JPH03183668A - Production of porous ceramics - Google Patents

Production of porous ceramics

Info

Publication number
JPH03183668A
JPH03183668A JP32058689A JP32058689A JPH03183668A JP H03183668 A JPH03183668 A JP H03183668A JP 32058689 A JP32058689 A JP 32058689A JP 32058689 A JP32058689 A JP 32058689A JP H03183668 A JPH03183668 A JP H03183668A
Authority
JP
Japan
Prior art keywords
ceramic particles
particles
porous ceramics
alumina
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32058689A
Other languages
Japanese (ja)
Inventor
Kazuyuki Oshima
大嶋 一之
Yoshihisa Kato
加藤 能久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP32058689A priority Critical patent/JPH03183668A/en
Publication of JPH03183668A publication Critical patent/JPH03183668A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain porous ceramics having a large uniform pore diameter, superior corrosion resistance and strength by mixing ceramic particles with a colloidal soln. of fine particles of the ceramics, adjusting the pH of the mixture and sintering a calcined body of the mixture. CONSTITUTION:Ceramic particles are mixed with a colloidal soln. of fine ceramic particles having the same compsn. as the ceramic particles and the pH of the mixture is adjusted. The mixture is then calcined and this calcined body is crushed, molded and sintered to obtain desired porous ceramics. The material of the ceramic particles may be alumina such as electrofused alumina or mullite such as electrofused, mullite. The particle size of the ceramic particles is regulated according to the desirable pore diameter of porous ceramics to be obtd. but the average particle size of the ceramic particles is regulated to >=100mum because porous ceramics having >=50mum pore diameter is chiefly produced by this method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はポーラスセラミックスの製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing porous ceramics.

〔従来の技術及び発明が解決しようとする課題〕孔径2
0〜100n程度の孔径の大きいポーラスセラミックス
を製造する場合、粒径50〜300卸のセラミック粒子
が使用されている。この場合、粒径50〜300−のセ
ラミック粒子を単独で焼結させることは困難であるため
、従来は5i02、PbOなどのガラス相を介してセラ
ミック粒子を結合させていた。しかし、このようなポー
ラスセラミックスはガラス相が存在するため、耐食性及
び強度が低下するという問題があった。
[Problems to be solved by conventional technology and invention] Pore diameter 2
When producing porous ceramics with a large pore size of about 0 to 100 nm, ceramic particles with a particle size of 50 to 300 nm are used. In this case, since it is difficult to sinter ceramic particles having a particle size of 50 to 300 mm alone, conventionally the ceramic particles have been bonded via a glass phase such as 5i02 or PbO. However, since such porous ceramics have a glass phase, there is a problem that corrosion resistance and strength are reduced.

本発明は前記課題を解決するためになされたものであり
、孔径が大きくかつ均一で、しかも耐食性及び強度に優
れたポーラスセラミックスを製造し得る方法を提供する
ことを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for producing porous ceramics having large and uniform pore diameters and excellent corrosion resistance and strength.

〔課題を解決するための手段と作用〕[Means and actions to solve the problem]

本発明のポーラスセラミックスの製造方法は、セラミッ
ク粒子及び該セラミック粒子と同一の組成を有するセラ
ミック微粒子のコロイド溶液とを混合した後、pHを調
整する工程と、乾燥した後、仮焼する工程と、仮焼体を
解砕した後、成形し、焼成する工程とを具備したことを
特徴とするものである。
The method for producing porous ceramics of the present invention includes a step of adjusting the pH after mixing ceramic particles and a colloidal solution of ceramic fine particles having the same composition as the ceramic particles, and a step of calcining after drying. The method is characterized by comprising a step of crushing the calcined body, then shaping and firing it.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

本発明において、セラミック粒子はポーラスセラミック
スのマトリックスを構成するものである。
In the present invention, the ceramic particles constitute a matrix of porous ceramics.

セラミック粒子の材質としては、アルミナ(電融アルミ
ナなど)、ムライト(電融ムライト、焼成ムライトなど
)、シリカ、ジルコニア(MgO又はCaO安定化電融
ジルコニアなど)が挙げられる。セラミック粒子の粒径
は、得ようとするポーラスセラミックスの孔径に応じて
異なる。ただし、本発明では主に孔径が50μ以上のポ
ーラスセラミックスを対象としているので、セラミック
粒子は平均粒径が100μs以上になるように粒度調整
することが望ましい。
Examples of the material of the ceramic particles include alumina (eg, fused alumina), mullite (eg, fused mullite, fired mullite), silica, and zirconia (eg, MgO or CaO stabilized fused zirconia). The particle size of the ceramic particles varies depending on the pore size of the porous ceramic to be obtained. However, since the present invention is mainly aimed at porous ceramics with a pore size of 50 μm or more, it is desirable to adjust the particle size of the ceramic particles so that the average particle size is 100 μs or more.

