JPH03184296A - Dielectric heating - Google Patents

Dielectric heating

Info

Publication number
JPH03184296A
JPH03184296A JP1322563A JP32256389A JPH03184296A JP H03184296 A JPH03184296 A JP H03184296A JP 1322563 A JP1322563 A JP 1322563A JP 32256389 A JP32256389 A JP 32256389A JP H03184296 A JPH03184296 A JP H03184296A
Authority
JP
Japan
Prior art keywords
heated
heating
dielectric
applicator
dielectric heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1322563A
Other languages
Japanese (ja)
Other versions
JP2799407B2 (en
Inventor
Chokichiro Shibata
長吉郎 柴田
Koei Aoki
青木 弘栄
Shunichi Yamada
俊一 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Japan Radio Co Ltd
Chubu Electric Power Co Inc
Daido Gakuen School
Original Assignee
New Japan Radio Co Ltd
Chubu Electric Power Co Inc
Daido Gakuen School
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Japan Radio Co Ltd, Chubu Electric Power Co Inc, Daido Gakuen School filed Critical New Japan Radio Co Ltd
Priority to JP32256389A priority Critical patent/JP2799407B2/en
Publication of JPH03184296A publication Critical patent/JPH03184296A/en
Application granted granted Critical
Publication of JP2799407B2 publication Critical patent/JP2799407B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a dielectric heating method permitting the heating melting of a high melting-point dielectrics by applying dielectric heating in the low temperature region of a heated substance, and induction heating in the high temperature region. CONSTITUTION:A microwave generation device 1 generating a microwave of 3GHz extent, reflection wave prevention isolator 2, power monitor 3, impedance cooker 4, and discharge detector 5 are connected in a column with a waveguide to compose an dielectric heating system line 20. Moreover a high-frequency generation device 6 generating a high frequency of 400K-5MHz extent, matching observing device 7, and matching cooking device 8 are also connected in a column to compose an induction heating system line 30. These two series of the heating system lines 20 and 30 are selectively applied to an applicator 10 as a high-frequency melting furnace by the switching operation of a switching device 9. This enables a heated substance 11 to be effectively heated to high temperature to be melted.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体の加熱方法に関し、特にニューセラミッ
ク、ガラス材料、半導体材料等の高融点の誘電体を誘電
加熱と誘導加熱の併用により高温溶融可能とした誘電体
加熱方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for heating dielectric materials, and in particular, to heating high melting point dielectric materials such as new ceramics, glass materials, and semiconductor materials at high temperatures by combining dielectric heating and induction heating. This invention relates to a method for heating a dielectric material that can be melted.

〔発明の背景〕[Background of the invention]

マイクロ波による誘電体の加熱は同調方式のアプリケー
タ(高周波溶解炉)に生ずる極めて高い電界強度により
、短時間、高効率で行うことができる。しかしその到達
加熱温度は次のような理由により限界があった。
Heating of dielectric materials using microwaves can be performed in a short time and with high efficiency due to the extremely high electric field strength generated in a tuned applicator (high frequency melting furnace). However, the heating temperature that can be reached is limited due to the following reasons.

■ 誘電体の誘電加熱では、マイクロ波の侵入深さL(
電界強度が1/eになる深さ、e・・・自然対数の底〉
は次式で与えられ、波長λに比例する。
■ In dielectric heating of dielectric materials, microwave penetration depth L (
Depth where the electric field strength becomes 1/e, e...base of natural logarithm>
is given by the following equation and is proportional to the wavelength λ.

ε、は誘電体の比誘電率、tanδは誘電体損失角率で
ある。
ε is the relative dielectric constant of the dielectric, and tan δ is the dielectric loss angle rate.

一方、発生する熱量Qは、 Q= (AE” /λ)XtrXtanδ  ・(2)
で与えられ、波長λが短い程効率が良い、Aは比例定数
、Eは電界強度である。
On the other hand, the amount of heat generated Q is: Q= (AE”/λ)XtrXtanδ ・(2)
The shorter the wavelength λ, the better the efficiency, where A is the proportionality constant and E is the electric field strength.

