JPS6191144A - Preparation of neopentyl glycol - Google Patents

Preparation of neopentyl glycol

Info

Publication number
JPS6191144A
JPS6191144A JP59211121A JP21112184A JPS6191144A JP S6191144 A JPS6191144 A JP S6191144A JP 59211121 A JP59211121 A JP 59211121A JP 21112184 A JP21112184 A JP 21112184A JP S6191144 A JPS6191144 A JP S6191144A
Authority
JP
Japan
Prior art keywords
formate
reaction product
liquid
iba
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59211121A
Other languages
Japanese (ja)
Other versions
JPH0421651B2 (en
Inventor
Akiyuki Ninomiya
二宮 暎之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP59211121A priority Critical patent/JPS6191144A/en
Publication of JPS6191144A publication Critical patent/JPS6191144A/en
Publication of JPH0421651B2 publication Critical patent/JPH0421651B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled compound and a salt of formic acid efficiently from a reaction product solution, by separating the reaction product liquid obtained by reacting isobutylaldehyde with formaldehyde in the presence of an alkali metal hydroxide into two layers, and treating each layer separately. CONSTITUTION:Isobutylaldehyde 2 is reacted with formaldehyde 3 in the presence of an alkali metal hydroxide 4 in a reactor 1 to give a reaction product solution 5 containing neopentyl glycol (NPG) and a salt of formic acid, which is then neutralized with formic acid 7 in a neutralization chamber 6 to cut a lower-boiling point component 12 such as methanol in a low-boiling fraction cutting column 9. The resultant solution is separated into two layers of the organic phase 15 mainly containing NPG and the aqueous phase 16 mainly containing the salt of formic acid at 20-90 deg.C, preferably 30-65 deg.C, which are separately treated by the well-known method, respectively. Both NPG useful for production of polyester resin, etc., and the salt of formic acid useful as a raw material for hydrosulfite, etc., are obtained economically in high yield and quality.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はイソブチルアルデヒド(以下IBAと称する)
とホルムアルデヒドとをアルカリ金属水酸化物の存在下
に反応させて得たネオペンチルグリコール(以下NPC
と称する)とギ酸塩とを含有する反応生成液を濃縮し、
iたは濃縮せずして二層分離しその各々を別途に処理す
ることによりNPGとギ酸塩を製造する方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to isobutyraldehyde (hereinafter referred to as IBA)
Neopentyl glycol (hereinafter referred to as NPC) obtained by reacting and formaldehyde in the presence of an alkali metal hydroxide
) and formate are concentrated,
Alternatively, the present invention relates to a method for producing NPG and formate by separating two layers without concentration and treating each layer separately.

NPCは1分子内に2個の反応性に富んだ第1級アルコ
ール性水酸基を対称の位置に持って゛ おり、しかも中
心の炭酸原子に水素原子を有していないために、他のジ
オール類に見られない多くの特徴のある性質を示す。
NPC has two highly reactive primary alcoholic hydroxyl groups in symmetrical positions within one molecule, and because it does not have a hydrogen atom in the central carbonate atom, it is not suitable for other diols. Displays many distinctive qualities that are not seen.

工業的用途は広範で、このものを原料物質として合成し
たポリエステル樹脂は非常に良好な熱安定性、耐熱性、
耐アルカリ°性、耐候性を示し、更に電気特性にも秀れ
ているため、不飽和ポリエステル樹脂、アルキッド樹脂
、ポリカーボネート、ポリエステルイソシアナート、線
状ポリウレタンなど産業利用の面で極めて有用な物質で
ある。
It has a wide range of industrial uses, and the polyester resin synthesized using this material as a raw material has very good thermal stability, heat resistance,
It exhibits alkali resistance and weather resistance, and also has excellent electrical properties, making it an extremely useful material for industrial applications such as unsaturated polyester resins, alkyd resins, polycarbonates, polyester isocyanates, and linear polyurethanes. .

一方、ギ酸塩も産業上有用な物質であり、たとえばギ酸
ナトリウムはハイドロサルファイド製造用原料としてな
くてはならない製品である。
On the other hand, formate salts are also industrially useful substances; for example, sodium formate is an indispensable product as a raw material for producing hydrosulfide.

(従来の技術) NPCとギ酸塩を含有する反応生成液からNPGとギ酸
塩を分離するには次のような方法が提唱されている。
(Prior Art) The following method has been proposed for separating NPG and formate from a reaction product solution containing NPC and formate.

