JPH0318157B2 - - Google Patents
Info
- Publication number
- JPH0318157B2 JPH0318157B2 JP57094194A JP9419482A JPH0318157B2 JP H0318157 B2 JPH0318157 B2 JP H0318157B2 JP 57094194 A JP57094194 A JP 57094194A JP 9419482 A JP9419482 A JP 9419482A JP H0318157 B2 JPH0318157 B2 JP H0318157B2
- Authority
- JP
- Japan
- Prior art keywords
- circuit
- oscillation
- voltage
- current
- constant current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010355 oscillation Effects 0.000 claims description 42
- 239000013078 crystal Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 238000009966 trimming Methods 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G04—HOROLOGY
- G04G—ELECTRONIC TIME-PIECES
- G04G19/00—Electric power supply circuits specially adapted for use in electronic time-pieces
- G04G19/02—Conversion or regulation of current or voltage
- G04G19/06—Regulation
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Electromechanical Clocks (AREA)
Description
【発明の詳細な説明】
本発明はトリミング可能な電子時計に関し、更
に詳細に述べると、電子時計の主要回路部に供給
される電力が所要の最低消費量となるようにトリ
ミングすることができる電子時計に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a trimmable electronic timepiece, and more specifically, the present invention relates to an electronic timepiece that can be trimmed so that the power supplied to the main circuitry of the electronic timepiece reaches a required minimum consumption amount. Regarding watches.
電子時計においては、水晶発振回路及びその発
振出力を分周する分周回路で消費される電力を極
力小さくすることが要求される。この要求を満た
すため、最近、第1図に示す構成の電子時計が提
案されている。第1図に示されている電子時計1
は、電池2の両端に定電圧源3を接続し、その出
力4により電流制限素子5を接続し、発振回路6
と分周回路7の電源の交点8と電流制限素子5の
他端とを接続し、発振回路6と分周回路7の他の
電源端子は電池2の他端9に接続されて成つてい
る。電流制限素子5はMOSFETで作られ、発振
回路6は、PチヤンネルMOSトランジスタとN
チヤンネルMOSトランジスタを互いに直列に接
続して成る相補型MOSインバータで構成される。 In electronic watches, it is required to minimize the power consumed by a crystal oscillation circuit and a frequency division circuit that divides the frequency of its oscillation output. In order to meet this demand, an electronic timepiece having the configuration shown in FIG. 1 has recently been proposed. Electronic clock 1 shown in Fig. 1
A constant voltage source 3 is connected to both ends of the battery 2, a current limiting element 5 is connected by its output 4, and an oscillation circuit 6 is connected.
The intersection 8 of the power supplies of the frequency dividing circuit 7 and the other end of the current limiting element 5 are connected, and the other power terminals of the oscillation circuit 6 and the frequency dividing circuit 7 are connected to the other end 9 of the battery 2. . The current limiting element 5 is made of a MOSFET, and the oscillation circuit 6 is made of a P channel MOS transistor and an N channel MOS transistor.
It consists of a complementary MOS inverter consisting of channel MOS transistors connected in series.
次に、第1図に示した回路の動作について説明
する、第2図に示すように、インバータを構成す
るPチヤンネルMOSトランジスタ(図示せず)
のスレツシヨールド電圧VTPとNチヤンネルMOS
トランジスタ(図示せず)のスレツシヨールド電
圧VTNにPチヤンネルMOSトランジスタとNチ
ヤンネルMOSトランジスタが両方ONになる電
圧V0が加わつた電圧VD2が、第1図の電源ライン
8との間に加わる事が、発振開始時に於いては必
要になる。 Next, we will explain the operation of the circuit shown in Fig. 1.As shown in Fig. 2, P-channel MOS transistors (not shown) constituting the inverter
Threshold voltage V TP and N-channel MOS
A voltage V D2 , which is the threshold voltage V TN of a transistor (not shown) and a voltage V 0 that turns on both the P-channel MOS transistor and the N-channel MOS transistor, is applied between it and the power supply line 8 in FIG. However, it is necessary at the start of oscillation.
発振開始時点の電圧VD2を(1)式で表わす。 The voltage V D2 at the start of oscillation is expressed by equation (1).