つまりLとQとは波長λを変数とすると、相反する関係
にある。そこで最適加熱を得るために両者を勘案してそ
の波長λを選定する必要があった。
In other words, L and Q have a contradictory relationship when the wavelength λ is used as a variable. Therefore, in order to obtain optimal heating, it was necessary to select the wavelength λ taking both factors into consideration.

ところが、大部分の誘電体では、温度の上昇とともに内
部のイオンの移動度が増加して導電率σが増加する傾向
にある。
However, in most dielectric materials, as the temperature rises, the mobility of internal ions increases and the conductivity σ tends to increase.

また、ε、とtanδの値も一般に温度が高くなると増
加し、この結果マイクロ波の侵入する深さLが低減する
Further, the values of ε and tan δ generally increase as the temperature increases, and as a result, the depth L into which the microwave penetrates decreases.

上記(11式のLはσ−0、つまり誘電体の場合である
が、このσが大きくなるとマイクロ波電界による電流は
、はとんど所謂スキンデプスδの深さ範囲しか流れなく
なる。このδは、 で与えられる。このように、λが小さくσが大きい場合
には、δが小さくなる。この場合は表面しか加熱されな
くなる。Cは光速度、μは透磁率である。
L in the above equation (11) is σ-0, that is, in the case of a dielectric material, but as this σ increases, the current due to the microwave electric field will only flow within the depth range of the so-called skin depth δ.This δ is given by: Thus, when λ is small and σ is large, δ becomes small. In this case, only the surface is heated. C is the speed of light, and μ is the magnetic permeability.

■ また被加熱体は高温になると、次のブランクの輻射
式で与えられる輻射を生じる。すなわち波長がλとλ+
dλの間にある輻射エネルギ密度ρdλは下式で与えら
れる。
■ Also, when the heated object becomes high temperature, it generates radiation given by the following blank radiation formula. That is, the wavelengths are λ and λ+
The radiant energy density ρdλ between dλ is given by the following formula.

・・・(4) ここで、hはブランク定数、kはポルツマン定数、Tは
絶対温度である。
...(4) Here, h is a blank constant, k is a Portzmann constant, and T is an absolute temperature.

ここで、Tが摂氏換算で1500℃を越えると、被加熱
物は紫外域の波長の光を輻射するようになる。このとき
紫外線のうち短波長のものは、ガスを電離してイオンを
生じさせるので、そのとき照射しているマイクロ波電界
により放電が生じる。
Here, when T exceeds 1500° C. in terms of Celsius, the object to be heated starts to radiate light with a wavelength in the ultraviolet region. At this time, the short-wavelength ultraviolet rays ionize the gas and generate ions, so that a discharge occurs due to the microwave electric field being irradiated at that time.

従ってこの放電によってマイクロ波電力が消費され、そ
れ以上の被加熱物の昇温が抑えられる。
Therefore, microwave power is consumed by this discharge, and further temperature rise of the object to be heated is suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところが、現実には高融点の被加熱体を溶融することが
種々の分野で要望されている。これを従来のマイクロ波
の誘電加熱方法で行うと、上述したように加熱が進んで
温度が上昇し、導電率の増加や放電の発生のために、あ
る一定温度以上からは昇温が進まなくなり限界に達して
、上記要望に対処することができないばかりか、電力消
費が増大する等の問題があった。
However, in reality, it is desired in various fields to melt objects to be heated that have high melting points. If this is done using the conventional microwave dielectric heating method, the heating progresses and the temperature rises as described above, and due to the increase in conductivity and the occurrence of discharge, the temperature does not rise above a certain point. Not only has the limit been reached and the above requirements cannot be met, but there are also problems such as an increase in power consumption.