(1)  反応生成液より水を殆んど完全に蒸発し去っ
たのち、これに水溶性の溶媒例えばエチルアルコール、
イソまたはノルマル−プロピルアルコール等の脂肪族ア
ルコール、アセトン、ジオキサンまたは酢酸エチルなど
を加え、これらの溶媒中にNPCを溶解せしめ、熱時濾
過分離により、ギ酸塩と分離する方法、(2)  反応
生成液をそのま\あるいはある程度濃縮したのち水に不
溶の溶媒、たとえばメチルイソブチルケトン、メチルエ
チルケトンなどの炭素数4〜12のケトン類、ジイソプ
ロピルエーテル、ジ−ノルマルプロピルエーテルなどの
炭素数5〜10のエーテル類、ベンゼン、トルエン、キ
シレン、プソイドクメンなどの炭素数6〜9の芳香族炭
化水素、または一部水に可溶なアルコール、たとえばノ
ルマルおよびイソ−プロピルアルコールや、ノルマル−
ブチルアルコール詔よびイソブチルアルコールなどと混
合し、NPCをこの溶媒中に選択的に溶解せしめ、有機
相とギ酸塩を含んだ水相とに分液する方法、 などがある。
(1) After almost completely evaporating water from the reaction product liquid, add a water-soluble solvent such as ethyl alcohol,
A method in which an aliphatic alcohol such as iso- or normal-propyl alcohol, acetone, dioxane, or ethyl acetate is added, NPC is dissolved in these solvents, and the formate is separated by filtration while hot. (2) Reaction formation Use the liquid as it is or after concentrating it to some extent and use a water-insoluble solvent, such as ketones with 4 to 12 carbon atoms such as methyl isobutyl ketone and methyl ethyl ketone, and ethers with 5 to 10 carbon atoms such as diisopropyl ether and di-normal propyl ether. aromatic hydrocarbons having 6 to 9 carbon atoms, such as benzene, toluene, xylene, pseudocumene, or partially water-soluble alcohols, such as normal and isopropyl alcohol;
There is a method in which NPC is mixed with butyl alcohol, isobutyl alcohol, etc., selectively dissolved in this solvent, and separated into an organic phase and an aqueous phase containing formate.

(発明が解決しようとする問題点) しかし、(1)の方法では水を完全に留去するための装
置と連続化の問題、ギ酸塩が析出した時点でのスラリー
状のものを取り扱う困難性、熱−時濾過分離による衛生
上の問題、r適法を遠心分離法Iこした場合によく問題
となる溶媒に対する防爆等安全上の問題、r過分離工程
と連続化との関連、ギ酸塩への溶媒およびNPGの付着
損失の問題、更には水留去の際に伴う一部NPGの損失
と公害負荷の問題等があり、工業的実施は極めて困難で
ある。
(Problems to be solved by the invention) However, in method (1), there are problems with equipment and continuity for completely distilling off water, and there are difficulties in handling slurry at the time when formate is precipitated. , Hygiene problems due to heat-temperature filtration, Safety issues such as explosion protection for solvents that often occur when using the r-legal method with the centrifugation method, Relationship between the r-filtration separation process and continuity, Formate Industrial implementation is extremely difficult due to problems such as adhesion loss of the solvent and NPG, as well as loss of some NPG and pollution load due to water distillation.

C)の方法は合理的な方法であるが、問題は抽料の組成
および抽剤の種類などによってはその合理性は失なわれ
てしまう。
Method C) is a rational method, but the problem is that its rationality is lost depending on the composition of the extract, the type of extract, etc.

すなわち従来の方法では、反応生成液をそのま−あるい
はある程度濃縮した後、その全量を抽剤との接触によっ
て溶媒抽出を行なっている。
That is, in the conventional method, the reaction product liquid is concentrated as it is or after being concentrated to some extent, and then the entire amount is subjected to solvent extraction by contacting with an extractant.

しかしこれらの方法においては抽剤の種類、抽出装置の
形態などによっても異なるが、たとえば、メチレンクロ
ライド、トリクロルエチレン、ベンゼン、キシレン等を
抽剤として用いた場合、反応生成液中のギ酸塩濃度が高
くなると懸濁状態あるいは三層状態になり抽出液層と抽
残液層とに分離しない場合が起るなどして、工業的実施
は実際上困難である。また、比較的溶媒抽出法がやり易
いとされている炭素数4〜12のケトン類。
However, although these methods differ depending on the type of extractant and the type of extraction equipment, for example, when methylene chloride, trichloroethylene, benzene, xylene, etc. are used as the extractant, the formate concentration in the reaction product solution is If the temperature is too high, it becomes a suspended state or a three-layered state and may not be separated into an extract layer and a raffinate layer, making industrial implementation difficult. In addition, ketones having 4 to 12 carbon atoms are said to be relatively easy to perform solvent extraction.

