JPH03183111A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPH03183111A
JPH03183111A JP32050489A JP32050489A JPH03183111A JP H03183111 A JPH03183111 A JP H03183111A JP 32050489 A JP32050489 A JP 32050489A JP 32050489 A JP32050489 A JP 32050489A JP H03183111 A JPH03183111 A JP H03183111A
Authority
JP
Japan
Prior art keywords
solution
film
polymerized film
oxide film
immersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32050489A
Other languages
Japanese (ja)
Other versions
JP2657932B2 (en
Inventor
Yutaka Harashima
豊 原島
Satoshi Yuzawa
聡 湯澤
Akihiro Inoue
井上 明広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Japan Carlit Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd, Japan Carlit Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP32050489A priority Critical patent/JP2657932B2/en
Publication of JPH03183111A publication Critical patent/JPH03183111A/en
Application granted granted Critical
Publication of JP2657932B2 publication Critical patent/JP2657932B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)

Abstract

PURPOSE:To eliminate that a five-membered heterocyclic compound solution is diffused to an oxidizing-agent solution at a chemical oxidative polymerization operation and to form an excellent chamically polymerized film on an oxide film by a method wherein a valve-action metal on which the oxide film has been formed is immersed in the five-membered heterocyclic compound solution composed of pyrrole, thiophene or furan and, immediately after that, the chemical oxidative polymerization operation is executed in the oxidizer solution at a low temperature. CONSTITUTION:An anode foil 2 in which an oxide film 1 has been formed on the surface and which is composed of high-purity aluminum is immersed, for five minutes, in an aqueous solution of pyrrole, thiophene or furan/ethanol; after that, it is immersed in an aqueous solution of ammonium persulfate whose temperature is lower than that of the aqueous solution; a chemical oxidative polymerization operation is executed; a chemically polymerized film 4 composed of a conductive high polymer is formed on the oxide film 1. After that, the anode foil 2 on which the chemically polymerized film 4 has been formed is immersed in an electro lytic solution which contains a supporting electrolyte and a five-membered heterocyclic com pound such as pyrrole, thiophene, furan or the like; an electrolytic oxidative polymerization operation is executed; a conductive electrolytically polymerized film 5 is formed on the chemi cally polymerized film 4. Then, the electro-chemically polymerized film 5 is coated with colloidal carbon and a silver paste; this assembly is fired; a cathode layer 6 is formed.

Description

【発明の詳細な説明】 [発明の目的」 (産業上の利用分野〉 本発明は、導電性高分子膜を固体電解質として用いた固
体電解コンデンサの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing a solid electrolytic capacitor using a conductive polymer membrane as a solid electrolyte.

(従来の技術) 近年、小形高性能化の要請に応えた固体電解コンデンサ
として、特開昭60−244017号公報又は特開昭6
3−181308号公報に開示されたものがある。
(Prior art) In recent years, solid electrolytic capacitors that meet the demand for smaller size and higher performance have been developed as disclosed in Japanese Patent Application Laid-open No. 60-244017 or Japanese Patent Application Laid-open No. 60-244017.
There is one disclosed in Publication No. 3-181308.

これら公報に開示された技術は、表面を粗面化した弁作
用金属を化成し酸化皮膜を形成して得た陽極体を陽極と
して電解液に浸漬して通電し、前記酸化皮膜上に形成し
た電解重合膜を固体電解質として用いるものであるが、
酸化皮膜が絶縁物であるため、陰極と効果的な通電が行
われず、酸化皮膜の欠陥部あるいは陰極との距離が近い
ところに電流が集中し、固体電解質としての均一な電解
重合膜を得ることが極めて困難であった。
The technology disclosed in these publications is that an anode body obtained by chemically converting a valve metal with a roughened surface to form an oxide film is used as an anode, immersed in an electrolytic solution and energized to form an oxide film on the oxide film. It uses an electrolytic polymer membrane as a solid electrolyte,
Since the oxide film is an insulator, effective current conduction with the cathode is not carried out, and current concentrates in defective parts of the oxide film or in areas close to the cathode, resulting in a uniform electrolytic polymer film as a solid electrolyte. was extremely difficult.

