JPH03182309A - Heating of fiber reinforced composite material - Google Patents

Heating of fiber reinforced composite material

Info

Publication number
JPH03182309A
JPH03182309A JP32283889A JP32283889A JPH03182309A JP H03182309 A JPH03182309 A JP H03182309A JP 32283889 A JP32283889 A JP 32283889A JP 32283889 A JP32283889 A JP 32283889A JP H03182309 A JPH03182309 A JP H03182309A
Authority
JP
Japan
Prior art keywords
dielectric loss
heating
block
shaped preform
blended
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32283889A
Other languages
Japanese (ja)
Inventor
Toshiaki Okumura
俊明 奥村
Takao Yokumoto
貴生 浴本
Atsushi Takusagawa
田草川 篤
Fumiaki Komatsu
史明 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP32283889A priority Critical patent/JPH03182309A/en
Priority to DE69021377T priority patent/DE69021377T2/en
Priority to PCT/JP1990/001628 priority patent/WO1991008883A1/en
Priority to US07/741,515 priority patent/US5283026A/en
Priority to EP91900325A priority patent/EP0457917B1/en
Publication of JPH03182309A publication Critical patent/JPH03182309A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0855Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using microwave

Abstract

PURPOSE:To heat a block-shaped preform material uniformly in a short period of time and manufacture an FRP molded form having a high strength efficiently by a method wherein a dielectric loss improving agent is blended in the block-shaped preform material of a composite material, in which reinforcing fibers are blended into a plastic material, at a rate of a specified weight % to effect microwave heating. CONSTITUTION:Dielectric loss improving agent is blended into a block-shaped preform material, in which glass fibers, carbon fibers or the like are blended into a plastic material as reinforcing fibers. The dielectric loss improving agent is a substance having a high dielectric loss angle or a high dielectric loss factor of itself and shows a high dielectric loss factor while the same agent is silicon carbide, carbon black, various rubber materials and the like, for example. The blending amount of the dielectric loss improving agent is 0.1-4.5weight% with respect to the total weight of the block- shaped preform material. The block-shaped preform material 1a, supplied into an iron tube 2a, is inserted into a heating furnace 3 and is heated by microwave introduced from the direction of an arrow sign C in a diagram whereby the microwave is absorbed into the dielectric loss improving agent and internal heating progresses thereby increasing the temperature of the whole of the block-shaped preform material uniformly in a short period of time.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は塊状に成形された繊維強化複合材料をマイクロ
波加熱によって効率良く加熱する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for efficiently heating a fiber-reinforced composite material formed into a lump by microwave heating.

[従来の技術] FRP成形法のひとつとして、予備的に成形した材料(
本明細書では予備成形材料という)を用いてこれを更に
圧縮成形、その他の方法によって所望の最終形態に成形
する方法が知られている。
[Prior art] As one of the FRP molding methods, pre-molded material (
It is known to use a preformed material (herein referred to as a preformed material) and further mold it into a desired final shape by compression molding or other methods.

この様な予備成形材料を製造するに当たっては、プラス
チック材料及び補強用繊維を主成分とし、必要に応じて
硬化剤(プラスチック材料として熱硬化性樹脂を用いる
場合)、充填剤、着色剤、バインダー、その地番種添加
剤等を配合して予備成形を行うが、予備成形の最終段階
において加熱を行い、本成形に備える。
In manufacturing such preforming materials, the main components are plastic materials and reinforcing fibers, and if necessary, a curing agent (if a thermosetting resin is used as the plastic material), a filler, a coloring agent, a binder, Preforming is performed by blending the lot number type additives, etc., and heating is performed at the final stage of preforming to prepare for main molding.