本発明の目的は、低温域に誘電加熱方法を高温域に誘導
加熱方法を各々適用して、高融点誘電体の加熱溶融を可
能とした誘電体加熱方法を提供することである。
An object of the present invention is to provide a dielectric heating method that makes it possible to heat and melt a high melting point dielectric by applying a dielectric heating method to a low temperature range and an induction heating method to a high temperature range.

〔課題を解決するための手段〕[Means to solve the problem]

このために本発明は、誘電体からなる被加熱物をマイク
ロ波照射により誘電加熱し、上記被加熱物の電導率が導
体と見做せる値となったとき及び/叉は上記被加熱物に
放電が発生したとき、上記マイクロ波照射を停止又は遮
断すると共に、上記被加熱物を高周波磁界の印加により
誘導加熱するように構成した。
For this purpose, the present invention dielectrically heats a heated object made of a dielectric material by microwave irradiation, and when the electrical conductivity of the heated object reaches a value that allows it to be regarded as a conductor, and/or when the heated object When discharge occurs, the microwave irradiation is stopped or cut off, and the object to be heated is induction heated by applying a high frequency magnetic field.

〔実施例〕〔Example〕

以下、本発明の実施例の加熱方法について説明する。第
1図はその一実施例の加熱方法を実施するための加熱袋
ff1Aのブロック図である。1は3Gllz程度のマ
イクロ波を発生するマイクロ波発生装置、2は反射波防
止用アイソレータ、3はパワーモニタ、4はインピーダ
ンス調整器、5は放電検出器で、これらは導波管で縦列
状に接続され、誘電加熱系ライン20を構成する。
Hereinafter, a heating method according to an embodiment of the present invention will be explained. FIG. 1 is a block diagram of a heating bag ff1A for carrying out the heating method of one embodiment. 1 is a microwave generator that generates microwaves of about 3 Gllz, 2 is an isolator for preventing reflected waves, 3 is a power monitor, 4 is an impedance adjuster, and 5 is a discharge detector, which are connected in series with a waveguide. The dielectric heating system line 20 is connected to the dielectric heating system line 20.

また6は400に〜5MHz程度の高周波を発生する高
周波発生装置、7はマツチング監視装置、8はマツチン
グ調整装置で、これらも縦列状に接続され誘導加熱系ラ
イン3oを構成する。
Further, 6 is a high frequency generator that generates a high frequency of about 400 to 5 MHz, 7 is a matching monitoring device, and 8 is a matching adjustment device, which are also connected in series to form an induction heating system line 3o.

そしてこれら2系列の加熱系ライン2o、3゜が切換装
置9の切換操作によって高周波溶解炉としてのアプリケ
ータ10に対して選択的に適用されるようになっている
。つまり本実施例の加熱装置Aは、切換操作により誘電
加熱モード、誘導加熱モードの何れにも設定することが
できる。なお、11はアプリケータ10内に収納した被
加熱物である。
These two heating system lines 2o and 3° are selectively applied to the applicator 10 as a high frequency melting furnace by switching operation of the switching device 9. In other words, the heating device A of this embodiment can be set to either the dielectric heating mode or the induction heating mode by a switching operation. Note that 11 is an object to be heated housed in the applicator 10.

上記アイソレータ2は、アプリケータ1oからのマイク
ロ波の反射波が発生装置1へ戻ることを防止するための
ものである。
The isolator 2 is for preventing the microwave reflected wave from the applicator 1o from returning to the generator 1.

パワーモニタ3はアプリケータ10内に配置した被加熱
物11のマツチング(整合)を監視する装置であって、
アプリケータ10に入射する電力とそこから反射されて
くる電力を各々検出して表示するものである。上記マツ
チングがとれていないと、反射されてくる電力が大きく
なる。
The power monitor 3 is a device that monitors the matching of the heated object 11 placed in the applicator 10,
The power input to the applicator 10 and the power reflected from the applicator 10 are detected and displayed. If the above matching is not achieved, the reflected power will increase.

インピーダンス調整器4はアプリケータ10から反射さ
れてくる電力を最小にするように調整するための装置で
ある。
The impedance adjuster 4 is a device for adjusting the power reflected from the applicator 10 to minimize it.