そのため、陽極体を例えばビロール溶液に浸漬し、しか
るのち酸化剤溶液に浸漬することによる化学酸化重合手
段を講じ、陽極体上にあらかじめ化学重合膜を形成し、
この化学重合膜を陽極として電解液中で電解酸化重合を
行い、化学重合膜を介して酸化皮膜と一体化した電解重
合膜を形成するようにしている。
Therefore, a chemical oxidative polymerization method is taken in which the anode body is immersed in, for example, a virol solution and then immersed in an oxidizing agent solution to form a chemically polymerized film on the anode body in advance.
Electrolytic oxidation polymerization is performed in an electrolytic solution using this chemically polymerized film as an anode to form an electrolytically polymerized film that is integrated with the oxide film via the chemically polymerized film.

しかしながら、一般に化学酸化重合は室温下で行ってお
り、このときビロール溶液−酸化剤溶液界面及びビット
内での化学重合膜の形成時間に比べて酸化剤溶液中への
どロール溶液の流出時間が極めて短いために、酸化皮膜
表面での化学重合膜の均一で十分な形成が行われず、容
量出現率が低くなっていた。また、酸化剤溶液中に拡散
したピロールが酸化剤溶液中で重合することで形成され
る粒子状のポリマーが酸化皮膜表面で形成された化学重
合股上に付着するため、化学重合膜は薄い不均一な膜上
に粒子状の突起をもった状態となる。したがって、次工
程で行う電解酸化重合は、この薄く不均一で粒子状の突
起をもった化学重合膜を陽極として行うことになるが、
電解酸化重合は電極表面の一部に突起部がある場合には
そこに゛改界集中が生じ、そこに向かって電流が流れ込
み、突起部で選択的におこることになる。このため形成
された電解重合膜は非常に不均一で、非常に薄い部分や
、ややもすると形成されない部分が残されることになり
、化学重合膜を介して平均して陽極体全表面をくるむ状
態で所望の電解重合膜が得られず、tanδ特性が悪化
し、更に、その後のグラファイト、銀ペースト層形成時
に電解重合膜の形成が不十分0部分からグラファイトや
銀ペーストが浸透して、直接酸化皮膜表面に接触するな
どして、漏れ電流特性劣化及びショート不良発生の原因
となっていた。
However, chemical oxidation polymerization is generally carried out at room temperature, and at this time, the time required for the flow of the throat roll solution into the oxidizer solution is extremely long compared to the time required to form a chemically polymerized film at the interface between the virole solution and the oxidizer solution and within the bit. Because of the short length, a chemical polymer film was not uniformly and sufficiently formed on the surface of the oxide film, resulting in a low capacity appearance rate. In addition, the particulate polymer formed when the pyrrole diffused in the oxidant solution polymerizes in the oxidant solution adheres to the chemical polymerization layer formed on the surface of the oxide film, resulting in a thin and non-uniform chemically polymerized film. This results in a state where there are particulate protrusions on the film. Therefore, the electrolytic oxidation polymerization carried out in the next step will be carried out using this thin, non-uniform, chemically polymerized film with particulate protrusions as an anode.
If there is a protrusion on a part of the electrode surface, electrolytic oxidation polymerization occurs selectively at the protrusion because boundary breaking concentration occurs there, and current flows toward the protrusion. For this reason, the electropolymerized film that is formed is very non-uniform, leaving some very thin parts and some parts that are not formed, so that on average the entire surface of the anode body is covered with the chemically polymerized film. The desired electropolymerized film could not be obtained and the tan δ characteristics deteriorated, and furthermore, during the subsequent formation of the graphite and silver paste layers, the graphite and silver paste penetrated from areas where the electropolymerized film was insufficiently formed, resulting in direct oxidation. Contact with the film surface caused leakage current characteristics to deteriorate and short-circuit failures to occur.