例えばメチルエチルケトンやメチルイソブチルケトンな
どは分離の問題は小さいが、本発明の目的物質NPCの
溶解度があまり大きくないこともあって、これらの抽剤
を使用する場合は抽料に対して抽剤址を大きくとらない
と抽出効率が悪い欠点がある。
For example, separation problems with methyl ethyl ketone and methyl isobutyl ketone are small, but the solubility of the target substance NPC of the present invention is not very high, so when using these extractants, it is necessary to add an extractant to the extractant. If the size is not large, the extraction efficiency is poor.

このことは、次工程での脱油を行なうに際し、抽剤を多
く使用すればするほど脱油に要するエネルギーは大とな
り、経済的にも損失が大きいことζこもつながる。
This also leads to the fact that when removing oil in the next step, the more extractant is used, the more energy is required for removing oil, resulting in greater economic loss.

(問題点を解決するための手段) 本発明はか\る欠点を解消し、高収率、高品質に且つ経
済的にNPGおよびギ酸塩を製造す′ るもので、IB
Aとホルムアルデヒドとをアルカリ金属水酸化物の存在
下に反応させて得たNPCとギ酸塩とを含有する反応生
成液を濃縮しまたは濃縮せずして二層分離し、その各々
を別途に処理することによって効率よ<NPCとギ酸塩
とをそれぞれ分離回収しNPCを製造する方法である。
(Means for Solving the Problems) The present invention eliminates these drawbacks and produces NPG and formate in a high yield, high quality, and economically.
A reaction product solution containing NPC and formate obtained by reacting A and formaldehyde in the presence of an alkali metal hydroxide is separated into two layers with or without concentrating, and each layer is treated separately. This is a method for producing NPC by separating and recovering NPC and formate, respectively.

本発明において使用するアルカリ金属水酸物とは水酸化
ナトリウム、水酸化カリウム、水酸化リチウム、水酸化
カルシウム、水酸化バリウム、水酸化タリウム等である
。従ってギ酸塩とはギ酸ナトリウム、ギ酸カリウム、ギ
酸カリウム・、ギ酸カルシウム、ギ酸バリウム、ギ酸タ
リウム等を意味する。
The alkali metal hydroxides used in the present invention include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, thallium hydroxide, and the like. Therefore, formate refers to sodium formate, potassium formate, potassium formate, calcium formate, barium formate, thallium formate, and the like.

が好ましぐ、たとえば、水酸化ナトリウムの場合では4
0〜5a74#96とするのが好ましい。
For example, in the case of sodium hydroxide, 4
It is preferable to set it as 0-5a74#96.

又原料のホルムアルデヒドとしてはホルムアルデヒド水
溶液(ホルマリン)でもパラホルムアルデヒドでも良い
が、ホルムアルデヒド濃度は高い方が好ましく・、45
重量%以上、特に55〜60重fkg6のものが好まし
い。
In addition, the raw material formaldehyde may be an aqueous formaldehyde solution (formalin) or paraformaldehyde, but the higher the formaldehyde concentration, the better.45
It is preferable that the weight is at least 55 to 60 weight % fkg6.

反応系に共存する°水量は少ない程目的とするNPG及
びギ酸塩を高純度、高収率で得ることができ、又反応後
の濃縮が簡単となりエネルギー的にも有利となる。たと
えば、48重量%の水酸化ナトリウムと45〜60重量
%のホルマリン水溶液を使用した場合には反応生成液を
濃縮しないでも中和/低沸点留分カット後直ちに二層分
離することができる。
The smaller the amount of water coexisting in the reaction system, the higher the purity and yield of the target NPG and formate can be obtained, and the easier the concentration after the reaction, which is more advantageous in terms of energy. For example, when 48% by weight of sodium hydroxide and 45 to 60% by weight aqueous formalin solution are used, two layers can be separated immediately after neutralization/cutting of the low boiling point fraction without concentrating the reaction product liquid.

ホルマリン中のメタノール含有量は反応にはそれ程影響
しないので特に制限はないが、通常は1〜5重量%のも
のを用いる。
There is no particular restriction on the methanol content in formalin since it does not significantly affect the reaction, but usually 1 to 5% by weight is used.

