となり、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 If the product is manufactured by a method that has a pre-energization process but does not have a cool process, and the change in projection height in the pre-energization process is small (No. 11), the indentation peel strength exceeds the judgment criteria but is low, and between the test materials. The variation was large, and the judgment of the one-sided process capability index was "NG".

予備通電工程を備えるがクール工程がない方法で製造し、予備通電工程におけるプロジェクション高さを大きく変化させた場合(No.12)、押込み剥離強度は判定基準を超えるものの低い値となり、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 When the product is manufactured by a method that has a pre-energization process but no cool process, and the projection height in the pre-energization process is significantly changed (No. 12), the indentation peel strength exceeds the judgment standard but becomes a low value, and the test material is used. The variation between them was large, and the judgment of the one-sided process capability index was "NG".

予備通電、クール工程を備えるが、予備通電工程においてプロジェクション高さを大きく変化させた場合(No.13)は、押込み剥離強度の平均値は、本発明の製造方法の場合と同等であったが、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 Although the pre-energization and cooling steps are provided, when the projection height is significantly changed in the pre-energization step (No. 13), the average value of the indentation peel strength is the same as that in the case of the manufacturing method of the present invention. , The variation between the test materials was large, and the judgment of the one-side process capability index was "NG".

予備通電、クール工程を備えるが、クール工程において無通電時間が短い場合(No.14)は、押込み剥離強度の平均値は判定基準を超える値となったものの、供試材間のばらつきが大きく、片側工程能力指数の判定は「NG」となった。 A pre-energization and cooling process is provided, but when the non-energization time is short in the cooling process (No. 14), the average value of the indentation peeling strength exceeds the judgment standard, but the variation between the test materials is large. , The judgment of the one-sided process capability index was "NG".

図4に押込み剥離試験後の接合部の破断面を示す。(a)が発明例(No.1)のものであり、(b)が予備通電、クール工程を行わなかった比較例(No.8)のものである。発明例では、各(3個の)プロジェクション接合部がほぼ均等に破断しているが、(b)では破断状態に差があり、また、接合部に酸化亜鉛が残留していることが確認できた。 FIG. 4 shows the fracture surface of the joint after the indentation peeling test. (A) is the invention example (No. 1), and (b) is the comparative example (No. 8) in which the pre-energization and cooling steps were not performed. In the example of the invention, each (three) projection joints were broken almost evenly, but in (b), it was confirmed that there was a difference in the broken state and zinc oxide remained in the joints. rice field.

図5にクール工程での無通電時間と片側工程能力指数の関係を示す。クール工程の無通電時間を70ms以上とすることにより片側工程能力指数を上昇させることができることが確認できた。

Figure 2020138468
FIG. 5 shows the relationship between the non-energized time in the cool process and the one-side process capability index. It was confirmed that the one-side process capability index can be increased by setting the non-energization time of the cool process to 70 ms or more.
Figure 2020138468

11a 上側電極
11b 下側電極
12 鋼板
13 酸化被膜
14 ナット
15 プロジェクション
16 電流
31a 上側電極
31b 下側電極fs
32 鋼板
33 亜鉛系めっき
11a Upper electrode 11b Lower electrode 12 Steel plate 13 Oxide film 14 Nut 15 Projection 16 Current 31a Upper electrode 31b Lower electrode fs
32 Steel plate 33 Zinc-based plating

Claims (4)

表面に亜鉛系めっきを有する鋼材と、複数のプロジェクションを備えたナット又はボルトを、加圧しながら通電加熱を行うプロジェクション溶接によって接合する、ナット及びボルトの一方又は両方を有する鋼部材の製造方法であって、
予備通電工程、クール工程、及び本通電工程を順に備え、
前記予備通電工程では、前記複数のすべてのプロジェクションの高さが予備通電工程の前と比較して0.7〜0.9倍となるように通電を行い、
前記クール工程は、70ms以上の無通電とする時間を有し、
前記本通電工程では、前記予備通電工程よりも高い電流を流す
ことを特徴とするナット及びボルトの一方又は両方を有する鋼部材の製造方法。
A method for manufacturing a steel member having one or both of nuts and bolts, in which a steel material having zinc-based plating on the surface and nuts or bolts having multiple projections are joined by projection welding in which energization heating is performed while pressurizing. hand,
A pre-energization process, a cool process, and a main energization process are provided in order.
In the pre-energization step, energization is performed so that the heights of all the plurality of projections are 0.7 to 0.9 times as high as those before the pre-energization step.
The cooling step has a time of 70 ms or more to be de-energized.
A method for manufacturing a steel member having one or both of a nut and a bolt, characterized in that a higher current is passed in the main energization step than in the pre-energization step.
前記クール工程における前記無通電とする時間が400ms以下である
ことを特徴とする請求項1に記載のナット及びボルトの一方又は両方を有する鋼部材の製造方法。
The method for manufacturing a steel member having one or both of a nut and a bolt according to claim 1, wherein the time for de-energizing in the cooling step is 400 ms or less.
前記鋼材の接合前の引張強さが1100MPa以上であることを特徴とする請求項1又は2に記載のナット及びボルトの一方又は両方を有する鋼部材の製造方法。 The method for manufacturing a steel member having one or both of a nut and a bolt according to claim 1 or 2, wherein the tensile strength of the steel material before joining is 1100 MPa or more. 前記鋼材の常温における接触抵抗が1mΩ以上であることを特徴とする請求項1〜3のいずれか1項に記載のナット及びボルトの一方又は両方を有する鋼部材の製造方法。 The method for producing a steel member having one or both of a nut and a bolt according to any one of claims 1 to 3, wherein the contact resistance of the steel material at room temperature is 1 mΩ or more.
JP2020562530A 2018-12-27 2019-12-27 Steel member manufacturing method Active JP7131634B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018246055 2018-12-27
JP2018246055 2018-12-27
PCT/JP2019/051543 WO2020138468A1 (en) 2018-12-27 2019-12-27 Method for producing steel member