また、化学重合膜と酸化皮膜の密着性は一般によくない
ため、電解重合膜の形成が不十分なところでは、時間の
経過により化学重合膜と酸化皮膜の剥離が起こり、静電
容量、tanδ特性などの寿命特性悪化の原因となって
いた。
In addition, since the adhesion between the chemically polymerized film and the oxide film is generally poor, in areas where the electrolytically polymerized film is insufficiently formed, the chemically polymerized film and the oxide film will peel off over time, resulting in changes in capacitance and tanδ characteristics. This was the cause of deterioration in life characteristics.

(発明が解決しようとする課題) 以上のように、導電性高分子膜を固体電解質として用い
る固体電解コンデンサは、小形高性能化の要請に応えた
ものとして注目に値するが、導電性高分子膜となる所望
の電解重合膜を形成する上で解決すべき課題をもつもの
であった。
(Problems to be Solved by the Invention) As described above, solid electrolytic capacitors that use a conductive polymer film as a solid electrolyte are worthy of attention as they meet the demand for smaller size and higher performance. There were problems to be solved in forming the desired electrolytically polymerized membrane.

本発明は、上記の点に鑑みてなされたもので、所望の電
解重合膜を得る上の条件となる陽極体を構成する酸化皮
膜上に優れた化学重合膜を形成できる固体電解コンデン
サの製造方法を提供することを目的とするものである。
The present invention has been made in view of the above points, and is a method for manufacturing a solid electrolytic capacitor that can form an excellent chemically polymerized film on the oxide film that constitutes the anode body, which is a condition for obtaining the desired electrolytically polymerized film. The purpose is to provide the following.

[発明の構成] (課題を解決するための手段) 本発明の固体電解コンデンサの製造方法は、弁作用金属
に形成した酸化皮膜上に化学酸化重合により化学重合膜
を形成した後、この化学重合膜上に電解酸化重合により
電解重合膜を形成する固体電解コンデンサの製造方法に
おいて、前記酸化皮膜を形成した弁作用金属をビロール
[Structure of the Invention] (Means for Solving the Problems) The method for manufacturing a solid electrolytic capacitor of the present invention includes forming a chemically polymerized film by chemical oxidation polymerization on an oxide film formed on a valve metal, and then forming a chemically polymerized film by chemical oxidation polymerization. In a method for manufacturing a solid electrolytic capacitor in which an electrolytically polymerized film is formed on the film by electrolytic oxidative polymerization, the valve metal on which the oxide film is formed is virol.

チオフェン又はフランからなる複素五員環化合物溶液に
浸漬し、しかるのら、直ちに少なくともこの化合物溶液
よりも低温の酸化剤溶液中で化学酸化重合を行うことを
特徴とするものである。
It is characterized in that it is immersed in a solution of a five-membered heterocyclic compound consisting of thiophene or furan, and then immediately subjected to chemical oxidative polymerization in an oxidizing agent solution at a temperature at least lower than that of the compound solution.

(作用) 以上の構成によれば、陽極体を複素五員環化合物溶液へ
浸漬後、直ちに酸化剤溶液に浸漬することで行われる化
学酸化重合の際に、複素五員環化合物溶液が酸化剤溶液
中に拡散することがほとんどなく、重合が陽極体表面の
複素五員環化合物溶液−酸化剤溶液界面で一気に行われ
、その後順次浸透していった酸化剤溶液によりピット内
に保持されている複素五員環化合物もすべてピット内で
重合されることにより、ビット内を含めて陽極体表面全
体に均一で十分な化学重合膜が形成される。また、酸化
剤溶液内への複素五員環化合物の拡散がないために、粒
子状のポリマーが陽極体表面に形成された化学重合膜に
付着することなく、得られた化学重合膜表面は突起部の
ない極めて平滑なものとなる。
(Function) According to the above structure, during chemical oxidative polymerization which is performed by immersing the anode body in a five-membered heterocyclic compound solution and then immediately immersing it in an oxidizing agent solution, the five-membered heterocyclic compound solution becomes an oxidizing agent. There is almost no diffusion into the solution, and polymerization occurs all at once at the interface between the five-membered heterocyclic compound solution and the oxidizing agent solution on the surface of the anode body, and is then retained in the pit by the oxidizing agent solution that gradually penetrates. All of the five-membered heterocyclic compounds are also polymerized within the pits, so that a uniform and sufficient chemical polymerization film is formed over the entire surface of the anode body, including the insides of the bits. In addition, since there is no diffusion of the five-membered heterocyclic compound into the oxidizing agent solution, the particulate polymer does not adhere to the chemically polymerized film formed on the surface of the anode, and the surface of the resulting chemically polymerized film has no protrusions. It becomes extremely smooth with no parts.