本発明において、コロイド溶液は、コロイド粒子が溶媒
中に均一に分散したものである。この場合、コロイド粒
子とは、セラミック粒子と同一の組成を有するセラミッ
ク分子が集合した形成されたセラミック微粒子で、電気
的に安定な状態にあるものをいう。すなわち、セラミッ
ク粒子がアルミナの場合にはアルミナゾル、ムライトの
場合にはアルミナゾル及びシリカゾル、ジルコニアの場
合にはジルコニアゾルが用いられる。
In the present invention, a colloidal solution is one in which colloidal particles are uniformly dispersed in a solvent. In this case, colloidal particles are ceramic fine particles formed by aggregation of ceramic molecules having the same composition as ceramic particles, and are in an electrically stable state. That is, when the ceramic particles are alumina, alumina sol is used, when the ceramic particles are mullite, alumina sol and silica sol are used, and when the ceramic particles are zirconia, zirconia sol is used.

セラミック粒子とコロイド溶液との混合割合は、以下の
■式を満足するように決定することが望ましい。
The mixing ratio of ceramic particles and colloidal solution is desirably determined so as to satisfy the following formula (1).

■式中、 rはコロイド粒子の平均粒子径 Hはセラミック粒子の比表面積 Wはセラミック粒子の添加量 Wはコロイド溶液の添加量 dはコロイド溶液の比重 2はコロイド溶液中の固形分の重量% である。■During the ceremony, r is the average particle diameter of colloidal particles H is the specific surface area of ceramic particles W is the amount of ceramic particles added W is the amount of colloid solution added d is the specific gravity of the colloidal solution 2 is the weight percent of solids in the colloidal solution It is.

この値が1未満では、結合力が充分でなくなり、ポーラ
スセラミックスの強度が低下する。この値が1.3を超
えると、セラミック粒子の表面に被覆されるセラミック
微粒子の層が厚くなり、膜厚にむらが生じるため、ポー
ラスセラミックスの孔径を精密に制御することができな
い。
If this value is less than 1, the bonding force will not be sufficient and the strength of the porous ceramic will decrease. If this value exceeds 1.3, the layer of ceramic fine particles coated on the surface of the ceramic particles becomes thick and the film thickness becomes uneven, making it impossible to precisely control the pore diameter of the porous ceramic.

次に、セラミック粒子とコロイド溶液とを混合した後、
p)fを調整する。この際、pHを6以上にするとコロ
イド粒子のゲル化が起こり、セラミック粒子の表面に電
気的安定を失ったセラミック微粒子が付着する。
Then, after mixing the ceramic particles and the colloidal solution,
p) Adjust f. At this time, when the pH is set to 6 or higher, gelation of the colloid particles occurs, and ceramic fine particles that have lost electrical stability adhere to the surfaces of the ceramic particles.

次に、この液は乾燥された後、その残渣が仮焼される。Next, this liquid is dried and the residue is calcined.

望ましい仮焼温度は材質によって異なる。The desired calcination temperature varies depending on the material.

例えば、アルミナの場合、仮焼温度は800 〜ll0
0℃であることが好ましい。これは、アルミナが以下の
ような相転移を示すことによる。
For example, in the case of alumina, the calcination temperature is 800 to 100
Preferably it is 0°C. This is because alumina exhibits the following phase transition.

アルミナゲル→(約500℃)→γ−アルミナ→(約1
000℃)→θ−アルミナ→(約1200℃)→α−ア
ルミナ 600℃未満ではアルミナ粒子の表面にアルミナ微粒子
が強固に固着しておらず、この状態で焼成してもアルミ
ナ粒子を結合させる役割を果たさない。1100℃を超
えるとアルミナ粒子の表面にアルミナ微粒子が強固に固
着しているが、アルミナ微粒子のα化が進むので、この
状態で焼成するとアルミナ微粒子どうしの結合強度が低
下する。
Alumina gel → (about 500℃) → γ-alumina → (about 1
000℃) → θ-Alumina → (Approx. 1200℃) → α-Alumina Below 600℃, the alumina fine particles are not firmly attached to the surface of the alumina particles, and even if fired in this state, the role of binding the alumina particles is not fulfill the purpose. When the temperature exceeds 1100°C, the alumina fine particles are firmly fixed to the surface of the alumina particles, but since the alumina fine particles become alpha, the bonding strength between the alumina fine particles decreases when firing in this state.