IBAとホルムアルデヒドの反応は温度60℃以下、p
H7〜11.5で先ずアルドール縮合反応を行なわせ、
次いで60〜80℃で交叉力ニラアロ反応をさせること
によりNPCとギ酸塩を含む反応生成物が得られる。こ
のようにして得られた反応生成物はギ酸で中和し、メタ
ノール等の低沸分をカットしたのち二層分離するが、こ
の場合反応生成液中番と残存するホルムアルデヒド量は
少ない方が好ましい。
The reaction between IBA and formaldehyde is carried out at a temperature of 60°C or less, p
First, perform an aldol condensation reaction with H7-11.5,
Next, a cross-force nilaallo reaction is carried out at 60 to 80°C to obtain a reaction product containing NPC and formate. The reaction product thus obtained is neutralized with formic acid to remove low-boiling components such as methanol, and then separated into two layers. In this case, it is preferable that the amount of formaldehyde remaining in the reaction product solution is small. .

すなわち、ホルムアルデヒドを反応生成液中−に残存さ
せたま\二層分離するき、そのホルムアルデヒドはおよ
そ上層液に85%、下層液に1596分配するのでこの
絶対量が多いとNPC品質にも、またギ酸塩品質にも悪
影響を与える。
That is, when formaldehyde is left in the reaction product solution and separated into two layers, approximately 85% of the formaldehyde is distributed to the upper layer solution and 1596% to the lower layer solution. It also has a negative effect on salt quality.

従って、二層分離を行なう前の反応生成液中に残存する
ホルムアルデヒド量は多(でも0゜3重量%であり、好
ましくはそれ以下がよい。
Therefore, the amount of formaldehyde remaining in the reaction product solution before two-layer separation is large (but 0.3% by weight, preferably less than that).

この濃度を維持するためには、仕込モル比および反応温
度、系内のアルカリ濃度など反応制御を厳密に管理する
ことによって達成される。
This concentration can be maintained by strictly controlling the reaction such as the charging molar ratio, reaction temperature, and alkali concentration in the system.

二層分離の方法は回分式、連続3式のいずれでも良く、
静置デカンタ一方式、又は機械的にクラリフイーヤ型も
しくは分離板型の遠心沈降機などで軽液と重液とに分離
する。
The two-layer separation method may be either a batch method or a continuous three-step method.
Separate into light liquid and heavy liquid using a stationary decanter, or mechanically using a clarifier type or separation plate type centrifugal sedimentation machine.

分離温度は20〜90℃、好ましくは30〜65℃であ
る。
The separation temperature is 20-90°C, preferably 30-65°C.

こ\で上層液(軽液)はNPCを主成分とする有磯相で
あり、下層液(重液)はギ酸塩を主成分とする水相であ
る。
Here, the upper layer liquid (light liquid) is an aquarium phase containing NPC as a main component, and the lower layer liquid (heavy liquid) is an aqueous phase containing formate as a main component.

この上層/下層液の分離比は反応生成液の濃縮度および
分離温度などによって若干の差があるがおよそ1/1で
ある。また、このときの上層液へのNPGおよび下層液
へのギ酸塩の分配比は各々96%、90%である。
The separation ratio of the upper layer/lower layer liquid is approximately 1/1, although it varies slightly depending on the degree of concentration of the reaction product liquid and the separation temperature. Further, the distribution ratios of NPG to the upper layer liquid and formate to the lower layer liquid at this time were 96% and 90%, respectively.

かくして得られた上層液および下層液を各々別に処理し
、NPG及びギ酸塩を分離回収する。
The upper layer liquid and lower layer liquid thus obtained are each treated separately to separate and recover NPG and formate.

上層液中のNPG回収は従来公知のいずれの方法も利用
できるが、連続的に行なう場合には溶媒抽出法が効率的
である。
Although any conventionally known method can be used to recover NPG from the upper layer liquid, a solvent extraction method is efficient when it is carried out continuously.

抽出溶媒は公知のものに制限はないが、水に難溶で、N
PCの溶解度が大きく抽出効率がよいベンゼン、トリク
ロルエチレンさらには本発明目的物質NPCの原料の一
つであるIBAなどが最も有利である。また、メチルイ
ソブチルケトンなども抽剤量を多くすれば利用できる。
The extraction solvent is not limited to known ones, but it is sparingly soluble in water and N
The most advantageous are benzene, trichlorethylene, and IBA, which is one of the raw materials for NPC, the object substance of the present invention, because of their high solubility in PC and good extraction efficiency. Furthermore, methyl isobutyl ketone and the like can also be used by increasing the amount of extractant.