したがって、その後の電解酸化重合による均一な電解重
合膜形成に大きく寄与し、得られた電解重合膜は、結果
として化学重合膜を介して平均して陽極体全表面をくる
む状態で酸化皮膜と一体止したものとなる。
Therefore, it greatly contributes to the formation of a uniform electrolytic polymer film through the subsequent electrolytic oxidation polymerization, and the resulting electrolytic polymer film is integrated with the oxide film in a state that on average covers the entire surface of the anode body via the chemical polymer film. It becomes stopped.

(実施例) 以下本発明の一実施例につき説明する。すなわち、第1
図に示すようにエツチングによって表面積を拡大し化成
工程を経て表面に酸化皮膜1を形成した、例えば高純度
アルミニウムからなる陽極箔2をビロール又はチオフェ
ンあるいは7ラン/エタノール水溶液に5分間浸漬した
後、更にこのビロール又はチオフェンあるいはフラン/
エタノール水溶液よりも少なくとも低温の過硫酸アンモ
ニウム水溶液に浸漬して化学酸化重合を施し、酸化度l
!1上に34電性高分子からなる化学重合膜4を形成す
る。しかるのち、この化学重合!l!i14を形成した
@極箔2を支持電解質及びビロール、チオフェン又はフ
ランなどの複素五員環化合物を含む電解液中に浸漬し、
電解酸化重合を施し前記化学重合膜4上に導電性の電解
重合膜5を生成する。次にこの電解重合膜5上にコロイ
ダルカーボン及び銀ペーストを塗布−焼成して陰極層6
を形成し、この陰極16の部分に陰極リード(図示せず
〉を取着し、最後に外装を施してなるものである。
(Example) An example of the present invention will be described below. That is, the first
As shown in the figure, an anode foil 2 made of, for example, high-purity aluminum, whose surface area has been expanded by etching and an oxide film 1 formed on the surface through a chemical conversion process, is immersed in virol, thiophene, or a 7-run/ethanol aqueous solution for 5 minutes. Furthermore, this virol or thiophene or furan/
Chemical oxidation polymerization is carried out by immersion in an ammonium persulfate aqueous solution at a temperature at least lower than that of an ethanol aqueous solution, and the oxidation degree l
! A chemically polymerized film 4 made of a 34-electrode polymer is formed on top of the film 1 . After that, this chemical polymerization! l! Immersing the electrode foil 2 with i14 formed therein in an electrolytic solution containing a supporting electrolyte and a five-membered heterocyclic compound such as virol, thiophene or furan,
Electrolytic oxidation polymerization is performed to form a conductive electrolytic polymeric film 5 on the chemically polymerized film 4 . Next, colloidal carbon and silver paste are applied and fired on this electrolytic polymer film 5 to form a cathode layer 6.
A cathode lead (not shown) is attached to the cathode 16 portion, and finally an exterior is applied.

以上の構成による固体電解コンデンサの製造方法によれ
ば、陽極箔2上に均一で十分な平滑化された化学重合!
l!4形成が可能となり、電解酸化重合によって得られ
る固体電解質としての電解重合膜5が化学重合膜4を介
して陽極箔2全表面に酸化皮膜1と一体化した状態で、
かつ均一で十分に形成でき、静電容t、tanδ特性改
善が成されるとともに、グラフフィト、銀ペーストが直
接酸化皮膜1に接触することなく、漏れ電流特性、並び
にショート不良の改善に大きく寄与する。
According to the method for manufacturing a solid electrolytic capacitor with the above configuration, chemical polymerization can be uniformly and sufficiently smoothed on the anode foil 2!
l! 4 formation is possible, and the electrolytic polymer film 5 as a solid electrolyte obtained by electrolytic oxidation polymerization is integrated with the oxide film 1 on the entire surface of the anode foil 2 via the chemical polymer film 4.
Moreover, it can be formed uniformly and sufficiently, and the capacitance t and tan δ characteristics are improved, and the graphite and silver paste do not come into direct contact with the oxide film 1, which greatly contributes to improving leakage current characteristics and short circuit defects. .