一方予備成形材料の形態としては、シート状及び塊状(
バルク状乃至ブロック状のものを含む)等が知られてい
るが、温度勾配の少ない均一加熱状態を達成するという
点では薄いシート状のものが好ましく、塊状の予備成形
材料を均一加熱するという思想は知られていなかった。
On the other hand, the form of the preforming material is sheet-like or lump-like (
(including bulk or block-shaped ones), but thin sheet-shaped ones are preferable in terms of achieving uniform heating with less temperature gradient, and the idea is to uniformly heat bulk preformed material. was unknown.

しかしシート状のものはそれ自身の製造コストが高価で
ある他、最終形態に仕上げるに当たって積層成形しなけ
ればならないという繁雑さがある。
However, sheet-like materials are expensive to manufacture and require complicated lamination molding to form the final shape.

尚予備成形ステップに先立って、原材料に剪断力を与え
る様は混練しながら加熱する方法も知られているが、こ
の方法では補強用繊維が切断されて補強効果の発揮が不
十分になるという問題が生じる。
It is known that prior to the preforming step, shearing force is applied to the raw materials by heating them while kneading, but this method has the problem that the reinforcing fibers are cut and the reinforcing effect is insufficient. occurs.

[発明が解決しようとする課題J 本発明は上記の様な事情上着目してなされたものであっ
て、塊状の予備成形材料であっても効率良く均一加熱す
ることのできる方法を提供しようとするものである。
[Problem to be Solved by the Invention J The present invention has been made in view of the above-mentioned circumstances, and aims to provide a method that can efficiently and uniformly heat even bulk preformed materials. It is something to do.

[課題を解決する為の手段] 本発明は、プラスチック材料に補強用繊維を配合してな
る複合材料の塊状予備成形材料中に、0.1〜4.5重
量%の比率で誘電損失向上剤を配合すると共に、加熱手
段としてマイクロ波照射によるマイクロ波加熱を採用し
た点に要旨を有するものである。
[Means for Solving the Problems] The present invention includes a dielectric loss improver in a proportion of 0.1 to 4.5% by weight in a bulk preformed material of a composite material made by blending reinforcing fibers with a plastic material. The main feature of this method is that it uses microwave heating using microwave irradiation as a heating means.

[作用] 本発明者等は、上記塊状予備成形材料の均一加熱手段と
してマイクロ波加熱を採用することに想到し、電熱ヒー
タによる外部加熱や赤外線による外部加熱・どの比較検
討を行なった。それによれば後二者では外部のみから加
熱される為内部比加熱される為には比較的低温で加熱を
開始すると共に長時間をかけて徐々に昇温させなければ
ならないこと、また塊状予備成形材料内部に温度勾配を
生じない様にする為には非常な長時間をかけて熟成させ
る必要があること等が分かった。
[Function] The present inventors came up with the idea of adopting microwave heating as a uniform heating means for the above-mentioned bulk preformed material, and conducted a comparative study between external heating using an electric heater and external heating using infrared rays. According to this, in the latter two cases, heating is performed only from the outside, so in order to achieve internal specific heating, heating must be started at a relatively low temperature and gradually raised over a long period of time, and that bulk preforming is required. It was found that in order to prevent temperature gradients from occurring inside the material, it was necessary to ripen it for a very long time.

これ社対しマイクロ波加熱の場合は非加熱体の誘電損失
に負うところが大きく、従来の汎用材料を用いた予備成
形材料にいきなりマイクロ波加熱を適用しても、プラス
チック材料自身、並びにこれに配合される補強用繊維や
その他の各種配合材料の有する電気的特性によって加熱
効果が左右されるという問題があり、汎用性に欠けるこ
とが分かった。また、たまたま材料特性がうまく適合し
てマイクロ波加熱の効果が現われる様なことがあっても
、マイクロ波加熱効果を配慮した最適の材料選定が行な
われている訳ではないから、マイクロ波加熱効果をより
向上させる為の改善手段を講じることが推奨される。
In contrast, microwave heating relies heavily on the dielectric loss of the non-heated body, and even if microwave heating is suddenly applied to a preformed material using conventional general-purpose materials, the plastic material itself and the material blended into it will be damaged. It has been found that there is a problem in that the heating effect is affected by the electrical properties of the reinforcing fibers and other various compounded materials, and that it lacks versatility. Furthermore, even if the material properties happen to match well and the effect of microwave heating appears, it does not mean that the optimal material selection has taken the microwave heating effect into consideration. It is recommended that improvement measures be taken to further improve performance.