放電検出器5は被加熱物11の放電を検出するための検
出器である。
The discharge detector 5 is a detector for detecting discharge of the object 11 to be heated.

マツチング監視装置7、マツチング調整装置8は、被加
熱物11の性状(導電率等)に応じてマツチング調整を
行うための装置で、これらは誘電加熱系ライン20のパ
ワーモニタ3、インピーダンス調整器4に相応し、各々
同様に作動する。
The matching monitoring device 7 and the matching adjusting device 8 are devices for performing matching adjustment according to the properties (conductivity, etc.) of the object to be heated 11, and these are the power monitor 3 and impedance adjuster 4 of the dielectric heating system line 20. and each operates in the same way.

さて、本実施例の加熱装置Aによってアプリケータ10
内の被加熱物11を加熱するには、まず、切換装置9を
操作して誘電加熱モードを選択すると共にマイクロ波発
生装置1を作動させる。
Now, the applicator 10 is heated by the heating device A of this embodiment.
To heat the object to be heated 11 inside, first, the switching device 9 is operated to select the dielectric heating mode and the microwave generator 1 is activated.

これによりマイクロ波発生袋N1で発生したマイクロ波
が反射波防止用アイソレータ2、パワーモニタ3、イン
ピーダンス調整器4、放電検出器5及び切換装置9を経
てアプリケータ10内に入射し被加熱物11を照射して
誘電加熱を行う。
As a result, the microwave generated in the microwave generating bag N1 enters the applicator 10 through the reflected wave prevention isolator 2, the power monitor 3, the impedance adjuster 4, the discharge detector 5, and the switching device 9, and enters the heated object 11. irradiation to perform dielectric heating.

このときパワーモニタ3にアプリケータ10からの反射
電力が大きく表示されマツチングが不整合であることが
報知された場合には、パワーモニタ3を見ながら反射電
力が最小になるようにインピーダンス調整器4を調整す
る。この調整により効率の良い誘電加熱が行われる。
At this time, if the reflected power from the applicator 10 is displayed large on the power monitor 3 and it is reported that the matching is mismatched, the impedance adjuster 4 is adjusted so that the reflected power is minimized while watching the power monitor 3. Adjust. This adjustment allows efficient dielectric heating.

そして被加熱物11が昇温しその電導率が(導電体と見
做せる程度まで)増加して表面電流のみの加熱状態にな
ると、きわめてマツチングがとり難くなる。同時に被加
熱物11の高温度化のため紫外線を放出して放電が生じ
易くなり、放電検出器5がそれを検出する。
When the heated object 11 rises in temperature and its electrical conductivity increases (to the extent that it can be regarded as a conductor), and becomes heated only by surface current, matching becomes extremely difficult. At the same time, as the temperature of the object to be heated 11 increases, ultraviolet rays are emitted and discharge tends to occur, which is detected by the discharge detector 5.

このような状態に達した時点で、誘電加熱系ライン20
を停止し、切換装置9によって加熱装置Aを誘電加熱モ
ードから誘導加熱モードに切換えて、誘導加熱系ライン
30の作動を開始させる。
When this state is reached, the dielectric heating system line 20
is stopped, the heating device A is switched from the dielectric heating mode to the induction heating mode by the switching device 9, and the operation of the induction heating system line 30 is started.

すなわち、高周波発生装置6を作動させて被加熱物11
に高周波磁界を印加し、被加熱物11に直接誘導電流を
生じさせる。このときもマツチング監視語W7を見なが
らマツチング調整装置8によってマツチングを調整する
。これにより被加熱物11は誘電加熱モードでは昇温さ
せることかできなかった温度以上に、誘導加熱により加
熱され熔融する。
That is, by operating the high frequency generator 6, the object to be heated 11
A high frequency magnetic field is applied to the heated object 11 to directly generate an induced current in the heated object 11 . At this time as well, the matching is adjusted by the matching adjustment device 8 while watching the matching monitoring word W7. As a result, the object to be heated 11 is heated and melted by induction heating above a temperature that could not be raised in the dielectric heating mode.