また、電解重合!I5が均一化した化学重合膜4をくる
み均一に形成されるため、電解重合膜5を介して酸化度
WIA1に対する化学重合膜4の密着性が改善され、経
時変化も少なく寿命特性向上にも大きく寄与する。
Also, electrolytic polymerization! Since I5 is uniformly formed by wrapping the uniform chemical polymer film 4, the adhesion of the chemical polymer film 4 to the oxidation degree WIA1 is improved through the electrolytic polymer film 5, and there is little change over time and the life characteristics are greatly improved. Contribute.

次に、本発明によって得られた固体電解コンデンサと、
従来例及び比較例によって得られた固体電解コンデンサ
の諸特性比較について述べる。
Next, a solid electrolytic capacitor obtained by the present invention,
A comparison of various characteristics of solid electrolytic capacitors obtained by conventional examples and comparative examples will be described.

法衣は、以下に記した実施例A−Cと従来例り及び比較
例Eによる定格10V−3μFの固体電解コンデンサの
特性比較を示すもので、第2図〜第4図は105℃下に
おける時間に対する寿命特性を示すものである。
The figure shows a comparison of the characteristics of solid electrolytic capacitors with a rating of 10V-3μF according to Examples A-C, conventional example, and Comparative Example E described below. This shows the life characteristics for

なお、表中の数値でショート不良を除いたものは、試料
100個の平均値で、()内はバラツキを示す。
Note that the values in the table excluding short-circuit defects are the average values of 100 samples, and the numbers in parentheses indicate variations.

実施例A (1)化学酸化重合条件 45℃のビロール/エタノール溶液に化成処理したアル
ミニウム陽極箔を5分間浸漬後、支持電解質としてパラ
トルエンスルホン酸テトラエチルアンモニウム0.05
mo l /jを含む10℃の0.1mol/J過硫酸
アンモニウム水溶液に5分間浸透。
Example A (1) Chemical oxidation polymerization conditions After immersing a chemically treated aluminum anode foil in a virol/ethanol solution at 45°C for 5 minutes, 0.05% tetraethylammonium paratoluenesulfonate was added as a supporting electrolyte.
Infiltrate into a 0.1 mol/J ammonium persulfate aqueous solution at 10°C containing mol/j for 5 minutes.

(2)コンデンサ素子形状 平板形状 (3)電解酸化重合条件 ビロールモノマー1mol/J及び支持電解質としてパ
ラトルエンスルホン酸テトラエチルアンモニウム1mo
l/Jを含むアセトニトリルからなる電解液中に浸漬し
、定電流酸化重合(1mA/i、30分)を行う。
(2) Capacitor element shape: Flat plate shape (3) Electrolytic oxidation polymerization conditions: 1 mol/J of pyrrole monomer and 1 mo of tetraethylammonium para-toluenesulfonate as supporting electrolyte.
It is immersed in an electrolytic solution consisting of acetonitrile containing 1/J, and constant current oxidation polymerization (1 mA/i, 30 minutes) is performed.

実施例B (1)化学酸化重合条件 35℃のピロール/エタノール溶液に化成処理したアル
ミニウム陽If!箔を5分間浸漬後、支持電解質として
パラトルエンスルホン酸テトラエチルアンモニウム0.
05mo l/j!を含む10℃の0.1mo l/j
jliill酸アンモニウム水溶液に5分間浸漬。
Example B (1) Chemical oxidative polymerization conditions Aluminum positive If! chemical conversion treated in pyrrole/ethanol solution at 35°C. After soaking the foil for 5 minutes, 0.0% tetraethylammonium para-toluenesulfonate was added as the supporting electrolyte.
05mol/j! 0.1mol/j at 10℃ containing
Immerse in ammonium chloride solution for 5 minutes.