そこで本発明においては、塊状予備成形材料を製造する
為の使用原材料の如何にかかわらず常に安定したマイク
ロ波加熱効果を発揮させるという趣旨から、上記塊状予
備成形材料の誘電損失を高める目的で種々の添加物質に
ついて検討し、誘電損失向上剤を配合するという結論に
到達した。誘魚 電損失向上剤とは、それ自身の誘電摂食又は誘電率が高
い物質であり、そのことによって高い誘電損率を示すも
のであり、今その代表的な物質を例示すると、シリコン
カーバイド、カーボンブラック、各種ゴム材料、大理石
、ソーダガラス水分、エチレングリコール、グリセリン
等が例示される。
Therefore, in the present invention, with the aim of always exhibiting a stable microwave heating effect regardless of the raw material used for manufacturing the bulk preform material, various methods have been developed for the purpose of increasing the dielectric loss of the bulk preform material. After considering additives, we came to the conclusion that a dielectric loss improver should be added. A dielectric loss improver is a substance that has its own dielectric properties or a high dielectric constant, and thereby exhibits a high dielectric loss factor. Typical examples include silicon carbide, silicon carbide, Examples include carbon black, various rubber materials, marble, soda glass water, ethylene glycol, and glycerin.

誘電損失向上剤の配合量は、塊状予備成形材料全重量に
対して0.1重量%以上とする必要があり、これによっ
てマイクロ波加熱効果が十分現われる程度に塊状予備成
形材料の誘電損失を高めることが可能となる。しかし4
.5重量%を超えて配合すると塊状予備成形材料の強度
が低下するので、本発明では0.1〜4.5重量%とし
た0本発明に用いるその他の諸原料については、FRP
製造の趣旨に反しない限り広範な汎用材料から選ぶこと
ができる0例えばプラスチック材料は熱可塑性及び熱硬
化性の如何を問わず、また補強用繊維についてもガラス
繊維や炭素繊維を始めとして広範な補強用繊維を用いる
ことができる。その他の添加剤としては、必要に応じて
バインダー、硬化剤、可塑剤、充填剤、酸化防止剤、顔
料等が配合され、従来公知の添加剤は全て配合可能であ
る。
The blending amount of the dielectric loss improver must be 0.1% by weight or more based on the total weight of the bulk preform material, thereby increasing the dielectric loss of the bulk preform material to the extent that the microwave heating effect is sufficiently exhibited. becomes possible. But 4
.. If the amount exceeds 5% by weight, the strength of the bulk preformed material will decrease, so in the present invention, the content is 0.1 to 4.5% by weight.Other raw materials used in the present invention are FRP.
You can choose from a wide variety of general-purpose materials as long as it does not go against the purpose of manufacturing.For example, plastic materials can be thermoplastic or thermosetting, and reinforcing fibers can be selected from a wide variety of materials, including glass fiber and carbon fiber. fibers can be used. As other additives, binders, curing agents, plasticizers, fillers, antioxidants, pigments, etc. may be blended as necessary, and all conventionally known additives can be blended.

この様な諸原料を用いて製造される塊状予備成形材料に
マイクロ波(通常300MHz〜30GHz)を照射す
ると、該マイクロ波が上記誘電損失向上剤に吸収されて
内部加熱が進行し、塊状予備成形材料全体が均一に、し
かも短時間の内に昇温しで所期の目的を達成することが
可能となる。
When microwaves (usually 300 MHz to 30 GHz) are irradiated to the bulk preform material manufactured using such raw materials, the microwaves are absorbed by the dielectric loss improver and internal heating progresses, causing the bulk preform to proceed. It becomes possible to achieve the desired purpose by raising the temperature of the entire material uniformly and within a short time.