Publications (2)

Publication Number Publication Date
JPWO2020138468A1 true JPWO2020138468A1 (en) 2021-09-09
JP7131634B2 JP7131634B2 (en) 2022-09-06

Family

ID=71129152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562530A Active JP7131634B2 (en) 2018-12-27 2019-12-27 Steel member manufacturing method

Country Status (2)

Country Link
JP (1) JP7131634B2 (en)
WO (1) WO2020138468A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112122760A (en) * 2020-09-15 2020-12-25 湖北长平汽车装备有限公司 Welding process of bulletproof steel plate and nut

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11764A (en) * 1997-04-14 1999-01-06 Sekisui Chem Co Ltd Projection welding method of surface-treated steel
JP2005297054A (en) * 2004-04-16 2005-10-27 Nippon Steel Corp Projection welding method, projection welded joint, and projection welded structure
JP2012179646A (en) * 2011-03-02 2012-09-20 Nippon Steel Corp Structural member for automobile excellent in delayed fracture characteristic and static strength characteristic of welded part, and method for manufacturing the same
JP5900699B2 (en) * 2013-10-04 2016-04-06 Jfeスチール株式会社 Resistance spot welding method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59699B2 (en) * 1974-12-27 1984-01-07 トヨタ自動車株式会社 Koudohoshiyousouchi

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11764A (en) * 1997-04-14 1999-01-06 Sekisui Chem Co Ltd Projection welding method of surface-treated steel
JP2005297054A (en) * 2004-04-16 2005-10-27 Nippon Steel Corp Projection welding method, projection welded joint, and projection welded structure
JP2012179646A (en) * 2011-03-02 2012-09-20 Nippon Steel Corp Structural member for automobile excellent in delayed fracture characteristic and static strength characteristic of welded part, and method for manufacturing the same
JP5900699B2 (en) * 2013-10-04 2016-04-06 Jfeスチール株式会社 Resistance spot welding method

Also Published As

Publication number Publication date
JP7131634B2 (en) 2022-09-06
WO2020138468A1 (en) 2020-07-02

Similar Documents

Publication Publication Date Title
CN106583899B (en) Multistage resistance spot welding method for being laminated with the workpiece of adjacent steel workpiece and aluminium workpiece
US20150231730A1 (en) Resistance spot welding steel and aluminum workpieces with protuberance
WO2010087508A1 (en) Indirect spot welding method
US20090208772A1 (en) Method of welding three metal sheets and apparatus with three stacked metal sheets
CN106413969B (en) Method and device for joining a composite plate component to a functional element
JP5057557B2 (en) Series spot welding method and welding apparatus
KR20200086730A (en) Manufacturing method of resistance spot welding joint
CN106715026B (en) Method and device for joining a composite plate component to a further component
WO2015133099A1 (en) Resistive spot-welding method
CN114206535B (en) Method for solid phase bonding of dissimilar materials and solid phase bonded structure of dissimilar materials
CN111886106A (en) Solid-phase bonding method and solid-phase bonding apparatus for metal material
EP3342524B1 (en) Resistance spot welding method and method for manufacturing welded member
CN105149714B (en) Metallic plate is without impression glue welding connection method
JPWO2020138468A1 (en) Manufacturing method of steel parts
JP7115223B2 (en) Method for manufacturing resistance spot welded joints
JP7242112B2 (en) Solid point welding method and solid point welding apparatus
JP2017047449A (en) Metal joint article and manufacturing method of the same
JP2022000315A (en) Manufacturing method of weld bond joint
JP2017140633A (en) Spot welding method
JP2013052413A (en) Resistance spot welding method
JP6591952B2 (en) Junction structure and manufacturing method thereof
JP6589171B2 (en) Metal resin bonding method and metal resin bonded body
JP2017506583A (en) Dissimilar materials joining method
JP2018099713A (en) Method for bonding metallic component and resin member
US20170246704A1 (en) Spot welding process with metallic addition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220808

R151 Written notification of patent or utility model registration

Ref document number: 7131634

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151