一般に、上層液の溶媒抽出によって出る抽残液中(以下
2次抽残液と称する)に残存して含有するNPG量を分
析誤差範囲内量、具体的には0.1重量%以下とするに
要する溶媒量は、連続式向流接触法によれば反応生成液
上層液量の0.3〜0.7倍量(容積)である。
In general, the amount of NPG remaining in the raffinate obtained by solvent extraction of the upper layer liquid (hereinafter referred to as secondary raffinate) is kept within the analysis error range, specifically, 0.1% by weight or less. According to the continuous countercurrent contact method, the amount of solvent required for this is 0.3 to 0.7 times the amount (volume) of the upper layer of the reaction product liquid.

また、このときの抽出液中に含まれるギ酸塩量は電位差
滴定分析法により50重ippm  以下である。
Further, the amount of formate contained in the extract at this time is 50 ppm or less as determined by potentiometric titration analysis.

上層液の溶媒抽出で得た抽出液からのNPC回収は蒸留
などの方法によってまず脱油し、次いで再結晶法または
蒸留法で、精製を行ない、製品NPCを得る。
To recover NPC from the extract obtained by solvent extraction of the upper layer liquid, the oil is first removed by a method such as distillation, and then purified by a recrystallization method or distillation method to obtain the product NPC.

一方この上層液の溶媒抽出により得る2次抽残液は、溶
媒にIBA以外のものを使用した場合には、蒸留法など
により溶媒を回収し、その留残液を、先の二層分離の際
の下層液と混合し処理する。IBAを溶媒として使用し
た場合にはそのま\反応系へ循環するか、または二層分
離の際に得る下層液と混合して処理する。
On the other hand, if a solvent other than IBA is used as the secondary raffinate obtained by solvent extraction of this upper layer liquid, the solvent is recovered by a distillation method, etc., and the residual liquid is used as the residual liquid from the previous two-layer separation. Mix with the lower layer liquid and process. When IBA is used as a solvent, it can be recycled to the reaction system as it is or mixed with the lower layer liquid obtained during two-layer separation for treatment.

この下層液中からのギ酸塩および一部リークしたNPG
の回収は、主反応の原料IBAと接触させ、NPGをこ
のIBAに選択的に溶解せしめ、次いでNPCを含有し
たIBA相(粗IBA液)とギ酸塩を含んだ水相とに分
液する。
Formate and partially leaked NPG from this lower liquid
For recovery, NPG is brought into contact with raw material IBA for the main reaction, selectively dissolved in this IBA, and then separated into an IBA phase containing NPC (crude IBA liquid) and an aqueous phase containing formate.

このIBA相はそのま〜反応原料として使用することが
できる。
This IBA phase can be used as it is as a reaction raw material.

また、水相は微量溶存したIBAを単蒸留法等で回収し
た後に濃縮晶析してギ酸塩を回収する。
Further, in the aqueous phase, a trace amount of dissolved IBA is recovered by simple distillation or the like, and then the formate is recovered by concentration and crystallization.

こ−で回収したIBAも反応原料としてそのま\使用す
る。
The IBA recovered in this way is also used as is as a reaction raw material.

なお、IBAを含有する系には窒素雰囲気下にして右く
ことが好ましい。
In addition, it is preferable to use a system containing IBA under a nitrogen atmosphere.

次に添付した図面によって本発明をさらに詳しく説明す
る。第1図は、本発明を実施するための工程図の一例で
、特に二層分離の上層液を溶媒抽出するに際し、溶媒に
本発明目的物質であるNPGの原料の一つであるIBA
を使用した場合である。
The present invention will now be described in more detail with reference to the accompanying drawings. FIG. 1 is an example of a process diagram for implementing the present invention. In particular, when the upper layer liquid of two-layer separation is extracted with a solvent, IBA, which is one of the raw materials for NPG, which is the target substance of the present invention, is used as a solvent.
This is the case when using .

IBA以外の溶媒を使用した場合には第2抽残液からの
溶媒回収工程が付加されるほかは基本的に同一である。
When a solvent other than IBA is used, the procedure is basically the same except that a step of recovering the solvent from the second raffinate is added.

図面において、経路3より高濃度ホルマリンを、経路4
より高濃度のアルカリ金属水酸化物水溶液を、そして経
路36より反応生成液の二層分離下層液を第1抽出塔3
5でIBAと向流接触させて得たところの抽出液(粗I
BA)を各々反応11hIに供給し、アルドール縮合反
応および交叉カニツアロ反応を行わせしめる。
In the drawing, higher concentration formalin is used in route 3 and route 4 is
A higher concentration alkali metal hydroxide aqueous solution is sent to the first extraction column 3, and the lower layer liquid is separated into two layers from the reaction product liquid via route 36.
The extract obtained by countercurrent contact with IBA in step 5 (crude I
BA) are each fed to reaction 11hI to carry out the aldol condensation reaction and the cross Cannitzaro reaction.