また、ムライトの場合、仮焼温度は900〜1300℃
であることが好ましい。900℃未満ではアルミナゲル
とシリカゲルとが反応していないので、この状態で焼成
してもムライト粒子を結合させる役割を果たさない。1
300℃を超え・るとゲルのムライト化が進みすぎるの
で、この状態で焼成するとムライト微粒子どうしの結合
強度が低下する。
In addition, in the case of mullite, the calcination temperature is 900 to 1300℃
It is preferable that Since alumina gel and silica gel do not react at temperatures below 900°C, firing in this state does not serve to bind mullite particles. 1
If the temperature exceeds 300°C, the gel becomes too mullite, so if it is fired in this state, the bonding strength between fine mullite particles will decrease.

更に、仮焼体を解砕した後、成形し、セラミック粒子の
表面にセラミック微粒子の被覆層が存在する状態で焼成
すると、セラミック微粒子の被覆層を介してセラミック
粒子が結合し、孔径が大きくかつ均一で、しかも耐食性
及び強度に優れたポーラスセラミックスを得ることがで
きる。
Furthermore, if the calcined body is crushed, shaped, and fired with a coating layer of fine ceramic particles on the surface of the ceramic particles, the ceramic particles will bond through the coating layer of fine ceramic particles, resulting in large pores and Porous ceramics that are uniform and have excellent corrosion resistance and strength can be obtained.

〔実施例〕〔Example〕

以下、本発明の詳細な説明する。 The present invention will be explained in detail below.

実施例1.2及び比較例1.2 予め電融アルミナを平均粒径が300μmとなるように
粒度調整しておいた。このアルミナ粒子の比表面積を比
表面積測定装置により測定したところ、10000cm
/gであった。また、市販のアルミナコロイド溶液(A
SK−120、住友化学工業■製;固形分10%、比重
1.1g/cm3  コロイド粒子の平均粒子径20μ
、安定化剤−酢酸)を用意した。そして前記■式の値が
1.1となるように、電融アルミナ粒子の添加量に対す
るアルミナコロイド溶液の添加量を算出した。
Example 1.2 and Comparative Example 1.2 The particle size of fused alumina was adjusted in advance so that the average particle size was 300 μm. When the specific surface area of these alumina particles was measured using a specific surface area measuring device, it was found to be 10,000 cm.
/g. In addition, a commercially available alumina colloid solution (A
SK-120, manufactured by Sumitomo Chemical ■; solid content 10%, specific gravity 1.1 g/cm3, average particle size of colloidal particles 20 μ
, stabilizer-acetic acid) were prepared. Then, the amount of the alumina colloid solution added to the amount of the fused alumina particles was calculated so that the value of the equation (1) was 1.1.

電融アルミナ粒子1重量部とアルミナコロイド溶液24
.25重量部とを混合した後、アンモニアを添加して、
pHを6.5以上に調整した。この液を乾燥した後、そ
れぞれ500℃(比較例1) 、750℃(実施例1 
) 、1000℃(実施例2) 、1200℃(比較例
2)で2時間仮焼した。各仮焼体を解砕し、板状に成形
した後、1600℃で2時間焼成してポーラスセラミッ
クスを製造した。
1 part by weight of fused alumina particles and 24 parts by weight of alumina colloid solution
.. After mixing with 25 parts by weight, ammonia is added,
The pH was adjusted to 6.5 or higher. After drying this liquid, the temperature was 500°C (Comparative Example 1) and 750°C (Example 1), respectively.
), 1000°C (Example 2) and 1200°C (Comparative Example 2) for 2 hours. Each calcined body was crushed and formed into a plate shape, and then fired at 1600° C. for 2 hours to produce porous ceramics.

比較例3 電融アルミナ粒子87重量部及び5i0212重量部を
混合し、板状に成形した後、1850℃で2時間焼成し
てポーラスセラミックスを製造した。
Comparative Example 3 87 parts by weight of fused alumina particles and 212 parts by weight of 5i0 were mixed, formed into a plate shape, and fired at 1850° C. for 2 hours to produce porous ceramics.

得られた各ポーラスセラミックスについて、かさ密度、
室温及び800℃における曲げ強さ、通気率、1000
℃における熱間線膨張率を測定した結果を第1表に示す
For each porous ceramic obtained, the bulk density,
Bending strength at room temperature and 800°C, air permeability, 1000
Table 1 shows the results of measuring the hot linear expansion coefficient at °C.

また、実施例1及び比較例3のポーラスセラミックスに
ついて、 細孔分布を測定した結果を第1 図に示す。
Furthermore, the results of measuring the pore distribution of the porous ceramics of Example 1 and Comparative Example 3 are shown in FIG.