(2)コンデンサ素子形状 実施例へと同じ (3)電解酸化重合条件 実施例へと同じ 実施例C (1)化学酸化重合条件 15℃のピロール/エタノール溶液に化成処理したアル
ミニウム陽極箔を5分間浸漬後、支持電解質としてパラ
トルエンスルホン酸テトラエチルアンモニウム0.05
mol/Aを含む10℃の0.1 mo l /fJ 
過1iR17ンモニウム水溶液に5分WR浸漬。
(2) Capacitor element shape Same as Example (3) Electrolytic oxidation polymerization conditions Same as Example C (1) Chemical oxidation polymerization conditions Aluminum anode foil chemically treated in pyrrole/ethanol solution at 15°C for 5 minutes After immersion, add 0.05 tetraethylammonium paratoluenesulfonate as a supporting electrolyte.
0.1 mol/fJ at 10°C including mol/A
WR immersion in 1iR17 ammonium aqueous solution for 5 minutes.

(2)コンデンサ素子形状 実施例Aと同じ (3)N解酸化重合条件 実施例Aと同じ 従来例D (1)化学酸化重合条件 25℃のピロール/エタノール溶液に化成処理したアル
ミニウム陽極箔を5分間浸漬後、支持電解質としてパラ
トルエンスルホン酸テトラエチルアンモニウム0.05
mo I/Jを含む25℃の0,1mol/IJ過硫酸
アンモニウム水溶液に5分間浸漬。
(2) Capacitor element shape Same as Example A (3) N deoxidation polymerization conditions Same as Example A Conventional Example D (1) Chemical oxidation polymerization conditions After soaking for 1 minute, 0.05% tetraethylammonium para-toluenesulfonate was used as the supporting electrolyte.
Immerse for 5 minutes in a 0.1 mol/IJ ammonium persulfate aqueous solution at 25°C containing mo I/J.

(2)コンデンサ素子形状 実施例Aと同じ (3)電解酸化重合条件 実施例Aと同じ 比較例E (1)化学酸化重合条件 25℃のピロール/エタノール溶液に化成処理したアル
ミニウム陽極箔を5分間浸漬後、支持電解質としてパラ
トルエンスルホン酸テトラエチルアンモニウム0.05
mo I/1を含む40℃の0.1molzl過硫酸ア
ンモニウム水溶液に5分間浸漬。
(2) Capacitor element shape Same as Example A (3) Electrolytic oxidation polymerization conditions Same as Example A Comparative Example E (1) Chemical oxidation polymerization conditions Aluminum anode foil chemically treated in pyrrole/ethanol solution at 25°C for 5 minutes After immersion, add 0.05 tetraethylammonium paratoluenesulfonate as a supporting electrolyte.
Immersed in a 0.1 molzl ammonium persulfate aqueous solution containing mo I/1 at 40°C for 5 minutes.

(2)コンデンサ素子形状 実施例Aと同じ 〔3)電解酸化重合条件 実施例Aと同じ 以下余白 上表から明らかtiように、実施例A〜Cに係るものは
、従来例り及び比較例Eに係るものと比較して静電容置
、tanδ、漏れ電流特性のいずれも著しく改善される
とともに、ショート不良の大幅な改善効果がみられる。
(2) Capacitor element shape Same as Example A [3) Electrolytic oxidative polymerization conditions Same as Example A The capacitance, tan δ, and leakage current characteristics are all significantly improved compared to those related to the above, and there is also a significant improvement in short-circuit defects.

また、第2図〜第4図から明らかなように、容場変化率
及びtanδのwe特性の改善に貢献すると同時に、寿
命特性における漏れ電流の大幅な改善に貢献することが
わかる。
Further, as is clear from FIGS. 2 to 4, it is found that it contributes to improving the rate of change in volume field and the we characteristics of tan δ, and at the same time contributes to a significant improvement in the leakage current in the life characteristics.