第2図は他の実施例の加熱装置Bのブロック図である。FIG. 2 is a block diagram of a heating device B according to another embodiment.

この例では誘電加熱用のアプリケータ10と誘導加熱用
のアプリケータ10′の2種のアプリケータ10,10
“を設け、各々を独立的に誘電加熱系ライン20及び誘
導加熱系ライン30に適用している。また、電源12に
切換装置9“を接続し、この切換装置9°にマイクロ波
発生装置1と高周波発生装置6とを接続し、切換可能と
した。
In this example, two types of applicators 10, 10 are used: an applicator 10 for dielectric heating and an applicator 10' for induction heating.
``, and each is applied independently to the dielectric heating system line 20 and the induction heating system line 30.In addition, a switching device 9'' is connected to the power source 12, and the microwave generator 1 and the high frequency generator 6 to enable switching.

つまりこの例では切換装置9′を切り換えることにより
加熱装置Bを誘電加熱モードと誘導加熱モードのいずれ
かに選択的に設定できる。この場合は、被加熱物11を
加熱モードの切り換えに応してアプリケータ10.10
′間で入換え移動させる必要がある。
That is, in this example, the heating device B can be selectively set to either the dielectric heating mode or the induction heating mode by switching the switching device 9'. In this case, the object to be heated 11 is heated by the applicator 10.10 in accordance with the switching of the heating mode.
It is necessary to exchange and move between '.

第3図(a) fb) (C1は上記各実施例の加熱系
の切換方法の具体例を示す図である。
FIG. 3(a) fb) (C1 is a diagram showing a specific example of the heating system switching method in each of the above embodiments.

第3図<a)は第1図の実施例の加熱袋WAに適用でき
る切換方法で、アプリケータ10内へのコイル13の出
入れによりアプリケータ10内の加熱モードを変えるこ
とができる。
FIG. 3<a) shows a switching method applicable to the heating bag WA of the embodiment shown in FIG. 1, in which the heating mode within the applicator 10 can be changed by moving the coil 13 in and out of the applicator 10.

すなわち誘電加熱モードの場合はコイル13をアプリケ
ータ10の外部に取り出し、誘電加熱系ライン20から
マイクロ波を入射させる。次に誘導加熱モードの場合に
は、アプリケータ10内に設置した被加熱物11の収納
用のアルミナ製坩堝14の外周部にコイル13を装嵌し
、該コイル13に誘導加熱系ライン30から高周波電流
を供給する。
That is, in the case of the dielectric heating mode, the coil 13 is taken out of the applicator 10 and microwaves are applied from the dielectric heating system line 20. Next, in the case of induction heating mode, a coil 13 is fitted to the outer circumference of an alumina crucible 14 for storing the object to be heated 11 installed in the applicator 10, and a coil 13 is connected to the induction heating system line 30. Supply high frequency current.

第3図(bl (C)は第2図の実施例の加熱装置Bに
適用できる切換方法で、そのTb)の例ではコイル13
をアプリケータ10の下側隣室のアプリケータ10に設
置し1.坩堝14を上下可動の台座15に搭載してアプ
リケータ10とコイル13の間に移動させ、誘電加熱モ
ードと誘導加熱モードの両方を設定できるようにした。
FIG. 3 (bl (C)) shows a switching method that can be applied to the heating device B of the embodiment shown in FIG.
is installed in the applicator 10 in the lower side adjacent room of the applicator 10.1. The crucible 14 is mounted on a vertically movable pedestal 15 and moved between the applicator 10 and the coil 13, so that both dielectric heating mode and induction heating mode can be set.