VD2≧|VTP|+VTN+V0 ……(1)
発振を開始してしまうと、(1)式の関係は(2)式の
関係になる。発振を維持する為の電圧をVD1とす
ると、
VD2≧VD1≧|VTP|+VTN ……(2)
第3図に、第1図の電流制限素子5を
MOSFETで構成する場合のMOSFETのソース
ドレイン間電圧VDSとドレイン電流IDの関係を示
す。第1図の基準電圧回路3からの出力4の電圧
をVGとすると、第3図はそのソースドレイン間
電圧VDSとドレイン電流IDの関係を表わす事にな
る。第1図の電池2の両端9,10にかかる電圧
をVDDとすると、電池の一端9と交点8との間に
かかる電圧VDと電源電圧VDDとの差の電圧が
MOSFETの飽和ソースドレイン間電圧VS以上の
場合は、電流IDは一定値ID1なる電流が流れ、それ
以下の場合は、ソースドレイン間電圧VDSの減少
と共に減少するID2なる電流が流れる。 V D2 ≧ | V TP | +V TN +V 0 ...(1) Once oscillation starts, the relationship in equation (1) becomes the relationship in equation (2). If the voltage for maintaining oscillation is V D1 , then V D2 ≧V D1 ≧|V TP |+V TN ...(2) In Fig. 3, the current limiting element 5 of Fig. 1 is shown.
The relationship between the source-drain voltage V DS and the drain current ID of a MOSFET when configured with a MOSFET is shown. If the voltage of the output 4 from the reference voltage circuit 3 in FIG. 1 is VG , then FIG. 3 shows the relationship between the source-drain voltage V DS and the drain current ID . If the voltage applied to both ends 9 and 10 of the battery 2 in FIG .
When the MOSFET's saturated source-drain voltage V S or higher, a current I D1 flows, which is a constant value, and when it is lower , a current I D2 flows, which decreases as the source-drain voltage V DS decreases. .
VDD−VD≧VSの場合はID=ID1
一定値
VDD―VDVS〃 〃 ID=ID2
可変値
第1図に於いて発振開始時点を考えると、分周
回路は動作していないのでその時の分周回路の消
費電流をI′D1Vとすると、その値は極めて少ない。
その為、電流制限素子に流れる電流の最大値の
ID1のほとんどを発振回路が使える事になる。発
振開始時点の発振回路の電流をI′oscとすると、
ID1I′oscなる関係が成立する。発振開始に必要
な電圧が、第3図に示す電源電圧VDDと、MOS電
流制限素子の飽和ソースドレイン電圧VSの差よ
り大きな電圧が必要になる場合は、第1図の電源
の一端9と交点8にかかる電圧VDが自動的に高
くなり、発振開始に必要な電圧VD2になる。 When V DD −V D ≧V S , I D = I D1 constant value V DD −V D V S 〃 〃 I D = I D2 variable value Considering the oscillation start point in Figure 1, the frequency divider circuit is not operating, so if the current consumption of the frequency divider circuit at that time is I' D1V , the value is extremely small.
Therefore, the maximum value of the current flowing through the current limiting element is
The oscillation circuit can be used for most of ID1 . If the current in the oscillation circuit at the time of starting oscillation is I′osc, then
The relationship I D1 I′osc holds true. If the voltage required to start oscillation is greater than the difference between the power supply voltage V DD shown in Figure 3 and the saturated source-drain voltage V S of the MOS current limiting element, one end 9 of the power supply shown in Figure 1 is required. The voltage V D applied to the intersection point 8 automatically increases to the voltage V D2 required to start oscillation.
この時、電流制限素子5に流れる電流は、VD
の増加と共に少なくなる。 At this time, the current flowing through the current limiting element 5 is V D
decreases as the value increases.
発振開始の条件としては、相補型MOSインバ
ータを使う場合には、印加電圧が条件を満足する
事が第一条件になる。第二条件としては、発振開
始に必要な電流が条件を満足する事が条件となる
ので、発振回路6と分周回路7とにかかる電圧
VDは、上記の2条件を満足する電力積(3)式の点
まで、電圧VDが増加し、電流制限素子の電流I0が
減少する。Kを発振開始に必要な電力積とする
と、
VD・ID≧K ……(3)
が成立するところまで、自動的にバイアスが変化
する。 When using a complementary MOS inverter, the first condition for starting oscillation is that the applied voltage satisfies the condition. The second condition is that the current required to start oscillation satisfies the condition, so the voltage applied to the oscillation circuit 6 and the frequency dividing circuit 7 is
The voltage V D increases and the current I 0 of the current limiting element decreases until the voltage V D reaches the point in the power product equation (3) that satisfies the above two conditions. When K is the power product required to start oscillation, the bias is automatically changed until V D ·I D ≧K (3) holds.