[実施例] 第1図は本発明を実施する為の装置を示す全体概念図、
第2図は要部の断面図であり、石英管通路4及びファン
6を内蔵した加熱炉3に鉄管2a、2bを連結し、上部
には導波管5を接続する。鉄管2a内を矢印A方向に供
給される塊状予備成形材料1aは加熱炉3に人り、矢印
C方向から導入されるマイクロ波によって加熱される。
[Example] FIG. 1 is an overall conceptual diagram showing an apparatus for carrying out the present invention,
FIG. 2 is a sectional view of the main part, in which iron pipes 2a and 2b are connected to a heating furnace 3 having a built-in quartz tube passage 4 and a fan 6, and a waveguide 5 is connected to the upper part. The bulk preformed material 1a fed into the iron pipe 2a in the direction of arrow A enters the heating furnace 3 and is heated by microwaves introduced from the direction of arrow C.

マイクロ波はファン6によって乱反射され、予備成形材
料1aに対してあらゆる角度から照射される。尚塊状予
備成形材料1aに回転、振動或は昇降等の運動をさせる
と、マイクロ波照射を受ける面が変動し、より一層の均
一加熱が達成される。
The microwaves are diffusely reflected by the fan 6 and irradiated onto the preformed material 1a from all angles. When the bulk preformed material 1a is rotated, vibrated, or moved up and down, the surface receiving the microwave irradiation changes and more uniform heating is achieved.

この際石英管通路4はマイクロ波を吸収しないから、マ
イクロ波は塊状予備成形材料に対して直接的に照射され
る。尚加熱炉3内はN2等の不活性ガスによって置換し
、プラスチック材料をはじめとする各種配合物質の酸化
劣化を防止することが推奨される。
At this time, since the quartz tube passage 4 does not absorb microwaves, the microwaves are directly irradiated onto the bulk preformed material. It is recommended that the inside of the heating furnace 3 be replaced with an inert gas such as N2 to prevent oxidative deterioration of various compounds including plastic materials.

実験として、ポリプロピレン粉末とガラス繊維からなる
複合材料に0.51i量%の比率となる様に誘電損失向
上剤としてカーボンブラックを配合し、200rAII
Iすx200mm(1i量:3Kg)の円柱状予備成形
材料を製造して2450MHzx8KWのマイクロ波を
′照射した。このとき予備成形材料は僅か3分で220
℃まで昇温し、予備成形材料内部の温度分布は±5℃と
いう優れた均一性を示した。加熱された予備成形材料1
bは鉄管2bを介して矢印B方向へ搬出され、次いで圧
縮成形機により成形される。最終成形品の機械強度は混
練加熱した比較量を用いて成形したものに比べて、より
高い値を示した。
As an experiment, carbon black was added as a dielectric loss improver to a composite material consisting of polypropylene powder and glass fiber at a ratio of 0.51i%, and 200rAII
A cylindrical preformed material of I x 200 mm (I amount: 3 kg) was produced and irradiated with microwaves of 2450 MHz x 8 KW. At this time, the pre-forming material can be heated to 220 mm in just 3 minutes.
The temperature distribution inside the preformed material showed excellent uniformity of ±5°C. Heated preformed material 1
b is carried out in the direction of arrow B through the iron pipe 2b, and then molded by a compression molding machine. The mechanical strength of the final molded product showed a higher value than that of a molded product using a comparative amount of kneaded and heated material.