誘電加熱モードの場合は、坩堝14は台座15によって
アプリケータ10内に押上保持され、供給されるマイク
ロ波により坩堝14内の被加熱物が誘電加熱される。こ
のとき、台座15はアプリケータ10.10′の仕切壁
10aに形成した坩堝通孔10bに装嵌し、アプリケー
タ10からのマイクロ波の漏出を防止する。
In the case of the dielectric heating mode, the crucible 14 is pushed up and held within the applicator 10 by the pedestal 15, and the object to be heated in the crucible 14 is dielectrically heated by the supplied microwaves. At this time, the pedestal 15 is fitted into the crucible through hole 10b formed in the partition wall 10a of the applicator 10, 10' to prevent leakage of microwaves from the applicator 10.

また誘導加熱モードの場合、坩堝14は台座15によっ
てアプリケータ10′内に引き下げられコイル13の内
側に装嵌され、坩堝14内の被加熱物がコイル13から
高周波磁界を受け、誘導加熱される。
In the case of induction heating mode, the crucible 14 is pulled down into the applicator 10' by the pedestal 15 and fitted inside the coil 13, and the object to be heated in the crucible 14 receives a high frequency magnetic field from the coil 13 and is heated by induction. .

また(ClO例では例えばアプリケータ10の下側にコ
イル13が巻装された坩堝14を設け、アプリケータ1
0で誘電加熱された被加熱物11を坩堝14内に流入し
、コイル13により誘導加熱するものである。
In addition, (in the ClO example, for example, a crucible 14 around which a coil 13 is wound is provided below the applicator 10, and the applicator 1
The object to be heated 11 dielectrically heated at zero flows into the crucible 14 and is heated by induction by the coil 13.

なお、上記実施例では誘電加熱から誘導加熱への切換を
、被加熱物に発生した放電を検出して行っているが、被
加熱物の電導率を検出して行うこともできることは勿論
である。この場合は、例えば複数回の電導率(抵抗)検
出タイミングを設定し、この時のみマイクロ波照射を遮
断するようにすれば良い。
In the above embodiments, switching from dielectric heating to induction heating is performed by detecting the discharge generated in the object to be heated, but it is of course possible to switch by detecting the electrical conductivity of the object to be heated. . In this case, for example, conductivity (resistance) detection timing may be set a plurality of times, and microwave irradiation may be interrupted only at this time.

〔発明の効果〕〔Effect of the invention〕

以上から本発明によれば、被加熱物の低温域では誘電加
熱を適用し、高温域では誘導加熱を適用するようにした
ので、誘電加熱において半導体物質、セラミック或いは
ガラス等の高融点の被加熱物が高温度になって電導率が
増大し叉は放電が発生してそれ以上の温度上昇が困難と
なった場合でも、誘導加熱に切り換えてその被加熱物を
さらに高温度に効率よく加熱して溶融させることができ
るという利点がある。
From the above, according to the present invention, dielectric heating is applied to the object to be heated in the low temperature range, and induction heating is applied to the object to be heated in the high temperature range. Even if the temperature of an object becomes high and its conductivity increases or electric discharge occurs and it becomes difficult to raise the temperature further, you can switch to induction heating to efficiently heat the object to a higher temperature. It has the advantage that it can be melted.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の誘電体加熱方法を実施するための加熱
装置のブロック図、第2図は他の実施例の加熱装置のブ
ロック図、第3図(a) (bl (C)は誘電加熱方
法と誘導加熱方法の切換方法を示す説明図である。 1・・・マイクロ波発生装置、2・・・反射波防止用ア
イソレータ、3・・・パワーモニタ、4・・・インピー
ダンス調整器、5・・・放電検出器、6・・・高周波発
生装置、7・・・マツチング監視装置、8・・・マツチ
ング調整装置、9.9′・・・切換装置、10.10°
・・・アプリケータ、11・・・被加熱物、12・・・
電源、13・・・コイル、14・・・坩堝、15・・・
台座、20・・・誘電加熱系ライン、30・・・誘導加
熱系ライン、A、B・・・加熱装置。
FIG. 1 is a block diagram of a heating device for carrying out the dielectric heating method of the present invention, FIG. 2 is a block diagram of a heating device of another embodiment, and FIG. It is an explanatory diagram showing a switching method between a heating method and an induction heating method. 1... Microwave generator, 2... Isolator for preventing reflected waves, 3... Power monitor, 4... Impedance adjuster, 5...Discharge detector, 6...High frequency generator, 7...Matching monitoring device, 8...Matching adjustment device, 9.9'...Switching device, 10.10°
... Applicator, 11... Heated object, 12...
Power supply, 13... Coil, 14... Crucible, 15...
Pedestal, 20... Dielectric heating system line, 30... Induction heating system line, A, B... Heating device.