発振開始に必要な電圧が、電源電圧VDDと電流
制限素子のソースドレイン間電圧VSとの差以下
の電圧の場合は、電流制限素子の飽和電流ID1を
発振開始電流I′oscと分周回路の電流I′D1Vで分け
る事になり、(4)式が成立する。 If the voltage required to start oscillation is less than the difference between the power supply voltage V DD and the source-drain voltage V S of the current limiting element, divide the saturation current I D1 of the current limiting element from the oscillation starting current I′osc. It is divided by the circuit current I′ D1V , and formula (4) is established.
ID1=I′osc+I′D1V ……(4)
以上から、発振が正常に開始すると、分周に必
要な電流I′D1Vが増加して発振回路の電流I′oscが
減少して、それぞれ発振維持の発振回路電流Iosc
が正常発振時の分周回路の電流ID1Vになり、その
和は変化しないので、(5)、(6)、(7)式の関係が成り
立つ。 I D1 = I'osc + I' D1V ...(4) From the above, when oscillation starts normally, the current I' D1V required for frequency division increases and the current I'osc of the oscillation circuit decreases, respectively. Maintaining the oscillation circuit current IOSC
becomes the current I D1V of the frequency divider circuit during normal oscillation, and the sum does not change, so the relationships of equations (5), (6), and (7) hold true.
ID1V>I′D1V ……(5)
Iosc<I′osc ……(6)
ID1=Iosc+ID1V=I′osc+I′D1V ……(7)
これらの動作は、電流制限素子5により供給さ
れる電流を分周回路7と発振回路6の両方で配分
する構成である為、発振開始時点と安定発振時点
で必要な電流の比率が、発振回路と分周回路でそ
れぞれ異なる事を、積極的に利用している。又、
電圧を制御する方式でないので、発振回路と分周
回路に印加される電圧が自動的に可変されて、最
適な電圧で駆動出来る為に、電圧制御の方式のよ
うに発振開始したかどうかを判定する回路が必要
でなくなり、開ループでの動作となる。従つて一
度安定な動作条件が設定されると、安定動作を持
続する事が可能になる。I D1V >I′ D1V ……(5) Iosc<I′osc ……(6) I D1 =Iosc+I D1V =I′osc+I′ D1V ……(7) These operations are provided by the current limiting element 5. Since the current is distributed between the frequency divider circuit 7 and the oscillation circuit 6, it is important to make sure that the ratio of current required at the start of oscillation and at the time of stable oscillation is different between the oscillation circuit and the frequency divider circuit. We are using. or,
Since this is not a method that controls voltage, the voltage applied to the oscillation circuit and frequency divider circuit is automatically varied and can be driven at the optimal voltage, so unlike voltage control methods, it is determined whether oscillation has started. This eliminates the need for additional circuitry, resulting in open-loop operation. Therefore, once stable operating conditions are set, stable operation can be maintained.
ところで、定電圧源3と電流制限素子5とは、
例えば第4図に示す回路構成のものが用いられる
が、この回路をIC化する場合にバラツキが生じ、
第3図に示した電流〓電圧特性が所望の状態から
外れ、種々の不具合いを生ずるという問題点を有
している。特に、電流値ID1の大きさにバラツキ
を生じ、ID1の値が予定の電流範囲より大きな値
となると分周回路7が作動障害を起し、正常な動
作を行なわなるほか、ID1が所定値以下となると
回路の動作が停止することとなる。また、ID1の
大きさが回路の作動可能範囲内に入つていたとし
ても、必ずしも、定常動作状態において必要最小
限の電力供給状態を実現できない場合も生じ、こ
のような電力制御回路を付加した意味が没却され
る場合も生じていた。 By the way, the constant voltage source 3 and the current limiting element 5 are as follows.
For example, the circuit configuration shown in Figure 4 is used, but variations occur when converting this circuit into an IC.
There is a problem in that the current-voltage characteristic shown in FIG. 3 deviates from the desired state, resulting in various problems. In particular, if there is a variation in the magnitude of the current value I D1 and the value of I D1 becomes larger than the expected current range, the frequency divider circuit 7 will malfunction and will not operate normally, but the I D1 will When the value falls below a predetermined value, the operation of the circuit will stop. Furthermore, even if the magnitude of I D1 is within the operable range of the circuit, it may not always be possible to achieve the minimum necessary power supply state under steady operation conditions, so it is necessary to add such a power control circuit. In some cases, the original meaning was lost.
