JPH03183993A - Nuclear fuel pellet and production thereof - Google Patents

Nuclear fuel pellet and production thereof

Info

Publication number
JPH03183993A
JPH03183993A JP1322525A JP32252589A JPH03183993A JP H03183993 A JPH03183993 A JP H03183993A JP 1322525 A JP1322525 A JP 1322525A JP 32252589 A JP32252589 A JP 32252589A JP H03183993 A JPH03183993 A JP H03183993A
Authority
JP
Japan
Prior art keywords
pellet
molding
nuclear fuel
powder
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1322525A
Other languages
Japanese (ja)
Inventor
Toshio Matsumoto
敏夫 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1322525A priority Critical patent/JPH03183993A/en
Publication of JPH03183993A publication Critical patent/JPH03183993A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To drastically decrease the release of gaseous fission products and gas swelling compared to conventional pellets by molding the peripheral part and central part of the pellet by different stages and integrally sintering the pellet. CONSTITUTION:First UO2 powder 13 having high activity is formed as a columnar molding 16 by a preceding press 15 and second UO2 powder 14 having low activity is mixed with SiO2-Al2O3 powder and is then formed as a cylindrical molding 19 by a preceding press 18. The molding 16 is then inserted into the hole part of the molding 19 and is again pressed 21 to obtain a columnar molding 22. This molding is subjected to the sintering in a reducing atmosphere to obtain the integral type pellet 24. The crystal grain size is about 40mum in the central region of this pellet 24. This crystal grains larger by about 4 times than the size in the outer peripheral region of the pellet 24 are thereby obtd. As a result, the gaseous fission products are liable to be released through the grain boundaries in the central part of the diamentral direction of the pellet where the temp. is high. Since the generation of the gaseous fission products and arrival thereof at the grain boundaries take time, the bubbles are hardly accumulated at the grain boundaries and the swelling of the pellet is decreased.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は核燃料ペレットとその製造方法に係り、とくに
高燃焼度領域において、気体核分裂生成物の放出及びペ
レットスウェリングを低減し、かつクリープしやすくす
ることにより性能を向上させた非均質な核燃料ペレット
とその製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a nuclear fuel pellet and a method for producing the same, and particularly in a high burnup region, reducing the release of gaseous fission products and pellet swelling. The present invention relates to a non-homogeneous nuclear fuel pellet whose performance is improved by making it easy to creep, and a method for producing the same.

(従来の技術) 二酸化ウランペレットは従来、次の工程により製造され
ている。即ち、六フッ化ウラン(UFG)を加熱して気
体にし、アンモニア水等に注入し、重ウラン酸アンモン
(ADD)などの化合物として沈殿させ、ろ過洗剰する
。この後乾燥焙焼してへ酸化三ウラン(U30Il)の
形にし、水素還元して二酸化ウラン(00□)粉末にす
る。この粉末に結合剤を加えた後、プレスして円柱状の
グリーンペレットに成形しこれを予備焼結して結合剤を
除去し、その後、水蒸気流中で1600〜1800℃に
加熱し数時間の本焼結を行う。これにより93〜97%
TD(TD:理論密度)の二酸化ウランペレットが得ら
れる。
(Prior Art) Uranium dioxide pellets are conventionally manufactured by the following process. That is, uranium hexafluoride (UFG) is heated to become a gas, poured into aqueous ammonia, etc., and precipitated as a compound such as ammonium diurate (ADD), which is then filtered and washed. Thereafter, it is dried and roasted to form triuranium helioxide (U30Il), and then reduced with hydrogen to form uranium dioxide (00□) powder. After adding a binder to this powder, it is pressed into cylindrical green pellets, which are pre-sintered to remove the binder, and then heated to 1600-1800°C in a stream of steam for several hours. Perform main sintering. This results in 93-97%
Uranium dioxide pellets with TD (TD: theoretical density) are obtained.