次いで、この反応生成液を経路5より中和槽6に供給し
、経路7よりギ酸を添加し、反応生成液のpH値が9.
0になるまで中和する。
Next, this reaction product liquid is supplied to the neutralization tank 6 through path 5, and formic acid is added through path 7 until the pH value of the reaction product liquid is 9.
Neutralize until it reaches 0.

中和液は経路8より低沸留分カット塔9に供給し、メタ
ノール等の低沸留分を700111HP程度の減圧下、
経路10、熱交換器11、経路12を経てカットし系外
に排出する。
The neutralized liquid is supplied to the low-boiling fraction cut tower 9 through route 8, and low-boiling fractions such as methanol are removed under reduced pressure of about 700,111 HP.
It is cut and discharged out of the system via route 10, heat exchanger 11, and route 12.

低沸留分カット塔9の塔底から抜き出される反応生成液
は経路13より分離器14に供給し、常圧下で二層分離
をする。
The reaction product liquid extracted from the bottom of the low-boiling fraction cut column 9 is supplied to a separator 14 through a route 13, where it is separated into two layers under normal pressure.

NPGを主成分とする上層液を経路15より第2抽出塔
17に供給し、こ\で、経路25及び50より供給され
たIBAとの向流接触によってNPGを抽出する。
The upper layer liquid containing NPG as a main component is supplied to the second extraction column 17 from route 15, where NPG is extracted by countercurrent contact with IBA supplied from routes 25 and 50.

こ\で得た抽出液は経路18より脱油塔20に供給する
The extract obtained in this way is supplied to the deoiling tower 20 via route 18.

また、第2抽出塔17の塔底から抜き出された第2次抽
残液は経路19より反応器1へそのま\循環する。
Further, the second raffinate extracted from the bottom of the second extraction column 17 is circulated directly to the reactor 1 via a route 19.

一方脱油塔20に供給された抽出液は、抽剤IBAと一
部溶存する水とを共沸蒸留の形で留去し、経路21、熱
交換器22および経路23を経て分液槽24へ供給する
On the other hand, the extract supplied to the deoiling tower 20 distills off the extractant IBA and partially dissolved water in the form of azeotropic distillation, and passes through a route 21, a heat exchanger 22, and a route 23 to a separation tank 24. supply to

上層のIBAは経路25より第2抽出塔17へと循環し
再び抽剤として使用する。
The upper layer of IBA is circulated to the second extraction column 17 via route 25 and used again as an extractant.

下層の水相はその一部を経路26より一旦水留め槽27
に供給し、必要量に応じて経路28より第2抽出塔17
の中上部段へ供給する。また残部を経路49より第1抽
出塔35中下段部1ζ供給する。
A portion of the lower water phase is temporarily transferred to the water retention tank 27 via the route 26.
and the second extraction tower 17 via route 28 according to the required amount.
Supply to the middle upper stage of the In addition, the remaining portion is supplied to the middle and lower part 1ζ of the first extraction tower 35 through the route 49.

脱油塔20の塔底から抜き出される粗NPGは経路29
より精留塔30に供給する。
Crude NPG extracted from the bottom of the deoiling tower 20 is routed through route 29.
It is then supplied to the rectification column 30.

精留塔30の塔頂より経路31、熱交換器32および経
路33を経て製品NPCを抜き出す。
Product NPC is extracted from the top of the rectification column 30 via a route 31, a heat exchanger 32, and a route 33.

塔底からは高沸点留分が経路34より抜き出される。A high boiling point fraction is extracted from the bottom of the column through a path 34.

一方、反応生成液の二層分離の際に得たギ酸塩を主成分
とする下層液は経路16より第1抽出塔351こ供給し
、二層分離の際の下層液中にリークしてきたNPC等の
有効成分を回収する。
On the other hand, the lower layer liquid mainly composed of formate obtained during the two-layer separation of the reaction product liquid is supplied to the first extraction column 351 from route 16, and the NPC that has leaked into the lower layer liquid during the two-layer separation is supplied to the first extraction column 351. Collect active ingredients such as

この方法では、経路2よりの原料IBAと、第1抽出塔
35の抽残液中のIBAを蒸発缶38で回収したものを
総合し、これを抽剤として溶媒抽出を行ないNPC等の
有効成分を回収する方法をとる。
In this method, the raw material IBA from route 2 and the IBA in the raffinate of the first extraction column 35 recovered in the evaporator 38 are combined, and this is used as an extractant for solvent extraction to extract active ingredients such as NPC. A method is taken to collect the

この抽出液(粗IBA)は経路36を経てそのま\原料
として反応器1へ供給する。
This extract (crude IBA) is supplied directly to the reactor 1 as a raw material via a route 36.