本発明の目的は、従つて、電流制限素子による
電流の制限値の値をトリミングにより所望の範囲
内に収めることができ、必要最小限の電力で回路
を作動させることができるようにした、トリミン
グ可能な電子時計を提供することにある。 Therefore, an object of the present invention is to trim the current limiting value of the current limiting element so that it is within a desired range by trimming, and to operate the circuit with the minimum necessary power. Our goal is to provide the best possible electronic clock.
以下、本発明を図示の実施例により詳細に説明
する。 Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.
第5図には、本発明による電子時計の構成図が
示されている。電子時計21は、水晶発振回路2
2、分周回路23及び演算表示回路24を備え、
これらの各回路の一方の電源端子は電池25の+
極端子に接続されている。演算表示回路24の他
方の電源端子はアースされ、一方、水晶発振回路
22及び分周回路23の各他方の電源端子は共通
に接続され、電流制限用のNチヤンネルMOSト
ランジスタ26a乃至26cの各ドレインに接続
されている。MOSトランジスタ26a乃至26
cの各ソースは共通にアースされ、各ゲートは共
通に接続されて定電圧発生回路27の出力ライン
28に接続される。 FIG. 5 shows a configuration diagram of an electronic timepiece according to the present invention. The electronic clock 21 includes a crystal oscillation circuit 2
2, comprising a frequency dividing circuit 23 and an arithmetic display circuit 24,
One power terminal of each of these circuits is the + terminal of the battery 25.
Connected to the pole terminal. The other power terminal of the arithmetic display circuit 24 is grounded, while the other power terminals of the crystal oscillation circuit 22 and the frequency dividing circuit 23 are connected in common, and the drains of the N-channel MOS transistors 26a to 26c for current limiting are connected in common. It is connected to the. MOS transistors 26a to 26
The sources of c are commonly grounded, and the gates are commonly connected to the output line 28 of the constant voltage generating circuit 27.
定電圧発生回路27は、デイプレシヨン型Nチ
ヤンネルMOSトランジスタ29とエンハンスメ
ント型NチヤンネルMOSトランジスタ30とか
ら成り、ドレインが電池25の+極端子に接続さ
れているMOSトランジスタ29のソースとゲー
トとは短絡され、MOSトランジスタ30のゲー
トとドレインとに接続されている。MOSトラン
ジスタ30のソースはアースされ、両MOSトラ
ンジスタ29,30の接続点31に生じた一定電
圧がバイアス電圧VBとして出力ライン28に生
じることになる。 The constant voltage generating circuit 27 consists of a depletion type N-channel MOS transistor 29 and an enhancement type N-channel MOS transistor 30. The source and gate of the MOS transistor 29, whose drain is connected to the + terminal of the battery 25, are short-circuited. , are connected to the gate and drain of the MOS transistor 30. The source of the MOS transistor 30 is grounded, and the constant voltage generated at the connection point 31 between the two MOS transistors 29 and 30 is generated on the output line 28 as a bias voltage VB .
定電圧発生回路27と、MOSトランジスタか
ら成る電流制限素子とにより、発振回路22及び
分周回路23への供給電力が自動的に調節される
動作は、第1図乃至第4図により説明したのと全
く同一である。この供給電力調節動作が所期の通
り行なわれ、且つ最小の電力で回路の動作を行な
わせしめることができるよう回路の調整を行なう
目的で、電流制限用のMOSトランジスタ26a
乃至26cは、ドレインソース間電圧が飽和した
場合の各ドレイン電流IDa,IDb,IDcが夫々異なる
ように設計されている。そして、これら3つの
MOSトランジスタのうちの任意のトランジスタ
のみを電流制限素子として作動させることができ
るように、MOSトランジスタ26a乃至26c
の各ドレイン回路には、トランジスタ切離し用の
配線部32a,33b,33cが設けられてお
り、これらの配線部を選択的に切離すことによ
り、所望のMOSトランジスタのみを電流制限素
子として利用することができ、電流制限特性を所
望の特性に設定することができる。このため、た
だ1つの電流制限素子を用いて回路22,23に
流れる電流を制限するのと異なり、製造上の理由
で電流制限素子又は電圧発生回路27の特性にバ
ラツキが生じても、配線部32a,32b,32
cの切断箇所を選択することにより、電流制限素
子として使用するMOSトランジスタの組合せを
変え、回路動作に支障を与えることなしに最も少
ない消費電力で回路を動作させるMOSトランジ
スタの組合せを選ぶことができる。 The operation in which the power supplied to the oscillation circuit 22 and the frequency dividing circuit 23 is automatically adjusted by the constant voltage generation circuit 27 and the current limiting element consisting of a MOS transistor is as explained in FIGS. 1 to 4. is exactly the same. The current limiting MOS transistor 26a is used for the purpose of adjusting the circuit so that this power supply adjustment operation is performed as expected and the circuit can operate with the minimum amount of power.
26c to 26c are designed so that the respective drain currents I Da , I Db , and I Dc are different when the drain-source voltage is saturated. And these three
The MOS transistors 26a to 26c are arranged so that only any one of the MOS transistors can be operated as a current limiting element.
Each drain circuit is provided with wiring portions 32a, 33b, and 33c for disconnecting transistors, and by selectively disconnecting these wiring portions, only a desired MOS transistor can be used as a current limiting element. It is possible to set the current limiting characteristic to a desired characteristic. Therefore, unlike the case where only one current limiting element is used to limit the current flowing through the circuits 22 and 23, even if the characteristics of the current limiting element or the voltage generating circuit 27 vary due to manufacturing reasons, the wiring section 32a, 32b, 32
By selecting the cut point c, it is possible to change the combination of MOS transistors used as current limiting elements and select the combination of MOS transistors that operates the circuit with the least power consumption without interfering with circuit operation. .
配線部分32a乃至32cをどのように切断す
るかは、ICの製造工程における各要素に負うと
ころが大きく、その時のシリコンの不純物の濃
度、酸化膜厚のバラツキに因るものである。従つ
て、第6図に示す如く、ウエハー41中の適宜の
箇所にモニタ用の複数個の電流制限用のMOSト
ランジスタが作られているチツプ42a,42
b,42c,42dを予め設けておき、全ての工
程が終了した後に、これらのモニタ用のチツプを
用いて、モニタ用のチツプ上の電流制限用MOS
トランジスタの評価を行い、その評価結果によつ
て実際のチツプ上の配線部の切断を選択的に行つ
て、最小の電力で回路動作を行わせる電流制限用
MOSトランジスタを決定する。 How the wiring portions 32a to 32c are cut depends largely on each element in the IC manufacturing process, and is caused by variations in the concentration of silicon impurities and the thickness of the oxide film at that time. Therefore, as shown in FIG. 6, chips 42a and 42 are provided with a plurality of current-limiting MOS transistors for monitoring at appropriate locations on the wafer 41.
b, 42c, and 42d in advance, and after all processes are completed, use these monitoring chips to connect the current limiting MOS on the monitoring chip.
For current limiting, which evaluates transistors and selectively cuts the wiring on the actual chip based on the evaluation results, allowing the circuit to operate with the minimum amount of power.
Determine the MOS transistor.
例えば、前述の決定されたMOSトランジスタ
以外のMOSトランジスタを回路から切り離すた
めに、切断すべき配線部の切断用マスクを用意し
て、この切断用マスクによつてパターンを切断す
ることにより所望の電流制限用MOSトランジス
タを有する実際のチツプを最終的に得るようにし
てもよい。 For example, in order to separate MOS transistors other than the determined MOS transistors from the circuit, a cutting mask is prepared for the wiring section to be cut, and the pattern is cut using this cutting mask to obtain the desired current. An actual chip with limiting MOS transistors may eventually be obtained.
上記では、MOSトランジスタ26a,26b,
26cの各ドレインを初め配線しておき、後から
不要なものを切断する方法について述べたが、各
MOSトランジスタのドレインを予め配線せずに
製造し、モニタ用のチツプで評価した後に所望の
結線を行なうようにしてもよいことは勿論であ
る。 In the above, MOS transistors 26a, 26b,
I have described the method of first wiring each drain of 26c and cutting unnecessary ones later.
Of course, it is also possible to manufacture the drain of the MOS transistor without wiring it in advance and perform the desired connection after evaluating it with a monitoring chip.
このような構成によれば、回路の動作に必要な
最少の電力を供給するようにトリミングできるの
で、歩留りが著しく向上するのは勿論のこと、製
造プロセスにおける特性のバラツキがあつても、
消費電力を最小値に抑え込むことが容易に行な
え、高品質の回路装置を安価に、大量に供給する
ことができる。 With this configuration, trimming can be performed to supply the minimum amount of power necessary for circuit operation, which not only significantly improves yield, but also allows for even if there are variations in characteristics during the manufacturing process.
Power consumption can be easily suppressed to a minimum value, and high-quality circuit devices can be supplied in large quantities at low cost.
本発明によれば、上述の如く、製造プロセス上
生じる素子の特性のバラツキがあつても、トリミ
ングにより、供給電力の制御値を所定の最小限度
に調節することができ、高品質の電子時計を得る
ことがてきる。 According to the present invention, as described above, even if there are variations in the characteristics of elements that occur during the manufacturing process, the control value of the supplied power can be adjusted to a predetermined minimum level by trimming, and a high-quality electronic watch can be produced. You can get it.
第1図は従来の電子時計の構成を示すブロツク
図、第2図は第1図にました水晶発振回路の入力
と出力の電圧の関係を示すグラフ、第3図は第1
図の電流制限素子のソースドレイン間電圧VDSと
ドレイン電流IDとの関係を示すグラフ、第4図は
第1図に示した電流制御用回路部の一具体例を示
す回路図、第5図は本発明による電子時計の構成
を示すブロツク図、第6図は第5図の電子時計用
のICウエハーにモニタを設けた場合の例を示す
平面図である。
21……電子時計、22……水晶発振回路、2
3……分周回路、25……電池、26a,26
b,26c……NチヤンネルMOSトランジスタ、
27……定電圧発生回路、32a,32b,32
c……配線部、VB……バイアス電圧。
Figure 1 is a block diagram showing the configuration of a conventional electronic watch, Figure 2 is a graph showing the relationship between the input and output voltages of the crystal oscillation circuit shown in Figure 1, and Figure 3 is a graph showing the relationship between the input and output voltages of the crystal oscillation circuit shown in Figure 1.
4 is a graph showing the relationship between the source-drain voltage V DS and the drain current I D of the current limiting element shown in FIG. 6 is a block diagram showing the configuration of an electronic timepiece according to the present invention, and FIG. 6 is a plan view showing an example in which a monitor is provided on the IC wafer for the electronic timepiece shown in FIG. 5. 21...Electronic clock, 22...Crystal oscillation circuit, 2
3... Frequency dividing circuit, 25... Battery, 26a, 26
b, 26c...N-channel MOS transistor,
27... Constant voltage generation circuit, 32a, 32b, 32
c... Wiring section, V B ... Bias voltage.
Claims (1)
される分周回路と、前記発振回路の電流供給端子
と前記分周回路の電流供給端子とにそれぞれ接続
される第1の接続端子と、前記発振回路と前記分
周回路とに供給される電流を制御する特性が異な
る定電流回路を複数個有する集積化された定電流
回路群と、それぞれ前記定電流回路の制御端子に
定電流動作をさせるための定電圧を供給する定電
圧回路と、前記複数の定電流回路の少なくとも一
つと前記第1の接続端子とを接続する選択的に切
り離し可能な配線部とからなり、複数個の前記定
電流回路を選択的に動作させることによつて、前
記発振回路と前記分周回路に流れる電流を最適値
とすることを特徴とする電子時計。 2 前記複数の定電流回路がそれぞれMOSトラ
ンジスタで構成され、それぞれの前記制御端子が
それぞれの前記MOSトランジスタのゲート電極
である特許請求の範囲第1項記載の電子時計。[Scope of Claims] 1. An oscillation circuit, a frequency divider circuit connected to the output terminal of the oscillation circuit, and a first frequency divider circuit connected to the current supply terminal of the oscillation circuit and the current supply terminal of the frequency divider circuit, respectively. an integrated constant current circuit group having a plurality of constant current circuits having different characteristics for controlling currents supplied to the oscillation circuit and the frequency dividing circuit, and control terminals of each of the constant current circuits; a constant voltage circuit that supplies a constant voltage for constant current operation; and a selectively separable wiring section that connects at least one of the plurality of constant current circuits and the first connection terminal, An electronic timepiece characterized in that the current flowing through the oscillation circuit and the frequency dividing circuit is set to an optimum value by selectively operating a plurality of the constant current circuits. 2. The electronic timepiece according to claim 1, wherein each of the plurality of constant current circuits is composed of a MOS transistor, and each of the control terminals is a gate electrode of each of the MOS transistors.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9419482A JPS58210588A (en) | 1982-06-01 | 1982-06-01 | Electronic timepiece capable of trimming |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9419482A JPS58210588A (en) | 1982-06-01 | 1982-06-01 | Electronic timepiece capable of trimming |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58210588A JPS58210588A (en) | 1983-12-07 |
JPH0318157B2 true JPH0318157B2 (en) | 1991-03-11 |
Family
ID=14103485
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9419482A Granted JPS58210588A (en) | 1982-06-01 | 1982-06-01 | Electronic timepiece capable of trimming |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58210588A (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5214461A (en) * | 1975-07-24 | 1977-02-03 | Seiko Instr & Electronics Ltd | Low electric power consumption electronic watch |
JPS54109876A (en) * | 1978-02-16 | 1979-08-28 | Citizen Watch Co Ltd | Electronic watch |
JPS54154357A (en) * | 1978-05-25 | 1979-12-05 | Nippon Precision Circuits | Electronic timepiece |
JPS5712390A (en) * | 1980-06-24 | 1982-01-22 | Citizen Watch Co Ltd | Electronic timepiece |
JPS5769278A (en) * | 1980-10-20 | 1982-04-27 | Citizen Watch Co Ltd | Quartz oscillation type electronic watch |
-
1982
- 1982-06-01 JP JP9419482A patent/JPS58210588A/en active Granted
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5214461A (en) * | 1975-07-24 | 1977-02-03 | Seiko Instr & Electronics Ltd | Low electric power consumption electronic watch |
JPS54109876A (en) * | 1978-02-16 | 1979-08-28 | Citizen Watch Co Ltd | Electronic watch |
JPS54154357A (en) * | 1978-05-25 | 1979-12-05 | Nippon Precision Circuits | Electronic timepiece |
JPS5712390A (en) * | 1980-06-24 | 1982-01-22 | Citizen Watch Co Ltd | Electronic timepiece |
JPS5769278A (en) * | 1980-10-20 | 1982-04-27 | Citizen Watch Co Ltd | Quartz oscillation type electronic watch |
Also Published As
Publication number | Publication date |
---|---|
JPS58210588A (en) | 1983-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4498040A (en) | Reference voltage circuit | |
DE69836392T2 (en) | Oscillator circuit, constant voltage generator circuit, semiconductor device, electronic device and timepiece | |
EP0021289B1 (en) | Constant current circuit | |
US5072197A (en) | Ring oscillator circuit having improved frequency stability with respect to temperature, supply voltage, and semiconductor process variations | |
EP0936736B1 (en) | Delay elements arranged for a signal controlled oscillator | |
US5929695A (en) | Integrated circuit having selective bias of transistors for low voltage and low standby current and related methods | |
US4160176A (en) | Electronic watch | |
US4239980A (en) | Integrated circuit having an operation voltage supplying depletion type MISFET of high breakdown voltage structure | |
US5945883A (en) | Voltage controlled ring oscillator stabilized against supply voltage fluctuations | |
US4112670A (en) | Electronic timepiece | |
JP3201339B2 (en) | Oscillation circuit | |
JPS586606A (en) | Generating circuit for low electric power reference pulse | |
US4700124A (en) | Current and frequency controlled voltage regulator | |
JPH0318157B2 (en) | ||
US4414503A (en) | Low voltage regulation circuit | |
JP2000089843A (en) | Semiconductor device for reference voltage source | |
US5939934A (en) | Integrated circuit passively biasing transistor effective threshold voltage and related methods | |
EP0846998B1 (en) | Integrated circuit sensing and digitally biasing the threshold voltage of transistors and related methods | |
US4433920A (en) | Electronic timepiece having improved primary frequency divider response characteristics | |
US6011385A (en) | Method and apparatus for measuring and regulating current to a load | |
JPH06230840A (en) | Bias circuit | |
GB2040633A (en) | Electrical Oscillator Circuit | |
JP2001092544A (en) | Constant voltage circuit | |
JPH08181600A (en) | Level shift circuit | |
JP6536449B2 (en) | Constant current circuit, temperature sensor and watch with temperature compensation function |