尚このマイクロ波加熱において、加熱時間(単位二分)
とその時の塊状予備成形材料中心部温度の関係を求めた
ところ、第3図に示す様な結果が得られた。第3図に見
られる様に、加熱時間と中心部温度の間には正の1次関
数が成立しており、本発明は非常に安定した制御性の良
い加熱方法を提供していることが分かる。従って例えば
第1図に示す様な装置を用いて塊状予備成形材料の加熱
を行う方法を採用する場合には、到達温度から割出して
得られる加熱時間を炉内通過時間として各成形体の矢印
A、B方向移動速度を設定すれば良いことになる。
In addition, in this microwave heating, the heating time (unit: 2 minutes)
When the relationship between the temperature and the temperature at the center of the bulk preformed material at that time was determined, the results shown in FIG. 3 were obtained. As can be seen in Figure 3, a positive linear function is established between the heating time and the core temperature, indicating that the present invention provides a heating method that is extremely stable and has good controllability. I understand. Therefore, when adopting a method of heating a lump preformed material using a device such as that shown in Fig. 1, for example, the heating time obtained by calculating from the reached temperature is set as the furnace passage time, and the arrow of each molded body All that is required is to set the moving speed in the A and B directions.

第4図は第1.2図の概念に基づいて設計されたマイク
ロ波加熱装置の平面図、第5図は側面図であり、横方向
に5列、縦方向に2段、合計10列の石英管通路4を設
けると共に、入口側には10基(上下2段、各段5基)
の装入用エアシリンダ11と一各入ロヘッダ10内に1
0個の塊状予備成形材料を配置するための配列用シリン
ダ12を上下2段に各1基設ける。他方出口側には排出
されて出口ヘッダ20に挿入された塊状予備成形材料を
順次排出する横方向排出シリンダ21と長さ方向排出シ
リンダ22を夫々上下2段に1基ずつ設ける。従って配
列用シリンダ12によって入口ヘッダ10内に挿入され
た10個の塊状予備成形材料は、10個を1グループと
して装入用シリンダ11によって石英管通路4内に挿入
され、導波管5を経て導入されるマイクロ波の照射を受
けて加熱される。以下この操作を繰り返して後続の塊状
予備成形材料を順次装入するが、この装入によって図面
の左方向へ移動させられる先行の塊状予備成形材料はこ
の移行過程中に所定時間のマイクロ波加熱を受け、希望
温度に到達した時点で1グループが一括して出口ヘッダ
20内に排出される。そして次の排出が行なわれる迄に
横方向シリンダ21と長さ方向シリンダ22の時間差連
携プレーによって矢印Z方向に搬送されていく、こうし
て1グループの塊状予備成形材料が排出・搬送されると
、配列用シリンダ12と装入用シリンダ11の時間差連
携プレーによって新しいグループの10個の塊状予備成
形材料が図の右側から装入され、その押出し力によって
左側にある最先端の塊状予備成形材料が押出される。以
下この操作を繰り返して行けば、塊状予備成形材料の加
熱が連続的に行なわれる。
Fig. 4 is a plan view of the microwave heating device designed based on the concept of Fig. 1.2, and Fig. 5 is a side view. In addition to providing a quartz tube passage 4, there are 10 tubes on the entrance side (2 tiers above and below, 5 tubes in each tier)
A charging air cylinder 11 and one in each charging header 10.
Arranging cylinders 12 for arranging 0 pieces of bulk preforming material are provided in each of the upper and lower two stages. On the other hand, on the exit side, there are provided two horizontal discharge cylinders 21 and two longitudinal discharge cylinders 22, one each in upper and lower stages, for sequentially discharging the bulk preformed material discharged and inserted into the outlet header 20. Therefore, the ten bulk preforms inserted into the inlet header 10 by the arranging cylinder 12 are inserted in groups of ten into the quartz tube passage 4 by the charging cylinder 11, and then passed through the waveguide 5. It is heated by being irradiated with microwaves. Thereafter, this operation is repeated to sequentially charge the subsequent lumpy preformed material, but the preceding lumpy preformed material, which is moved to the left in the drawing by this charging, is subjected to microwave heating for a predetermined period of time during this transition process. When the desired temperature is reached, one group is discharged into the outlet header 20 at once. Then, until the next discharge is carried out, it is conveyed in the direction of arrow Z by the time difference cooperative play of the horizontal cylinder 21 and the longitudinal cylinder 22. When one group of lump preformed material is discharged and conveyed in this way, it is arranged A new group of 10 bulk preforms is charged from the right side of the figure by the time-lag coordinated play of the loading cylinder 12 and the charging cylinder 11, and their extrusion force extrudes the most advanced bulk preform material on the left. Ru. By repeating this operation, the bulk preformed material is heated continuously.