また、蒸発缶38の第1次留残液は経路42よりギ酸塩
回収工程の濃縮晶出缶43に供給する。
Further, the primary residual liquid in the evaporator 38 is supplied via a route 42 to a concentration crystallizer 43 in the formate recovery step.

ギ酸塩濃縮晶出缶43では濃縮脱水によって水を蒸発さ
せ、缶頂より経路44を経て蒸発水を系外に排出する。
In the formate concentration crystallization can 43, water is evaporated by concentration and dehydration, and the evaporated water is discharged from the top of the can through a path 44 to the outside of the system.

缶底よりは飽和又は過飽和に濃縮したギ酸塩水溶液を経
路4°ぎより抜き出し、遠心分離機46で晶出したギ酸
塩を分取し経路47より湿ギ  −酸塩として抜き出す
。f液であるギ酸塩濃厚水溶液は経路48を経て再びギ
酸塩濃縮晶出缶43へ循環する。
A saturated or supersaturated aqueous formate solution is extracted from the bottom of the can through a 4° path, and the formate crystallized by a centrifuge 46 is separated and extracted as a wet formate through a path 47. The f-liquid, a concentrated aqueous formate solution, is circulated through the path 48 to the formate concentration crystallization can 43 again.

(発明の効果) 本発明によれば、反応生成液を二層分離し、NPCとギ
酸塩をあらかじめ分離するので、特に溶媒抽出によって
NPCを回収するためにかかる抽出負荷が大巾に軽減さ
れる。
(Effects of the Invention) According to the present invention, since the reaction product liquid is separated into two layers and NPC and formate are separated in advance, the extraction load required to recover NPC by solvent extraction is greatly reduced. .

すなわち、上層液ではNPGに対するギ酸塩の比率が圧
倒的に小さくなるので、抽出効率が高くなり、溶媒の種
類によっては、反応生成液をそのま\抽出する従来法に
比べて抽剤量が20〜50%も削減できる。
In other words, since the ratio of formate to NPG in the upper layer liquid is overwhelmingly small, the extraction efficiency is high, and depending on the type of solvent, the amount of extractant can be as low as 20% compared to the conventional method in which the reaction product liquid is directly extracted. It can be reduced by ~50%.

このことは、抽出装置がコンパクトになるばかりか、次
工程の脱油工程で大きなエネルギーの節減となる。
This not only makes the extraction device more compact, but also saves a lot of energy in the next step, the oil removal step.

特に原料と同一のIBAを抽出溶媒として使用する場合
(こその効果が大きい。
This is particularly effective when IBA, which is the same as the raw material, is used as the extraction solvent.

また、本来目的物質NPCの溶解度が大きく抽出効率が
大きいにもか\わらず、ギ酸塩濃度が高いために懸濁状
態或は三層状態などになって使用不可能であった溶媒の
使用も可能となる。
In addition, despite the high solubility of the target substance NPC and high extraction efficiency, the use of solvents that were unusable due to the high formate concentration resulting in a suspended or three-layered state is also possible. It becomes possible.

このことは溶媒の選択の範囲が拡がり、安価で効率よい
ものを選ぶことができることを意味する。
This means that the range of solvent selection is expanded, and it is possible to select inexpensive and efficient solvents.

(実施例) 次に実施例を示して、本発明をさらに具体的に説明する
(Example) Next, the present invention will be explained in more detail with reference to Examples.

実施例において%および部はそれぞれ重量%詔よび重量
部を意味する。
In the examples, % and parts mean % by weight and parts by weight, respectively.

また実施例6において用いる装置を示す番号は第1図に
よる。
Further, the numbers indicating the devices used in Example 6 are as shown in FIG.

実施例 1 1回目の反応として55.5%のホルムアルデヒド 3
96.7部を60℃に昇温し、N2気流中で攪拌しなが
ら、この中に99.4%のIBA  256.5部と4
8.596の水酸化ナト992..505.5部を別々
のノズル口から加えた。このときの供給速度は、反応温
度58〜60℃にして、反応液中の水酸化ナトリウム濃
度が0.06%になるよう調整しながら加えて行った。
Example 1 55.5% formaldehyde 3 for the first reaction
96.7 parts was heated to 60°C, and while stirring in a N2 stream, 256.5 parts of 99.4% IBA and 4
8.596 sodium hydroxide 992. .. 505.5 parts were added through separate nozzle ports. At this time, the feed rate was adjusted so that the reaction temperature was 58 to 60° C. and the sodium hydroxide concentration in the reaction solution was 0.06%.