更に、上表及び第2図〜第4図に示した実験結果から、
複素五員環化合物溶液と酸化剤溶液の温度は、酸化剤w
Jl<複索fi員環化合物溶液の関係において差が大き
いほど初期特性並びに寿命特性上に有効であり、この関
係が逆の場合は、両者の温度差がない場合よりも好まし
くないことがわかる。
Furthermore, from the experimental results shown in the table above and Figures 2 to 4,
The temperature of the five-membered heterocyclic compound solution and the oxidizing agent solution is
It can be seen that the larger the difference in the relationship of Jl<multiple fi-membered ring compound solution, the more effective it is in terms of initial characteristics and life characteristics, and when this relationship is reversed, it is less preferable than when there is no temperature difference between the two.

なお、上記実施例では陽極箔としてアルミニウム箔を用
いたものを例示して説明したが、タンタル箔又はニオブ
箔などの弁作用金属箔を用いたものに適用できることは
もとより、これらの弁作用金属箔を巻回又はこれらの弁
作用金属からなる粉末を焼結し焼結体としたものに適用
できることは勿論である。
In the above embodiments, aluminum foil was used as the anode foil, but it is also applicable to valve metal foils such as tantalum foil or niobium foil. Of course, it can be applied to a sintered body obtained by winding or sintering a powder made of these valve metals.

[発明の効果j 本発明によれば、陽極箔上に均一で、十分でかつ、下漬
な化学重合膜の形成が可能となり、これを陽極として形
成された電解重合膜も均一で十分に形成され、初期の緒
特性改善に大きく貢献すると同時に、寿命特性の改善に
貢献できる固体電解コンデンサの製造方法を得ることが
できる。
[Effect of the invention j According to the present invention, it is possible to form a uniform, sufficient, and submerged chemically polymerized film on an anode foil, and an electrolytic polymerized film formed using this as an anode can also be uniformly and sufficiently formed. As a result, it is possible to obtain a method for manufacturing a solid electrolytic capacitor that can greatly contribute to improving initial characteristics and, at the same time, contributing to improving life characteristics.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る製造途中のコンデンサ
素子構成を示す一部切欠概略断面図、第2図は時間−容
量変化率特性曲線図、第3図は時間−tanδ特性曲線
図、第4図は時間−漏れ電流特性曲線図である。 1・・・酸化皮膜   2・・・陽極部4・・・化学重
合膜  5・・・電解重合膜特  許  出  願  
人 マルコン電子株式会社 日本カーリット株式会社 第 図 時 間 (h) 第 図
FIG. 1 is a partially cutaway schematic sectional view showing the configuration of a capacitor element in the process of being manufactured according to an embodiment of the present invention, FIG. 2 is a time-capacitance change rate characteristic curve diagram, and FIG. 3 is a time-tan δ characteristic curve diagram. , FIG. 4 is a time-leakage current characteristic curve diagram. 1...Oxide film 2...Anode part 4...Chemical polymerization membrane 5...Electrolytic polymerization membrane patent application
Hito Marcon Electronics Co., Ltd. Japan Carlit Co., Ltd. Figure Time (h) Figure

Claims (1)

【特許請求の範囲】[Claims] (1)弁作用金属に形成した酸化皮膜上に化学酸化重合
により化学重合膜を形成した後、この化学重合膜上に電
解酸化重合により電解重合膜を形成する固体電解コンデ
ンサの製造方法において、前記酸化皮膜を形成した弁作
用金属をピロール,チオフェン又はフランからなる複素
五員環化合物溶液に浸漬し、しかるのち、直ちに少なく
ともこの化合物溶液よりも低温の酸化剤溶液中で化学酸
化重合を行うことを特徴とする固体電解コンデンサの製
造方法。
(1) In the method for manufacturing a solid electrolytic capacitor, the method of manufacturing a solid electrolytic capacitor includes forming a chemically polymerized film by chemical oxidation polymerization on an oxide film formed on a valve metal, and then forming an electrolytically polymerized film on this chemically polymerized film by electrolytic oxidation polymerization. The valve metal on which the oxide film has been formed is immersed in a solution of a five-membered heterocyclic compound consisting of pyrrole, thiophene, or furan, and then chemical oxidative polymerization is immediately carried out in an oxidizing agent solution at a temperature lower than that of the compound solution. Features: Manufacturing method of solid electrolytic capacitors.
JP32050489A 1989-12-12 1989-12-12 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JP2657932B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32050489A JP2657932B2 (en) 1989-12-12 1989-12-12 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32050489A JP2657932B2 (en) 1989-12-12 1989-12-12 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPH03183111A true JPH03183111A (en) 1991-08-09
JP2657932B2 JP2657932B2 (en) 1997-09-30