第 表 第1表から明らかなように、実施例1.2のポーラスセ
ラミックスは、比較例1〜3のものより曲げ強さが著し
く向上している。また、第1図から明らかなように、実
施例1のポーラスセラミックスは30〜40μの孔径を
有する細孔が非常に多く、比較例3のものより孔径が均
一である。
As is clear from Table 1, the porous ceramics of Example 1.2 have significantly improved bending strength than those of Comparative Examples 1-3. Moreover, as is clear from FIG. 1, the porous ceramic of Example 1 has a large number of pores having a pore diameter of 30 to 40 μm, and the pore diameter is more uniform than that of Comparative Example 3.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明の方法を用いれば、孔径が大
きくかつ均一で、しかも耐食性及び強度に優れたポーラ
スセラミックスを製造することができ、その工業的価値
は極めて大きい。
As described in detail above, by using the method of the present invention, it is possible to produce porous ceramics having large and uniform pore diameters and excellent corrosion resistance and strength, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例1及び比較例3の方法で製造さ
れたポーラスセラミックスの細孔分布を示す特性図であ
る。
FIG. 1 is a characteristic diagram showing the pore distribution of porous ceramics manufactured by the methods of Example 1 and Comparative Example 3 of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  セラミック粒子及び該セラミック粒子と同一の組成を
有するセラミック微粒子のコロイド溶液とを混合した後
、pHを調整する工程と、乾燥した後、仮焼する工程と
、仮焼体を解砕した後、成形し、焼成する工程とを具備
したことを特徴とするポーラスセラミックスの製造方法
After mixing the ceramic particles and a colloidal solution of ceramic fine particles having the same composition as the ceramic particles, a step of adjusting the pH, a step of drying and calcining, and a step of crushing the calcined body and forming it. 1. A method for producing porous ceramics, comprising the steps of: and firing.
JP32058689A 1989-12-12 1989-12-12 Production of porous ceramics Pending JPH03183668A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32058689A JPH03183668A (en) 1989-12-12 1989-12-12 Production of porous ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32058689A JPH03183668A (en) 1989-12-12 1989-12-12 Production of porous ceramics

Publications (1)

Publication Number Publication Date
JPH03183668A true JPH03183668A (en) 1991-08-09

Family

ID=18123074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32058689A Pending JPH03183668A (en) 1989-12-12 1989-12-12 Production of porous ceramics

Country Status (1)

Country Link
JP (1) JPH03183668A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124256A (en) * 2004-10-29 2006-05-18 Noritake Co Ltd Zirconia porous body and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124256A (en) * 2004-10-29 2006-05-18 Noritake Co Ltd Zirconia porous body and its manufacturing method
JP4580729B2 (en) * 2004-10-29 2010-11-17 株式会社ノリタケカンパニーリミテド Zirconia porous body and method for producing the same

Similar Documents

Publication Publication Date Title
CA1317316C (en) Process for the production of porous ceramics using decomposable polymeric microspheres and the resultant product
KR101515242B1 (en) Refractory Ceramic Composite and Method of Making
CN103582619B (en) Wrap the batch of material of silica containing formation ceramic body, use its method and obtained ceramic body thereof
EP0479553B1 (en) Production of porous ceramics
JP3943366B2 (en) Ceramic bonded body and manufacturing method thereof
US5824220A (en) Inorganic porous support for a filter membrane, and method of manufacture
JP2010537948A (en) Porous washcoat-bonded fiber substrate and manufacturing method
JPH075396B2 (en) Alumina particle-bonded porous body and method for producing the same
JP2959683B2 (en) Method for producing high-purity alumina fiber molded body
JP3256112B2 (en) Ceramic green sheet and method of manufacturing ceramic substrate using the same
JPH03183668A (en) Production of porous ceramics
JP3081354B2 (en) Heat resistant fiber composition
JP2003206185A (en) Aluminum oxide ceramic porous body and method for producing the same
CN108285350B (en) Ternary composite silicon carbide refractory material and preparation method thereof
JP2748961B2 (en) Method for producing surface-modified alumina ceramics
JP2506503B2 (en) Multilayer ceramic porous body
JPS62182158A (en) Cordierite honeycom structure and manufacture
JPH0488699A (en) Low dielectric constant multilayer ceramic board and manufacture thereof
JPH0674178B2 (en) Porous refractory
JP3137128B2 (en) Manufacturing method of ceramic coating
KR910002579B1 (en) Alumina porous body and production of the same
KR920008776B1 (en) Process for the preparation of alumina porous body
JPH0269381A (en) Jig for calcining electronic parts
JPS59147402A (en) Moisture sensitive element and method of producing same
JPS63248786A (en) Surface reformation of non-oxide base ceramics and surface reformed matter