(発明が解決しようとする課題) このように、従来の核燃料ペレットは組成が全体に均質
であり、このため線出力密度を上げようとすると、燃料
ペレットの中心部温度も上昇する。燃料中心温度が高い
と、ペレット内に蓄積したクリプトン(Kr)、キセノ
ン(Xe)、ヨウ素(工。)等の核分裂生成物がペレッ
トとその被覆管とのギャップに多量に放出される。気体
核分裂生成物であるクリプトンやキセノンの放出量が多
いと、燃料棒の内圧が上昇する。また気体核分裂生成物
の熱伝導度が予め封入されているヘリウムより低いので
、核燃料温度も上昇する。このような内圧上昇及び温度
上昇は安全上望ましくない。さらにヨウ素が多量に放出
されるとジルコニウム合金製被覆管の応力腐食割れを引
き起こす。
(Problems to be Solved by the Invention) As described above, conventional nuclear fuel pellets have a homogeneous composition throughout, and therefore, when attempting to increase the linear power density, the temperature at the center of the fuel pellet also increases. When the core temperature of the fuel is high, a large amount of fission products such as krypton (Kr), xenon (Xe), and iodine accumulated in the pellet are released into the gap between the pellet and its cladding tube. When large amounts of gaseous fission products such as krypton and xenon are released, the internal pressure of the fuel rods increases. The temperature of the nuclear fuel also increases because the thermal conductivity of the gaseous fission products is lower than that of the pre-filled helium. Such internal pressure and temperature increases are undesirable from a safety standpoint. Furthermore, if a large amount of iodine is released, stress corrosion cracking will occur in the zirconium alloy cladding.

他方、核燃料ペレットは結晶粒径が大きくなると気体分
裂生成物の放出量が少なくなると共にクリープ速度も小
さくなる。逆に結晶粒径が小さくなると、気体核分裂生
成物故出量が増大し、クリープ速度が大きくなる。ベレ
ン1−と被覆管との相互作用を緩和するには、クリープ
速度が大きい方がよく、このため、ペレットの外周部は
クリープ速度が大きい方が望ましい。したがって、上記
相互作用の緩和の点では結晶粒径は小さい方がよい。
On the other hand, as the grain size of nuclear fuel pellets increases, the amount of gas fission products released decreases and the creep rate also decreases. Conversely, as the crystal grain size decreases, the amount of gaseous fission products produced increases and the creep rate increases. In order to alleviate the interaction between Belene 1- and the cladding tube, it is better to have a higher creep rate, and therefore it is desirable that the outer peripheral portion of the pellet has a higher creep rate. Therefore, from the viewpoint of alleviating the above-mentioned interaction, the smaller the crystal grain size, the better.

また上述のように気体核分裂生成物の放出量は少ない方
が望ましいので、この点では結晶粒径は大きい方がよい
。しかしながら組成の均一な従来の核燃料ペレットは結
晶粒径も一様となるので、クリープ速度の増大及び気体
核分裂生成物故出量の減少を共に満たすことはできなか
った。
Furthermore, as mentioned above, it is desirable that the amount of gaseous fission products released be small, so in this respect it is better to have a larger crystal grain size. However, since conventional nuclear fuel pellets with a uniform composition also have a uniform crystal grain size, it has not been possible to satisfy both the requirements of increasing the creep rate and decreasing the amount of gaseous fission products produced.