[発明の効果] 本発明は以上の様に構成されているので、プラスチック
材料と補強用繊維を含む塊状予備成形材料が短時間のう
ちに均一加熱されることとなり、補強用繊維の折損を招
かず、高強度のFRP威形保形体率良く製造できる様に
なった。
[Effects of the Invention] Since the present invention is configured as described above, the bulk preformed material containing the plastic material and reinforcing fibers is uniformly heated in a short time, which prevents the reinforcing fibers from breaking. However, it has become possible to manufacture high-strength FRP shape-retaining bodies at a high rate.

4、図面のI−JJILな説明 第1図は本発明の加熱方法を実施する為の加熱装置を概
念的に示す説明図、第2図はその横断面図、第3図は加
熱時間と到達温度の関係を示すグラフ、第4図は加熱装
置の具体例を示す平面説明図、第5図は側面説明図であ
る。
4. I-JJIL explanation of the drawings Fig. 1 is an explanatory diagram conceptually showing a heating device for carrying out the heating method of the present invention, Fig. 2 is its cross-sectional view, and Fig. 3 shows the heating time and reach. A graph showing the temperature relationship, FIG. 4 is an explanatory plan view showing a specific example of the heating device, and FIG. 5 is an explanatory side view.

1・・・塊状予備成形材料 3・・・加熱炉4・・・石
英管通路    5・・・導波管X  熱暗闇 (仔) 第4図
1...Bulk preforming material 3...Heating furnace 4...Quartz tube passage 5...Waveguide X Thermal darkness (child) Fig. 4

Claims (1)

【特許請求の範囲】[Claims] プラスチック材料に補強用繊維を配合してなる複合材料
の塊状予備成形材料を加熱する方法において、該塊状予
備成形材料中に、0.1〜4.5重量%の比率で誘電損
失向上剤を配合すると共に、マイクロ波を照射すること
によってマイクロ波加熱を行うことを特徴とする繊維強
化複合材料の加熱方法。
In a method of heating a bulk preformed material of a composite material made of a plastic material mixed with reinforcing fibers, a dielectric loss improver is blended into the bulk preformed material at a ratio of 0.1 to 4.5% by weight. A heating method for a fiber-reinforced composite material, characterized in that microwave heating is performed by irradiating microwaves.
JP32283889A 1989-12-12 1989-12-12 Heating of fiber reinforced composite material Pending JPH03182309A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP32283889A JPH03182309A (en) 1989-12-12 1989-12-12 Heating of fiber reinforced composite material
DE69021377T DE69021377T2 (en) 1989-12-12 1990-12-12 METHOD FOR MOLDING A PREFORMED BODY FROM FIBER REINFORCED COMPOSITE MATERIAL.
PCT/JP1990/001628 WO1991008883A1 (en) 1989-12-12 1990-12-12 Method of molding fiber-reinforced composite material and premolded body of said material
US07/741,515 US5283026A (en) 1989-12-12 1990-12-12 Method for molding fiber-reinforced composite material
EP91900325A EP0457917B1 (en) 1989-12-12 1990-12-12 Method of molding a premolded body of fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32283889A JPH03182309A (en) 1989-12-12 1989-12-12 Heating of fiber reinforced composite material

Publications (1)

Publication Number Publication Date
JPH03182309A true JPH03182309A (en) 1991-08-08

Family

ID=18148172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32283889A Pending JPH03182309A (en) 1989-12-12 1989-12-12 Heating of fiber reinforced composite material

Country Status (1)