Family

ID=18122190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32050489A Expired - Lifetime JP2657932B2 (en) 1989-12-12 1989-12-12 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JP2657932B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461537A (en) * 1993-07-29 1995-10-24 Nec Corporation Solid electrolytic capacitor and method of manufacturing the same
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
KR20040048569A (en) * 2002-12-04 2004-06-10 파츠닉(주) Method for forming a conductive polymeric layer of tantalum condenser
SG111043A1 (en) * 2001-02-08 2005-05-30 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method thereof
JP2009239296A (en) * 1998-07-06 2009-10-15 Showa Denko Kk Solid electrolytic capacitor and method of producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11270847B1 (en) 2019-05-17 2022-03-08 KYOCERA AVX Components Corporation Solid electrolytic capacitor with improved leakage current

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5461537A (en) * 1993-07-29 1995-10-24 Nec Corporation Solid electrolytic capacitor and method of manufacturing the same
JP2000239361A (en) * 1998-07-06 2000-09-05 Showa Denko Kk Conductive polymer, solid electrolytic capacitor and production thereof
JP2009239296A (en) * 1998-07-06 2009-10-15 Showa Denko Kk Solid electrolytic capacitor and method of producing same
SG111043A1 (en) * 2001-02-08 2005-05-30 Matsushita Electric Ind Co Ltd Solid electrolytic capacitor and manufacturing method thereof
KR20040048569A (en) * 2002-12-04 2004-06-10 파츠닉(주) Method for forming a conductive polymeric layer of tantalum condenser

Also Published As

Publication number Publication date
JP2657932B2 (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JPH04112519A (en) Manufacture of solid electrolytic capacitor
JPH03183111A (en) Manufacture of solid electrolytic capacitor
KR100365370B1 (en) Method for producing a solid electrolytic capacitor
JP3307224B2 (en) Manufacturing method of capacitor
JP2001217159A (en) Solid electrolytic capacitor and its manufacturing method
JP3198518B2 (en) Method for manufacturing solid electrolytic capacitor
JP3202640B2 (en) Method for manufacturing solid electrolytic capacitor
JPH03112116A (en) Electrolytic capacitor
JP2811648B2 (en) Method for manufacturing solid electrolytic capacitor
JP3362600B2 (en) Manufacturing method of capacitor
JPH04137517A (en) Manufacture of solid electrolytic capacitor
JP3255091B2 (en) Method for manufacturing solid electrolytic capacitor
JP3663104B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JPH0373509A (en) Manufacture of solid electrolytic capacitor
KR970005086B1 (en) Tantalium electrolytic condenser producing method
JPH05159979A (en) Manufacture of solid electrolytic capacitor
JPH06168851A (en) Solid-state electrolytic capacitor and manufacture thereof
JP3750476B2 (en) Manufacturing method of solid electrolytic capacitor
JPH05152169A (en) Manufacture of solid electrolytic capacitor
JP2001155965A (en) Manufacturing method of solid electrolytic capacitor
JPH03139816A (en) Manufacture of solid electrolytic capacitor
JPH0321005A (en) Manufacture of solid electrolytic capacitor
JPH02288217A (en) Solid electrolytic capacitor
JP2006147900A (en) Manufacturing method of solid electrolytic capacitor
JPH11121280A (en) Solid electrolytic capacitor and manufacturing method therefor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 13