本発明の目的は、均質組成の核燃料ペレットの問題点を
解決し、燃料性能の高い非均質組成の核燃料ペレットと
その製造方法を提供することにある。
An object of the present invention is to solve the problems of nuclear fuel pellets with a homogeneous composition and to provide nuclear fuel pellets with a non-homogeneous composition that have high fuel performance and a method for producing the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記目的を達成するために、本発明においては、核燃料
ペレットを、径方向に中心領域と外周3− 領域に分け、前記中心領域の結晶粒径を前記外周領域よ
り大きくしたことを特徴とする核燃料ペレットを提供す
る。および核燃料ペレットを径方向に中心領域と外周領
域に分け、前記外周領域の結晶粒径を中心領域より小さ
くし、かつこの外周領域の結晶粒界に非晶質のS iO
z  A Q 203  を析出せしめて戒ることを特
徴とする核燃料ベレン1へを提供する。また前記核燃料
ペレットの製造方法として中心領域は、活性度の高いU
O2粉末で柱状成型体を成形し、外周領域は活性度の低
いUO□粉末にSiO□−AQ203粉末を混合し、筒
状成型体を成形し、前記筒状成型体に前記柱状成型体を
挿入後、プレスにより一体の柱状成型体を得たのちこれ
を還元性雰囲気で焼結させて戒ることを特徴とする核燃
料ペレットの製造方法を提供する。
(Means for Solving the Problems) In order to achieve the above object, in the present invention, a nuclear fuel pellet is divided into a central region and an outer peripheral region in the radial direction, and the crystal grain size of the central region is adjusted to the outer peripheral region. To provide nuclear fuel pellets characterized by being made larger. The nuclear fuel pellet is divided into a central region and an outer peripheral region in the radial direction, the crystal grain size of the outer peripheral region is made smaller than that of the central region, and amorphous SiO is added to the grain boundaries of the outer peripheral region.
The present invention provides a nuclear fuel belem 1 characterized in that it precipitates and prevents z A Q 203 . In addition, in the method for producing nuclear fuel pellets, the central region has high activity U.
A columnar molded body is molded with O2 powder, and in the outer peripheral region, SiO□-AQ203 powder is mixed with UO□ powder with low activity, a cylindrical molded body is molded, and the columnar molded body is inserted into the cylindrical molded body. The present invention provides a method for producing nuclear fuel pellets, which is characterized in that, after obtaining an integral columnar molded body by pressing, this is sintered in a reducing atmosphere.

(作用) この様に構成された核燃料ペレットの製造方法とその核
燃料ペレットにおいては、核燃料ペレットの中心部の結
晶粒径が大きいため気体核分裂生成物が発生して粒界に
到達するのに時間がかか4− リ、核燃料ペレット外への放出量を低減させることがで
きる。さらに、外周部の結晶粒径が小さくかつSiO2
− AQ203が析出しているので、粒界すべりによっ
てクリープ速度を大きくすることができる。
(Function) In the nuclear fuel pellet manufacturing method and the nuclear fuel pellet constructed in this way, since the crystal grain size in the center of the nuclear fuel pellet is large, it takes time for gaseous fission products to occur and reach the grain boundaries. Additionally, the amount of nuclear fuel pellets released to the outside can be reduced. Furthermore, the crystal grain size at the outer periphery is small and SiO2
- Since AQ203 is precipitated, the creep rate can be increased by grain boundary slip.

(実施例) 以下に本発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図において本発明核燃料ペレットlは、結晶粒径大
のペレット軸方向中心領域2と結晶粒径小でSiO□−
Al1.03を粒界に析出させたペレット外周領域3で
構成された一体型ペレットである。
In FIG. 1, the nuclear fuel pellet 1 of the present invention has a central region 2 in the axial direction of the pellet with a large crystal grain size and a SiO□-
This is an integrated pellet consisting of a pellet outer peripheral region 3 in which Al1.03 is precipitated at the grain boundaries.

第2図及び第3図に本発明核燃料ペレット1の製造工程
の流れ線図を示す。
FIGS. 2 and 3 show flow diagrams of the manufacturing process of the nuclear fuel pellet 1 of the present invention.