Claims (1)

【特許請求の範囲】[Claims] (1)、誘電体からなる被加熱物をマイクロ波照射によ
り誘電加熱し、上記被加熱物の電導率が導体と見做せる
値となったとき及び/叉は上記被加熱物に放電が発生し
たとき、上記マイクロ波照射を停止又は遮断すると共に
、上記被加熱物を高周波磁界の印加により誘導加熱する
ことを特徴とする誘電体加熱方法。
(1) When a heated object made of a dielectric material is dielectrically heated by microwave irradiation, and the electrical conductivity of the heated object reaches a value that allows it to be regarded as a conductor, and/or a discharge occurs in the heated object. When this happens, the microwave irradiation is stopped or cut off, and the object to be heated is heated by induction by applying a high frequency magnetic field.
JP32256389A 1989-12-14 1989-12-14 Dielectric heating method Expired - Fee Related JP2799407B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32256389A JP2799407B2 (en) 1989-12-14 1989-12-14 Dielectric heating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32256389A JP2799407B2 (en) 1989-12-14 1989-12-14 Dielectric heating method

Publications (2)

Publication Number Publication Date
JPH03184296A true JPH03184296A (en) 1991-08-12
JP2799407B2 JP2799407B2 (en) 1998-09-17

Family

ID=18145078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32256389A Expired - Fee Related JP2799407B2 (en) 1989-12-14 1989-12-14 Dielectric heating method

Country Status (1)

Country Link
JP (1) JP2799407B2 (en)

Also Published As

Publication number Publication date
JP2799407B2 (en) 1998-09-17

Similar Documents

Publication Publication Date Title
NO20023819D0 (en) Heater with microwaves
EP2205043B1 (en) Microwave heating device
JP4018151B2 (en) Material processing using radio frequency and microwaves
JP3037433B2 (en) Variable frequency microwave heating device
US6222170B1 (en) Apparatus and method for microwave processing of materials using field-perturbing tool
AU6206798A (en) Baking oven for the high-temperature treatment of materials with a low dielectric loss factor
SE7605540L (en) HIGH FREQUENCY HEATING DEVICE
Bykov et al. Millimeter-wave gyrotron research system. I. Description of the facility
Sugai et al. Transition of electron heating mode in a planar microwave discharge at low pressures
Goode et al. A review of instrumentation used to generate microwave-induced plasmas
KR950006971A (en) Method and apparatus for uniformly processing semiconductor materials
US3859493A (en) Microwave heating temperature control
EP0815708B1 (en) Power source and method for induction heating of articles
JPH03184296A (en) Dielectric heating
US5365042A (en) Installation and method for heat treating parts made of a composite material having a ceramic matrix by using microwave energy
JP2654903B2 (en) Microwave sintering method and microwave sintering furnace
JPS5691436A (en) Method for heating semiconductor substrate
JPH08274067A (en) Plasma generating device
JP3184877B2 (en) Electromagnetic composite heating furnace
JP2646775B2 (en) High frequency heating equipment
JP3290859B2 (en) Microwave oven with dielectric heating
JP3237320B2 (en) High frequency heating equipment
CN219759532U (en) Combined type rapid annealing device
Yang et al. Electrical and thermal characterization of near-surface electrical discharge plasma actuation driven by radio frequency voltage at low pressure
JP2023065144A (en) microwave heating device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080710

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090710

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees