JPH03181423A - Method for separating solvent - Google Patents

Method for separating solvent

Info

Publication number
JPH03181423A
JPH03181423A JP31873789A JP31873789A JPH03181423A JP H03181423 A JPH03181423 A JP H03181423A JP 31873789 A JP31873789 A JP 31873789A JP 31873789 A JP31873789 A JP 31873789A JP H03181423 A JPH03181423 A JP H03181423A
Authority
JP
Japan
Prior art keywords
solvent
methanol
phase
water
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31873789A
Other languages
Japanese (ja)
Inventor
Katsuhisa Kumazawa
勝久 熊沢
Ryuhei Matsui
松居 隆平
Takeshi Maruyama
剛 丸山
Yoshitaka Obe
大部 良隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Petrochemical Co Ltd
Sumitomo Chemical Co Ltd
Original Assignee
Mitsubishi Petrochemical Co Ltd
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Petrochemical Co Ltd, Sumitomo Chemical Co Ltd filed Critical Mitsubishi Petrochemical Co Ltd
Priority to JP31873789A priority Critical patent/JPH03181423A/en
Publication of JPH03181423A publication Critical patent/JPH03181423A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To separate an aromatic hydrocarbon phase and an aqueous phase by regulating the ratio of methanol to water in a solvent, recovered in a production process for polyphenylene ether and containing benzene, toluene, xylene, etc., the methanol and water within a specific range. CONSTITUTION:Phase separation of an aromatic hydrocarbon from a solvent, recovered in a production process for polyphenylene ether and containing benzene, toluene and/or xylene, methanol and water is carried out. In the process, the ratio of the methanol to water in the aforementioned solvent is regulated so as to provide 55-78wt.% (preferably 58-75wt.%) and the separation is then performed using a column type separator, centrifugal separator, etc. Since efficiency of the phase separation is excellent according to the aforementioned method, use of a large-scale apparatus is not required. Thereby, the method is carried at a low cost. Since solid substances are not deposited in the separated phase, there is no fear of clogging the columns, etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ポリフェニレンエーテル製造工程で回収した
ベンゼン、トルエン、キシレン、メタノール、水等とを
含む溶媒からベンゼン、トルエン、キシレン等の芳香族
炭化水素及びメタノールを効率よく分離する方法に関し
、さらに詳しく!+ 晶萱コ#天仕皐lレル専小士ロレ
J )y ) −+1NIC東の相との分離速度が優れ
た分離方法に関する。
Detailed Description of the Invention (Field of Industrial Application) The present invention is a process for aromatic carbonization of benzene, toluene, xylene, etc. from a solvent containing benzene, toluene, xylene, methanol, water, etc. recovered in the polyphenylene ether manufacturing process. Learn more about how to efficiently separate hydrogen and methanol! + Akira Kayako #AmeshikolrerusenkojiroreJ)y) -+1Regarding a separation method with excellent separation speed from the NIC East phase.

(従来の技術及び発明が解決しようとする課題)−船釣
に、ポリフェニレンエーテルは、例えば、次式 (式中、Rl、、、 R@は、それぞれ水素原子、ハロ
ゲン原子、アルキル基、シアノ基または置換らしくは非
置換のハイドロカルボッキシ基を表し、そのうち少なく
と6−つは水素原子であり、かつ少なくとも一つは水素
原子以外のものである)で示されるフェノール類を、ベ
ンゼン、トルエン、キシレン等の芳香族炭化水素中で、
あるいは芳香族炭化水素とメタノールとの混合溶媒中で
、銅またはマンガンを含有する錯体触媒の存在下に酸素
または酸素含有気体を接触させて重合する方法が採用さ
れている。
(Prior art and problems to be solved by the invention) - For boat fishing, polyphenylene ether has, for example, the following formula (where Rl, ..., R@ are a hydrogen atom, a halogen atom, an alkyl group, a cyano group, respectively) or a substituted or unsubstituted hydrocarboxy group, of which at least 6 are hydrogen atoms and at least one is other than hydrogen atom), benzene, toluene, etc. , in aromatic hydrocarbons such as xylene,
Alternatively, a method has been adopted in which polymerization is carried out by contacting oxygen or an oxygen-containing gas in the presence of a complex catalyst containing copper or manganese in a mixed solvent of aromatic hydrocarbon and methanol.

主か、7のポIJフ、ニレンエー子II/ L寸−1t
/!!−巧応液に触媒、副生物等の不純物とともに含ま
れているために、例えばメタノールをこの重合反応液に
加えてポリフェニレンエーテルを析出させたのちに固液
分離し、これをメタノールで洗浄してから、さらに重亜
硫酸ソーダ、ビロリン酸ソーダ等の水溶液で処理して水
分散スラリーとし、次いで固液分離することにより該不
純物を除去して得られる。
Lord, 7 Po IJ Fu, Niren Aiko II/L dimension -1t
/! ! - Since the polymerization reaction solution contains impurities such as catalysts and by-products, for example, methanol is added to this polymerization reaction solution to precipitate polyphenylene ether, followed by solid-liquid separation, and this is washed with methanol. It is obtained by further treating with an aqueous solution of sodium bisulfite, sodium birophosphate, etc. to obtain an aqueous dispersion slurry, and then performing solid-liquid separation to remove the impurities.

ところで、このような不純物除去行程で不純物ととちに
除去された、主にベンゼン、トルエン、キシレン、メタ
ノール、水等からなる溶媒は回収し、この溶媒のうちベ
ンゼン、トルエン、キシレン、メタノール等は、各成分
にそれぞれ分離して再利用される。
By the way, the impurities and solvents that were removed in this impurity removal process, mainly consisting of benzene, toluene, xylene, methanol, water, etc., are recovered, and among these solvents, benzene, toluene, xylene, methanol, etc. , each component is separated and reused.

これらの分離方法としては1回収した溶媒を静置または
遠心分離して、ベンゼン、トルエン、キシレン等を含有
する芳香族炭化水素の相とメタノール及び水の相とに分
離したのちに、その各相別に精留する方法が知られてい
る。
These separation methods include: 1. Standing or centrifuging the recovered solvent to separate it into an aromatic hydrocarbon phase containing benzene, toluene, xylene, etc. and a methanol and water phase; Separate rectification methods are known.

しかしながら、ポリフェニレンエーテルの製造工程で回
収した溶媒には、前記成分のほか、溶媒の乳化を促す低
分子量体等を含むため、相分離に長時間を要したり、ま
た遠心分離すると乳化がさらに進むという欠点があり、
その結果、大規模の分離装置の使用を余儀なくされたり
、また処理能力の低下を強いられるという不都合があっ
た。
However, in addition to the above-mentioned components, the solvent recovered in the polyphenylene ether manufacturing process contains low molecular weight substances that promote emulsification of the solvent, so phase separation takes a long time, and emulsification progresses further when centrifuged. There is a drawback that
As a result, there are disadvantages in that it is necessary to use a large-scale separation device and that the processing capacity is forced to be reduced.

また、従来、回収した溶媒の相分離を促進させるために
、特定の第4級アンモニウム塩を添加する方法(特開昭
61−95024号公報参照)や塩化カルシウム等の無
機塩類または硫酸等の酸類を添加する方法が知られては
いるが、これらの方法は、ランニングコストが高くなっ
たり、相中に固形分が析出し、精留装置に付した際にカ
ラム等を閉塞するという欠点があった。
Conventionally, in order to promote phase separation of the recovered solvent, methods of adding specific quaternary ammonium salts (see Japanese Patent Application Laid-Open No. 61-95024), inorganic salts such as calcium chloride, or acids such as sulfuric acid have been proposed. However, these methods have the drawbacks of high running costs and the precipitation of solids in the phase, which can clog the column etc. when it is applied to a rectifier. Ta.

本発明の目的は、芳香族炭化水素の相とメタノール及び
水の相との分離が極めて良好であり、また極めて安価に
溶媒を分離することができる方法を提供することにある
An object of the present invention is to provide a method that allows very good separation of the aromatic hydrocarbon phase from the methanol and water phases, and also allows the solvent to be separated at an extremely low cost.

(課題を解決するための手段) 本発明者は、ポリフェニレンエーテル製造工程で回収し
た溶媒中の水に対するメタノールの比を特定の範囲にす
ることで、溶媒の芳香族炭化水素の相とメタノール及び
水の相との分離速度が著しく向上することを見出し本発
明に到達した。
(Means for Solving the Problems) The present inventor has realized that by adjusting the ratio of methanol to water in the solvent recovered in the polyphenylene ether manufacturing process to a specific range, the aromatic hydrocarbon phase of the solvent and the methanol and water The present invention has been achieved by discovering that the rate of separation from the phase is significantly improved.

すなわち、本発明は、ポリフェニレンエーテル製造工程
で回収したベンゼン、トルエン及び/またはキシレンと
メタノールと水とを含む溶媒から該ベンゼン、トルエン
及び/またはキシレンを相分離する方法において、該溶
媒中の水に対するメタノールの比を55〜78重量%に
なるようにして相分離することを特徴とするベンゼン、
トルエン及び/またはキシレン並びにメタノールを分離
する方法である。
That is, the present invention provides a method for phase-separating benzene, toluene, and/or xylene recovered from a polyphenylene ether production process from a solvent containing methanol and water. Benzene, characterized in that the phase separation is carried out by adjusting the ratio of methanol to 55 to 78% by weight,
This is a method for separating toluene and/or xylene and methanol.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の分離方法で分離する溶媒は、ポリフェニレンエ
ーテル製造工程で回収した溶媒である。
The solvent to be separated by the separation method of the present invention is the solvent recovered in the polyphenylene ether production process.

かかる溶媒としては、例えば ■フェノール類を重合させる工程で、該フェノール類及
び銅またはマンガンを含有する錯体触媒とン t、lご
田し)屯hトペ1ノνソ−1−1),エリ乃rメ/キ 
かはキシレン:またはこれと(これらと)メタノールと
の混合溶媒、 ■重合反応終了後に、反応溶液中に生成したポリフェニ
レンエーテルを析出させるために用いたメタノール、 ■析出したポリフェニレンエーテルを分別し、それを洗
浄するために用いたメタノール、■洗浄したポリフェニ
レンエーテルを、重亜硫酸ソーダ、ハイドロサルファイ
ド等の含イオウ還元剤及び/またはエチレンジアミンテ
トラ酢酸・ナトリウム塩、ビロリン酸ナトリウム等のキ
レート剤の水溶液中で処理したのちに、処理液中に残存
する有機溶媒をスチームストリッピング法等で留去して
得られたポリフェニレンエーテルの水分散スラリーから
分離した溶媒、 ■水分散スラリーから分離したポリフェニレンエーテル
を乾燥する工程で気化した溶媒を回収したもの及び■に
記載の留去した有機溶媒を回収したちのを挙げることが
できる。
Such a solvent may be used, for example, in the step of polymerizing phenols, using a complex catalyst containing the phenols and copper or manganese. no rme/ki
xylene: or a mixed solvent of this and methanol; ■ methanol used to precipitate the polyphenylene ether produced in the reaction solution after the polymerization reaction; ■ separate the precipitated polyphenylene ether, and The washed polyphenylene ether is treated in an aqueous solution of a sulfur-containing reducing agent such as sodium bisulfite and hydrosulfide and/or a chelating agent such as ethylenediaminetetraacetic acid sodium salt and sodium birophosphate. After that, the organic solvent remaining in the treatment liquid is distilled off by a steam stripping method or the like, and the solvent is separated from the aqueous slurry of polyphenylene ether obtained. ■ A step of drying the polyphenylene ether separated from the aqueous dispersion slurry. Examples include those in which the vaporized solvent was recovered and the organic solvent distilled off as described in (1) was recovered.

trお  古せ言−〇)−ごれ乃rFCれn)先1かt
出j壬 し ム し°r→■に記載の分別及び洗浄工程
で、触媒、副生物等の不純物とともに回収され(以下、
ここで回収された溶媒を溶媒Aという)、またの、■及
び■の溶媒の残部は、■に記載の水分散スラリーから分
離した溶媒(以下、溶媒Bという)及び■の溶媒(以下
、溶媒Cという)としてそれぞれ回収される。
tr Old words-〇)-Goreno rFCrenn) 1 or t
During the separation and cleaning process described in section 3.3, it is recovered together with impurities such as catalysts and by-products (hereinafter referred to as
The solvent recovered here is referred to as solvent A), and the remainder of the solvent in ■ and ■ is the solvent separated from the aqueous dispersion slurry described in C).

本発明は、このようにして回収した溶媒中の水に対する
メタノールの比を水とメタノールの合計量に対してメタ
ノールが、55〜78重量%、好ましくは58〜75重
量%になるようにする。
In the present invention, the ratio of methanol to water in the solvent thus recovered is such that methanol is 55 to 78% by weight, preferably 58 to 75% by weight, based on the total amount of water and methanol.

なお、メタノールの比が、55重量%未滴の場合には、
ベンゼン、トルエン及び/またはキシレンの相と水及び
メタノールの相との分離速度が低下し、例えば相分離に
塔式分離装置を用いる場合には、塔径の大きな分離装置
が必要となるか、または処理能力が極端に低下し、また
遠心分離装置を用いる場合には、溶媒が乳化し、分離効
率が低下する。
In addition, when the ratio of methanol is 55% by weight,
The rate of separation between the benzene, toluene and/or xylene phase and the water and methanol phase is reduced, for example, when a column separation device is used for phase separation, a separation device with a large column diameter is required, or Processing capacity is extremely reduced, and when a centrifugal separator is used, the solvent is emulsified and separation efficiency is reduced.

メタノールの比が、78重量%を超える場合には、ベン
ゼン、トルエン及び/またはキシレンの相と水及びメタ
ノールの相との比重が同一になるかまたは逆転し、相分
離しないかまたは分離速度が著しく低下する。
When the ratio of methanol exceeds 78% by weight, the specific gravity of the benzene, toluene and/or xylene phase and the water and methanol phase becomes the same or reverses, and the phase separation does not occur or the separation rate is significantly reduced. descend.

メタノールの比を前記範囲に設定する方法としては、特
に制限はなく、例えば溶媒A、溶媒B及び溶媒Cのうち
のいずれかを組み合わせて混合し、これに水またはメタ
ノールを加えてメタノール濃度を調整してもよいし、ま
た溶媒Aと溶媒Bのみを混合してメタノール濃度を調整
してちよい。
There are no particular limitations on the method for setting the ratio of methanol within the above range; for example, any one of solvent A, solvent B, and solvent C may be combined and mixed, and water or methanol is added to this to adjust the methanol concentration. Alternatively, only solvent A and solvent B may be mixed to adjust the methanol concentration.

なお、溶媒Aと溶媒Bのみを用いてメタノール濃度を調
整する場合、調整に用いなかった余分の溶媒Bは、後述
する相分離で得られたメタノール及び水の相と合せて精
留することもできる。
In addition, when adjusting the methanol concentration using only solvent A and solvent B, the excess solvent B not used for adjustment may be rectified by combining it with the methanol and water phases obtained by phase separation described below. can.

また、溶媒Cには、前記不純物をほとんど含まないので
、本発明によらないで、公知の方法で各成分に分離する
こともできる。
Moreover, since the solvent C contains almost no impurities, it can be separated into each component by a known method without relying on the present invention.

本発明は、このようにメタノールの比を調整した溶媒を
、公知の分離装置、例えば塔式分離装置、遠心分離装置
等に付してベンゼン、トルエン及び/またはキシレンの
相と水及びメタノールの相とに分離する。
In the present invention, the solvent with the methanol ratio adjusted in this manner is subjected to a known separation device, such as a column separation device, a centrifugal separator, etc., to separate a benzene, toluene and/or xylene phase and a water and methanol phase. Separate into two parts.

分離した各相は、例えば精留塔にそれぞれ付して、ベン
ゼン、トルエン及び/またはキシレンの相からは、ベン
ゼン、トルエン及び/またはキシレンの混合溶媒として
分離するかまたは各成分ごとに分離し、水及びメタノー
ルの相からはメタノールを分離して再利用する。
The separated phases are each subjected to a rectification column, for example, and the benzene, toluene and/or xylene phase is separated as a mixed solvent of benzene, toluene and/or xylene, or each component is separated, Methanol is separated from the water and methanol phases and recycled.

(実施例) 実施例1 [ポリフェニレンエーテルの合成工程及び溶媒の回収工
程] 撹拌機、温度計、コンデンサー及び空気導入管を備えた
容量10βのジャケット付きオートクレーブに、キシレ
ン3570g、メタノール1220g、2.6−シメチ
ルフエノール1222g (10モル)及び水酸化ナト
リウム24g (0,6モル)を仕込んで均一な溶液と
な(0,36モル)、ジブチルアミン15.5g(0,
12モル)及び塩化マンガン四水和物0.89g (0
,0045g)をメタノール100gに溶解した溶液を
加えた。次いでこれを激しく撹拌しながら、温度35°
C1圧力は8k g / c m ”のもとに、空気を
流量lβ7分で12時間吹き込んで反応させた。
(Example) Example 1 [Polyphenylene ether synthesis process and solvent recovery process] 3570 g of xylene, 1220 g of methanol, and 2.6 g of methanol were placed in a jacketed autoclave with a capacity of 10β equipped with a stirrer, thermometer, condenser, and air introduction tube. 1222 g (10 mol) of -dimethylphenol and 24 g (0.6 mol) of sodium hydroxide were charged to form a homogeneous solution (0.36 mol), and 15.5 g (0,3 mol) of dibutylamine were charged.
12 mol) and manganese chloride tetrahydrate 0.89 g (0
, 0045 g) dissolved in 100 g of methanol was added. Then, while stirring vigorously, the temperature was raised to 35°.
The C1 pressure was 8 kg/cm'', and the reaction was carried out by blowing air at a flow rate of lβ for 7 minutes for 12 hours.

次に、この反応液をメタノール2250gに投入し、ポ
リフェニレンエーテルを析出させたのち、真空濾過機で
ポリフェニレンエーテルを分別した。
Next, this reaction solution was poured into 2250 g of methanol to precipitate polyphenylene ether, and then the polyphenylene ether was separated using a vacuum filter.

得られたポリフェニレンエーテルは、さらにメタノール
2400gで洗浄した。
The obtained polyphenylene ether was further washed with 2400 g of methanol.

洗浄後のメタノールは回収して、先に分別した7戸液と
合せ、溶媒Aとした。
The methanol after washing was collected and combined with the previously separated Shichinohe liquid to form Solvent A.

洗浄したポリフェニレンエーテルは、撹拌機、温度計、
コンデンサー及び空気導入管を備えた容!lO℃のジャ
ケット付きオートクレーブに、ビロリン酸ナトリウム1
4g及び重亜硫酸ソーダ入し、70°Cで1時間処理し
たのちに、これにスチームを流量300g/時間で8時
間吹き込み、有機溶媒を留去して、ポリフェニレンエー
テルの水分散スラリーを得た。
Washed polyphenylene ether is heated using a stirrer, thermometer,
Container with condenser and air inlet pipe! Sodium birophosphate in a jacketed autoclave at 10°C.
After treating the mixture at 70°C for 1 hour, steam was blown into the mixture at a flow rate of 300 g/hour for 8 hours, and the organic solvent was distilled off to obtain an aqueous dispersion slurry of polyphenylene ether.

なお、留去した有機溶媒は凝縮させて回収した。Note that the organic solvent that was distilled off was condensed and recovered.

次にポリフェニレンエーテルの水分散スラリーをバスケ
ット型遠心分離機で固液分離した。
Next, the water-dispersed slurry of polyphenylene ether was subjected to solid-liquid separation using a basket centrifuge.

分離液は1回収して溶媒Bとした。One separated liquid was collected and used as solvent B.

分離したポリフェニレンエーテルは、真空乾燥機にて、
150’Cで12時間乾燥した。
The separated polyphenylene ether is dried in a vacuum dryer.
It was dried at 150'C for 12 hours.

この乾燥工程で気化したちのは、凝縮させて回収し、先
に凝縮して回収した有機溶媒と合せて溶媒Cとした。
What was vaporized in this drying process was condensed and recovered, and combined with the organic solvent that had been condensed and recovered earlier to obtain Solvent C.

回収した溶媒A、B及びCの成分を第1表に示す。The components of recovered solvents A, B and C are shown in Table 1.

なお、得られたポリフェニレンエーテルは、1)40g
で着色もほとんどなく、極限粘度0.51の良質なポリ
フェニレンエーテルであつた。
In addition, the obtained polyphenylene ether is 1) 40g
It was a high quality polyphenylene ether with almost no coloring and an intrinsic viscosity of 0.51.

第1表 第1表中のその他は、溶媒を分取し、150’cで5時
間乾燥して得られた蒸発残渣の重量から換算した。
Other values in Table 1 were calculated from the weight of the evaporation residue obtained by separating the solvent and drying it at 150'C for 5 hours.

〔相分離工程1 溶媒Aの全量(8065g)と溶媒Cの全量(2570
g)と2172gの溶媒Bとを混合して、水に対するメ
タノール比を65重量%に調整した6 次に、塔頂にオーバーフロー管、塔下端に排出管及び塔
中央部近傍にフィード管を備えた塔形分離装置(内径:
5cm、高さ:30cm)を用いてメタノール濃度を調
整した溶媒を相分離した。
[Phase separation step 1 Total amount of solvent A (8065 g) and total amount of solvent C (2570 g)
g) and 2172 g of solvent B were mixed to adjust the methanol to water ratio to 65% by weight.6 Next, an overflow pipe was provided at the top of the column, a discharge pipe was provided at the bottom end of the column, and a feed pipe was provided near the center of the column. Tower type separator (inner diameter:
5 cm, height: 30 cm) to phase-separate the solvent in which the methanol concentration was adjusted.

なお、相分離は、溶媒を塔形分離装置のオーバーフロー
管まで満たして、予めキシレン相と水及びメタノールの
相の2相を形成させてから、溶媒を連続的にフィード管
から導入した。溶媒の導入流量は、8I2/時間、導入
時間は、1.5時間であった。
In the phase separation, the column separator was filled up to the overflow pipe with the solvent to form two phases, a xylene phase and a water and methanol phase, and then the solvent was continuously introduced from the feed pipe. The introduction flow rate of the solvent was 8 I2/hour, and the introduction time was 1.5 hours.

その結果、塔内で2相の界面は移動することもなく、オ
ーバーフロー管からキシレン相を5排出管から水及びメ
タノール相をそれぞれ連続的に分離することができた。
As a result, the interface between the two phases did not move within the column, and it was possible to continuously separate the xylene phase from the overflow pipe and the water and methanol phases from the five discharge pipes.

比較例1 塔弐分離装置に導入する溶媒のメタノール比を、溶媒A
の全Jl (8065g)と溶媒Cの全量(2570g
)と溶媒Bの全量(6380g)とを混合して、44.
6重量%に調整したほかは、実施例1と同様に相分離し
た。
Comparative Example 1 The methanol ratio of the solvent introduced into the column separation device was changed to
total Jl (8065g) and total amount of solvent C (2570g
) and the total amount of solvent B (6380 g), and 44.
Phase separation was carried out in the same manner as in Example 1, except that the amount was adjusted to 6% by weight.

相の界面は塔内を上昇し、水及びメタノールの相がオー
バーフロー管から流出して運転の中止を余儀なくされた
The phase interface rose in the column and the water and methanol phases exited the overflow tube, forcing the operation to be shut down.

実施例2〜4及び比較例2〜4 400gの溶媒Aに溶媒Bの量を第2表に示すように変
化させて混合し、メタノール比の異なる溶媒を6種類調
製した。
Examples 2 to 4 and Comparative Examples 2 to 4 400 g of solvent A was mixed with varying amounts of solvent B as shown in Table 2 to prepare six types of solvents with different methanol ratios.

それぞれの溶媒中の水に対するメタノール比を第2表に
示す。
The methanol to water ratio in each solvent is shown in Table 2.

次に、各溶媒をそれぞれiffの撹拌機付きガラス製シ
リンダーに投入して800 r pm、で15分間撹拌
した後静置し、有機溶媒相と水・アルコール相の界面の
移動速度を測定し、相分離速度とした。
Next, each solvent was put into a glass cylinder equipped with an IF stirrer, stirred at 800 rpm for 15 minutes, and left to stand, and the movement speed at the interface between the organic solvent phase and the water/alcohol phase was measured. It was taken as the phase separation rate.

結果を第2表に示す。The results are shown in Table 2.

第2表 実施例2 400  190   57   2300
実施例3 400  135   65   3200
実施例4400   84   75   2500比
較例2400  469   35    30比較例
3 400  233   52   1000比較例
4400   63   80     *第2表中、
*は、界面が明確に現れず、相分離速度が測定不能であ
ったことを示す。
Table 2 Example 2 400 190 57 2300
Example 3 400 135 65 3200
Example 4400 84 75 2500 Comparative example 2400 469 35 30 Comparative example 3 400 233 52 1000 Comparative example 4400 63 80 *In Table 2,
* indicates that the interface did not clearly appear and the phase separation rate could not be measured.

実施例5 400gの溶媒Aに233gの溶媒Bを混合し、さらに
メタノールを193g追加してメタノール比を65%に
調整し、実施例2と同様にして相分離速度を測定した。
Example 5 400 g of solvent A was mixed with 233 g of solvent B, and 193 g of methanol was further added to adjust the methanol ratio to 65%, and the phase separation rate was measured in the same manner as in Example 2.

相分離速度は、3200mm/hr、であった。The phase separation rate was 3200 mm/hr.

実施例6 実施例3と同様に調製した溶媒(メタノール比;65重
量%)をホモジナイザーを用いて、10000回転で1
0分間混合したのちに、小型卓上遠心分離器[日立製作
所■製]を用いて、1500Gで1分間遠心分離した。
Example 6 A solvent prepared in the same manner as in Example 3 (methanol ratio: 65% by weight) was heated at 10,000 rpm using a homogenizer.
After mixing for 0 minutes, centrifugation was performed at 1500G for 1 minute using a small desktop centrifuge [manufactured by Hitachi, Ltd.].

その結果、キシレン相と水及びメタノールの相との界面
は明確に現れており、分離は良好であった。
As a result, the interface between the xylene phase and the water and methanol phases was clearly visible, and the separation was good.

比較例5 比較例3と同様に調製した溶媒(メタノール比:52重
量%)にしたほかは、実施例5と同様に遠心分離した。
Comparative Example 5 Centrifugation was performed in the same manner as in Example 5, except that a solvent prepared in the same manner as in Comparative Example 3 (methanol ratio: 52% by weight) was used.

その結果、溶媒は乳化状態を呈しており、キシレン相は
ほとんど現れず、分離は行われなかった。
As a result, the solvent was in an emulsified state, almost no xylene phase appeared, and no separation was performed.

(発明の効果) 本発明によると次のような効果を奏することができる。(Effect of the invention) According to the present invention, the following effects can be achieved.

(1)ポリフェニレンエーテル製造工程で回収したベン
ゼン、トルエン及び/またはキシレンとメタノールと水
とを含む溶媒からベンゼン、トルエン及び/またはキシ
レンの相と水及びメタノールの相とを効率よく、かつ安
価に相分離することができる。
(1) A phase of benzene, toluene and/or xylene and a phase of water and methanol are efficiently and inexpensively mixed from a solvent containing benzene, toluene and/or xylene, methanol and water recovered in the polyphenylene ether manufacturing process. Can be separated.

(2)相分離の効率がよいので、各相を分離するときに
大規模な装置を用いる必要がない。
(2) Since phase separation is efficient, there is no need to use large-scale equipment to separate each phase.

(3)分離した相に固形分を析出しないので、装置の例
えばカラム等を閉塞するおそれがない。
(3) Since no solid content is precipitated in the separated phase, there is no risk of clogging the equipment, such as a column.

Claims (1)

【特許請求の範囲】[Claims] (1)ポリフェニレンエーテル製造工程で回収したベン
ゼン、トルエン及び/またはキシレンとメタノールと水
とを含む溶媒から該ベンゼン、トルエン及び/またはキ
シレンを相分離する方法において、該溶媒中の水に対す
るメタノールの比を55〜78重量%になるようにして
相分離することを特徴とするベンゼン、トルエン及び/
またはキシレン並びにメタノールを分離する方法。
(1) A method for phase-separating benzene, toluene and/or xylene from a solvent containing methanol and water collected in a polyphenylene ether production process, in which the ratio of methanol to water in the solvent is Benzene, toluene and/or
Or a method to separate xylene and methanol.
JP31873789A 1989-12-11 1989-12-11 Method for separating solvent Pending JPH03181423A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31873789A JPH03181423A (en) 1989-12-11 1989-12-11 Method for separating solvent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31873789A JPH03181423A (en) 1989-12-11 1989-12-11 Method for separating solvent

Publications (1)

Publication Number Publication Date
JPH03181423A true JPH03181423A (en) 1991-08-07

Family

ID=18102387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31873789A Pending JPH03181423A (en) 1989-12-11 1989-12-11 Method for separating solvent

Country Status (1)

Country Link
JP (1) JPH03181423A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083587A1 (en) * 2000-04-28 2001-11-08 Mitsubishi Gas Chemical Company, Inc. Process for producing polyphenylene ether
JP2001335631A (en) * 2000-05-26 2001-12-04 Mitsubishi Gas Chem Co Inc Production method of polyphenylene ether
JP2001348426A (en) * 2000-06-09 2001-12-18 Mitsubishi Gas Chem Co Inc Method for producing polyphenylene ether
JP2002003594A (en) * 2000-06-26 2002-01-09 Mitsubishi Gas Chem Co Inc Method of producing polyphenylene ether
EP1167421A3 (en) * 2000-06-19 2002-04-10 Mitsubishi Gas Chemical Company, Inc. Production process of polyphenylene ether
SG110017A1 (en) * 2002-02-01 2005-04-28 Mitsubishi Gas Chemical Co Production process of polyphenylene ethers
JP2016520038A (en) * 2013-04-24 2016-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Diphenylmethane series diamine and polyamine production method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083587A1 (en) * 2000-04-28 2001-11-08 Mitsubishi Gas Chemical Company, Inc. Process for producing polyphenylene ether
EP1207175A4 (en) * 2000-04-28 2003-05-28 Mitsubishi Gas Chemical Co Process for producing polyphenylene ether
US6759507B1 (en) 2000-04-28 2004-07-06 Mitsubishi Gas Chemical Co., Inc. Process for producing polyphenylene ether
JP2001335631A (en) * 2000-05-26 2001-12-04 Mitsubishi Gas Chem Co Inc Production method of polyphenylene ether
JP2001348426A (en) * 2000-06-09 2001-12-18 Mitsubishi Gas Chem Co Inc Method for producing polyphenylene ether
JP4591638B2 (en) * 2000-06-09 2010-12-01 三菱瓦斯化学株式会社 Process for producing polyphenylene ether
EP1167421A3 (en) * 2000-06-19 2002-04-10 Mitsubishi Gas Chemical Company, Inc. Production process of polyphenylene ether
US6586567B2 (en) 2000-06-19 2003-07-01 Mitsubishi Gas Chemical Company Inc. Production process of polyphenylene ether
SG100736A1 (en) * 2000-06-19 2003-12-26 Mitsubishi Gas Chemical Co Production process of polyphenylene ether
JP2002003594A (en) * 2000-06-26 2002-01-09 Mitsubishi Gas Chem Co Inc Method of producing polyphenylene ether
SG110017A1 (en) * 2002-02-01 2005-04-28 Mitsubishi Gas Chemical Co Production process of polyphenylene ethers
JP2016520038A (en) * 2013-04-24 2016-07-11 コベストロ、ドイチュラント、アクチエンゲゼルシャフトCovestro Deutschland Ag Diphenylmethane series diamine and polyamine production method

Similar Documents

Publication Publication Date Title
US4976825A (en) Process for recovering N-methylpyrrolidone by plural distillations
KR101747618B1 (en) Polyarylene sulfide production method, and polyarylene sulfide production apparatus
EP0116442B1 (en) Improved process for preparing polyphenylene ethers
KR100390563B1 (en) Method of Preparation of Purified Epoxy Compound
CN109437116B (en) Device and method for extracting sulfur from sulfur-containing waste residues
JPH03181423A (en) Method for separating solvent
JPS6195024A (en) Production of polyphenylene ether
US4789729A (en) Process for recovering a polyarylene sulfide
CN100390124C (en) Process for preparing fluorocarboxylic acids
JP3810326B2 (en) Solvent recovery method in polyphenylene ether production
US4468257A (en) Washing and removal method of high molecular substances
JPS6153325A (en) Method of recovering solvent from polyarylene sulfide reaction solution slurry and of purification through distillation
JPS61136523A (en) Production of polyarylene sulfide
CA1184948A (en) Producing solvent-grade methyl-naphthalene
US3891612A (en) Polymerized rosin product and process for the production of same
EP1207175B1 (en) Process for producing polyphenylene ether
KR100216278B1 (en) Method and apparatus for treating caprolactam waste water
EP0067224A1 (en) Process for producing dibenzofuran
CN220277839U (en) Device for recycling hexachlorocyclo triphosphazene synthetic waste residues
CN115449421B (en) Low-cost and high-efficiency regeneration pretreatment method for waste lubricating oil and regeneration pretreatment agent
US4098992A (en) Method for continuous soluble polypropylene recovery from hydrocarbon polymerization media
JPS6191144A (en) Preparation of neopentyl glycol
KR100377034B1 (en) How to recover carboxylic acid from aqueous solution
US5047580A (en) Process for the separation of sulfuric acid from aqueous mixtures of paraffin-sulfonic acids
KR20230022034A (en) Continuous recovery method of dimethylformamide from the waste solution of polyimide production process