第2図において六弗化ウラン(OF、) 4を蒸発5を
介して気体にし、加水分解6を経て、沈殿7、濾過8を
介して重ウラン酸アンモニウム(ADO)を得る。これ
を焙焼9によってU3O8粉末とした後、還元10によ
って還元しUO2粉末を得る。 ここまでは従来工程で
ある。還元10の後粉砕11.混合12により粉末比表
面積を拡大することにより活性度の高い粉末第工UO□
粉末13と、粉砕11.混合12を経験しない活性度の
低い粉末、第20−Al2O3粉末14を得る。第3図
において、活性度の高い第100□粉末13を先行プレ
ス15により柱状成型体16を形成させる。また、活性
度の低い第2UO2粉末14を、SiO□Aff203
粉末の混合17の後、先行プレス18により筒状成型体
19を形成させる。柱状成型体16の斜視図を第4図に
、筒状成型体19の斜視図を第5図に示すが、柱状成型
体16を筒状成型体19の穴部19bに挿入(第3図2
0)シ、再プレス21することにより柱状成型体22を
得る。これに還元性雰囲気焼結23を施こし、一体型ペ
レット24を得る。
In FIG. 2, uranium hexafluoride (OF) 4 is converted into a gas through evaporation 5, hydrolysis 6, precipitation 7, and filtration 8 to obtain ammonium deuterate (ADO). This is roasted into U3O8 powder by roasting 9, and then reduced by reduction 10 to obtain UO2 powder. The steps up to this point are conventional processes. After reduction 10, grinding 11. Mixing 12 expands the specific surface area of the powder to create a highly active powder UO□
Powder 13 and pulverization 11. A less active powder, the 20th-Al2O3 powder 14, which does not undergo mixing 12 is obtained. In FIG. 3, a 100□ powder 13 with high activity is formed into a columnar molded body 16 by a preliminary press 15. In addition, the second UO2 powder 14 with low activity was added to SiO□Aff203.
After the powder is mixed 17, a cylindrical molded body 19 is formed by a preliminary press 18. A perspective view of the columnar molded body 16 is shown in FIG. 4, and a perspective view of the cylindrical molded body 19 is shown in FIG.
0) By re-pressing 21, a columnar molded body 22 is obtained. This is subjected to reducing atmosphere sintering 23 to obtain integral pellets 24.

前記焼結23を行なうと、活性度の高い粉末は、焼結速
度が速いため、結晶粒の成長が速くなり、結晶粒径は大
きくなる。
When the sintering step 23 is performed, since the highly active powder has a fast sintering speed, the crystal grains grow quickly and the crystal grain size becomes large.

つまり、前記一体型ペレット24で、活性度の高い粉末
を使用した柱状成型体16に対応する前記ペレット24
の中心領域では、結晶粒径が約40μmとなり、これは
活性度の低い粒数を使用した筒状成型体19に対応する
前記ペレッI・24の外周領域よりも、約4倍も大きい
結晶粒径となる。
In other words, among the integrated pellets 24, the pellets 24 correspond to the columnar molded bodies 16 using highly active powder.
In the central region, the crystal grain size is about 40 μm, which is about 4 times larger than the outer peripheral region of the pellet I. It becomes the diameter.

気体核分裂生成物は温度の高いペレット径方向中心部で
粒界をとおして放出されやすい。またペレットスウェリ
ングも気体核分裂生成物がバブル状に粒界に集積しやす
い温度の高いペレット中心部で大きくなる。このペレッ
ト中心部で結晶粒径を大きくすると、気体核分裂生成物
が発生し粒界に到達するのに時間がかかるので、ペレッ
ト外への放出が少なくなる。また同じ理由で粒界ヘパプ
ルが集積しにくくなるので、ペレットスウェリングの低
減も可能となる。
Gaseous fission products are likely to be released through grain boundaries in the radial center of the pellet where the temperature is high. Pellet swelling also increases in the center of the pellet, where the temperature is high, where gaseous fission products tend to accumulate in the form of bubbles at grain boundaries. When the crystal grain size is increased in the center of the pellet, it takes time for gas fission products to be generated and reach the grain boundaries, so that fewer gaseous fission products are released outside the pellet. Furthermore, for the same reason, it becomes difficult for grain boundary hepapules to accumulate, so pellet swelling can also be reduced.

一方、ペレット外周部では結晶粒径が小さいのでクリー
プ速度が大きくなるが、さらに粒界に非晶質(ガラス状
)のSjO□−AR203が析出するので、粒界すベリ
によりクリープ速度がさらに大きくなる。SiO□−A
Q203をペレット中心部に配することは、ペレッ1−
−被覆管の相互作用時に力を支えるのはペレット外周部
であるので、クリープ速度を増大させても、相互作用緩
和にあまり役立たない。
On the other hand, since the crystal grain size is small at the outer periphery of the pellet, the creep rate increases, but since amorphous (glass-like) SjO□-AR203 precipitates at the grain boundaries, the creep rate increases even more due to grain boundary burr. Become. SiO□-A
Placing Q203 in the center of the pellet means that the pellet 1-
- Since it is the pellet periphery that supports the force during cladding interaction, increasing the creep rate does not help much in mitigating the interaction.

7− さらに、高温部ではSiO□−Aff203が粒界に析
出したUO□は流動性が著しくなり、形状を維持する上
でも好ましくない。
7-Furthermore, UO□ in which SiO□-Aff203 precipitates at the grain boundaries becomes extremely fluid in the high-temperature part, which is not preferable in terms of maintaining the shape.

以上ペレットを非均質化させることにより、性能上最適
な、ペレット結晶構造が得られるわけである。
By making the pellet non-homogeneous as described above, a pellet crystal structure that is optimal in terms of performance can be obtained.

〔発明の効果〕〔Effect of the invention〕

本発明による核燃料ペレットとその製造方法によれば、
ペレット周辺部とペレット中心部を異なった工程で成形
し、一体として焼結することにより、従来ペレットに比
べ気体核分裂生成物の放出及び気体スウェリングを大幅
に低減でき、さらにクリープ速度の増大も可能とし、こ
れらの現象が問題となる高燃焼度領域での性能を向上さ
せることのできる核燃料ペレットを得ることができる。
According to the nuclear fuel pellet and its manufacturing method according to the present invention,
By molding the peripheral part of the pellet and the center part of the pellet in different processes and sintering them as one unit, it is possible to significantly reduce the release of gaseous fission products and gas swelling compared to conventional pellets, and it is also possible to increase the creep rate. By doing so, it is possible to obtain nuclear fuel pellets that can improve performance in the high burnup region where these phenomena are problematic.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る核燃料ペレットを示す斜視図、第
2図及び第3図は本発明に係る核燃料ペレットの製造方
法を示す製造工程の流れ線図、第4図は柱状成型体を示
す斜視図、第5図は筒状8− 成型体を示す斜視図である。 l・・・一体型ペレット 16・・・柱状成型体 ]、9a・・・筒状成型体
FIG. 1 is a perspective view showing a nuclear fuel pellet according to the present invention, FIGS. 2 and 3 are flow diagrams of a manufacturing process showing a method for manufacturing nuclear fuel pellets according to the present invention, and FIG. 4 shows a columnar molded body. FIG. 5 is a perspective view showing a cylindrical 8-molded body. l... integrated pellet 16... columnar molded body], 9a... cylindrical molded body

Claims (3)