Country Link
JP (1) JPH03182309A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538760A (en) * 2006-05-31 2009-11-12 ダウ グローバル テクノロジーズ インコーポレイティド Use of microwave energy to selectively heat thermoplastic polymer systems.
JP2011524831A (en) * 2008-06-18 2011-09-08 ゲーカーエン エアロスペース サービシズ リミテッド Method for producing structural parts made of fiber reinforced composites using microwave polymerization
WO2016194671A1 (en) * 2015-06-03 2016-12-08 三菱重工業株式会社 Resin composite material, curing method thereof, and resin molded product
KR20180096650A (en) * 2015-12-22 2018-08-29 엠케이에스 인스트루먼츠, 인코포레이티드 METHOD AND APPARATUS FOR PROCESSING DIELECTRIC MATERIALS USING MICROWAVE ENERGY

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009538760A (en) * 2006-05-31 2009-11-12 ダウ グローバル テクノロジーズ インコーポレイティド Use of microwave energy to selectively heat thermoplastic polymer systems.
US9303152B2 (en) 2006-05-31 2016-04-05 Dow Global Technologies Llc Use of microwave energy to selectively heat thermoplastic polymer systems
JP2011524831A (en) * 2008-06-18 2011-09-08 ゲーカーエン エアロスペース サービシズ リミテッド Method for producing structural parts made of fiber reinforced composites using microwave polymerization
WO2016194671A1 (en) * 2015-06-03 2016-12-08 三菱重工業株式会社 Resin composite material, curing method thereof, and resin molded product
JP2016222873A (en) * 2015-06-03 2016-12-28 三菱重工業株式会社 Resin composite material, curing method therefor, and resin molded article
KR20180096650A (en) * 2015-12-22 2018-08-29 엠케이에스 인스트루먼츠, 인코포레이티드 METHOD AND APPARATUS FOR PROCESSING DIELECTRIC MATERIALS USING MICROWAVE ENERGY

Similar Documents

Publication Publication Date Title
KR930000742B1 (en) Pultrusion process
US5283026A (en) Method for molding fiber-reinforced composite material
US2948649A (en) Method of manufacturing sections and rods of glass fibre-reinforced plastic
US20080310251A1 (en) Elastomer mixtures for rubber manufacture
US20050184434A1 (en) Injection molding of polymers by microwave heating
JPH03182309A (en) Heating of fiber reinforced composite material
US5939001A (en) Process for manufacturing objects from fiber-reinforced thermoplasts
KR101940899B1 (en) t-RTM Manufacturing Apparatus and t-RTM Manufacturing Method using thereof
WO2019057929A1 (en) Method of moulding a fibre-reinforced thermosetting resin to form a moulded article
US3473196A (en) Apparatus for the transfer and injection molding of synthetic thermosetting and thermoplastic resins
JPH03182310A (en) Heating of fiber reinforced composite material
EP0124604B1 (en) Process for the manufacture of products from reinforced polyester resins
CN101336151A (en) Process for the production and form preservation of an extruded product made of cementitious material
JPH0592404A (en) Manufacturing device of low-density ligneous fiber molded body
JPS56116277A (en) Manufacture of gas-separating plate for fuel cell
JPH04173109A (en) Heating device for fiber reinforced composite material
JP4976610B2 (en) Method for producing a long fiber reinforced thermoplastic resin molding
CN210590461U (en) Double-screw extruder for producing electronic crosslinked polyethylene foam
JPH03182308A (en) Heating of fiber reinforced composite material
JPH081670A (en) Recycling of fiber reinforced thermoplastic resin molded object
CN116674232A (en) Preparation method of thermoplastic composite material product
JPH0462108A (en) Preparation of fiber-reinforced thermoplastic resin pellet
JPS5831711A (en) Method and apparatus for producing thermosetting resin molding material
KR101751197B1 (en) Manufacturing apparatus of PET composite and method of manufacturing the same
JPH03182307A (en) Preform of fiber reinforced composite material