【特許請求の範囲】[Claims] (1)核燃料ペレットを、径方向に、中心領域と外周領
域に分け、前記中心領域の結晶粒径を、前記外周領域よ
り大きくしたことを特徴とする核燃料ペレット。
(1) A nuclear fuel pellet characterized in that the nuclear fuel pellet is divided into a central region and an outer peripheral region in the radial direction, and the grain size of the central region is larger than that of the outer peripheral region.
(2)核燃料ペレットを径方向に中心領域と外周領域に
分け、前記外周領域の結晶粒径を中心領域より小さくし
、かつ、この外周領域の結晶粒界に非晶質のSiO_2
−Al_2O_3を析出せしめて成ることを特徴とする
核燃料ペレット。
(2) The nuclear fuel pellet is divided into a central region and an outer peripheral region in the radial direction, the crystal grain size of the outer peripheral region is smaller than that of the central region, and amorphous SiO_2 is formed at the grain boundaries of this outer peripheral region.
- A nuclear fuel pellet characterized by being made of precipitated Al_2O_3.
(3)活性度の高いUO_2粉末をプレス成型すること
により柱状成型体を製作し、また活性度の低いUO_2
粉末にSiO_2−Al_2O_3粉末を混合した後、
プレス成型により筒状成型体を製作し、筒状成型体に柱
状成型体を挿入後、再プレスし、新たに柱状成型体を得
、これを還元性雰囲気で焼結させて成ることを特徴とす
る核燃料ペレットの製造方法。
(3) A columnar molded body is produced by press molding UO_2 powder with high activity, and UO_2 with low activity
After mixing SiO_2-Al_2O_3 powder into the powder,
A cylindrical molded body is produced by press molding, the columnar molded body is inserted into the cylindrical molded body, and then pressed again to obtain a new columnar molded body, which is then sintered in a reducing atmosphere. A method for producing nuclear fuel pellets.
JP1322525A 1989-12-14 1989-12-14 Nuclear fuel pellet and production thereof Pending JPH03183993A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1322525A JPH03183993A (en) 1989-12-14 1989-12-14 Nuclear fuel pellet and production thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1322525A JPH03183993A (en) 1989-12-14 1989-12-14 Nuclear fuel pellet and production thereof

Publications (1)

Publication Number Publication Date
JPH03183993A true JPH03183993A (en) 1991-08-09

Family

ID=18144638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1322525A Pending JPH03183993A (en) 1989-12-14 1989-12-14 Nuclear fuel pellet and production thereof

Country Status (1)

Country Link
JP (1) JPH03183993A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909294A1 (en) * 2006-10-03 2008-04-09 The European Atomic Energy Community (EURATOM), represented by the European Commission High burn-up nuclear fuel pellets

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1909294A1 (en) * 2006-10-03 2008-04-09 The European Atomic Energy Community (EURATOM), represented by the European Commission High burn-up nuclear fuel pellets
WO2008040768A1 (en) * 2006-10-03 2008-04-10 The European Atomic Energy Community (Euratom), Represented By The European Commission High burn-up nuclear fuel pellets

Similar Documents

Publication Publication Date Title
CN108565032A (en) UO2Metal fuel pellet and its manufacturing method
KR101082060B1 (en) Method for the sintered annular nuclear fuel pellet
CN111933310A (en) High-thermal-conductivity uranium dioxide single crystal composite fuel pellet and preparation method thereof
CN106927832A (en) A kind of preparation method of the imitative fault-tolerant fuel ball of MAX phases accident
KR100783986B1 (en) Fuel pellet for a nuclear reactor and method for the production thereof
JPH03183993A (en) Nuclear fuel pellet and production thereof
JP4700806B2 (en) Nuclear fuel pellets
JPH01107193A (en) Nuclear fuel pellet and its manufacturing
RU89904U1 (en) Nuclear reactor fuel rod
KR100272727B1 (en) Method of manufacturing uranium dioxide fuel pellet consisting of duplex grains
JPH0954187A (en) Producing method for nuclear fuel pellet using uranium oxide particle as raw material
US3342562A (en) High density urania fuel elements
JPH0452592A (en) Production of nuclear fuel pellet
JPH0368898A (en) Method of manufacturing nuclear fuel pellet
JP4099529B2 (en) Nuclear fuel pellet and manufacturing method thereof
US20090324953A1 (en) High burn-up nuclear fuel pellets
JPS62200287A (en) Manufacture of nuclear fuel pellet
KR101209139B1 (en) Nitriding surface treated nuclear fuel powder and dispersion nuclear fuel having the same
JPH0694869A (en) Nuclear fuel pellet and its manufacture
JP2701049B2 (en) Method for producing oxide nuclear fuel body by air sintering
JPH03249596A (en) Production of nuclear fuel pellet
US3168371A (en) Process for producing high density urania fuel elements
JPS6042435B2 (en) Nuclear fuel production method
JPS63179288A (en) Nuclear fuel pellet and manufacture thereof
JPH0761820A (en) Production of nuclear fuel pellet