供給後10分間同一の温度で反応させた後、次いで、I
BAを13部追加供給し、温度70℃で7分間反応させ
た。反応後8096のギ酸を用いて中和した。中和後に
反応生成液の液温80℃、圧カフ00m1AH9で低沸
点留分16部をカットした。
After reacting at the same temperature for 10 minutes after feeding, then I
13 parts of BA was additionally supplied and reacted at a temperature of 70° C. for 7 minutes. After the reaction, it was neutralized using 8096 formic acid. After neutralization, 16 parts of the low boiling point fraction was cut off using a pressure cuff of 00ml AH9 at a temperature of the reaction product liquid of 80°C.

次いで、60℃まで降温しで静置したところ二層分離し
た。この各々の層の量および組成は第1表の通りであっ
た。
Then, when the temperature was lowered to 60°C and left to stand, two layers were separated. The amounts and compositions of each layer were as shown in Table 1.

第1表 コノ上層液455.6部1cIBA80部を加え、45
℃にて振とう攪拌を行なった。
Table 1 455.6 parts of the upper layer liquid 1c Add 80 parts of IBA, 45.
Shaking and stirring were performed at ℃.

次いで、静置し抽出液層(上層)と抽残液層(下層)と
を分離した。しかるのち再びIBA80部をその抽残液
層に加え同様の処理を行ないNPCの抽出を行なった。
Then, the mixture was allowed to stand and separated into an extract layer (upper layer) and a raffinate layer (lower layer). Thereafter, 80 parts of IBA was again added to the raffinate layer and the same treatment was carried out to extract NPC.

このIBAによる抽出を3回くり返した。こうして得た
2次抽残液 55.1部中に溶存するNPCとギ酸ナト
リウムは各々6.996.39.096であった。
This extraction with IBA was repeated three times. The amount of NPC and sodium formate dissolved in 55.1 parts of the secondary raffinate thus obtained was 6.996.39.096, respectively.

一方、3回のIBA抽出で得た抽出液 618.5部全
量を混合し、これに更に水 15部を加えて振とう攪拌
を行ない抽出液中になおも溶存するギ酸す) IJウム
を除去するため洗浄した。
On the other hand, the total amount of 618.5 parts of the extract obtained from the three IBA extractions was mixed, and 15 parts of water was further added to this and the formic acid still dissolved in the extract was removed. I washed it for cleaning.

次いで静置し抽出液層 626.5部と水層7部とを分
離した。
Then, the mixture was allowed to stand still, and 626.5 parts of the extract layer and 7 parts of the aqueous layer were separated.

この洗浄後の抽出液中に溶存するギ酸す) IJウムは
31 ppmであった。また水層 7部中のNPCは4
.8%であった。
The amount of formic acid dissolved in the extract after washing was 31 ppm. Also, there are 4 NPCs in the 7 parts of the water layer.
.. It was 8%.

抽出液を蒸留フラスコに移し、減圧下にIBAの回収を
行ない、続いて真空蒸留を行ない、145℃775mm
、H9の留分としてNPC356,0部を得た。これを
1回目製品とし、品質を第2表に示した。
The extract was transferred to a distillation flask and IBA was recovered under reduced pressure, followed by vacuum distillation at 145°C and 775mm.
, 356.0 parts of NPC was obtained as a fraction of H9. This was the first product, and the quality is shown in Table 2.

次いで6回IBA抽出後の抽出液の水洗浄の際(こ得た
水層液および反応生成液の二層分離の際の下層液を混合
して得た582.0部の混合液にIBA  256部を
加え45℃にて振とう攪拌を行なった。静置分離後上層
に抽出液(粗IBA)、下層に抽残液層を得た。
Then, when washing the extract with water after six IBA extractions (582.0 parts of a mixed liquid obtained by mixing the obtained aqueous layer liquid and the lower layer liquid from the two-layer separation of the reaction product liquid), 256 parts of IBA was added. The mixture was shaken and stirred at 45° C. After standing to separate, an extract (crude IBA) was obtained as an upper layer and a raffinate layer was obtained as a lower layer.

抽残液をロータリ一式エバポレーターのフラスコに移し
、減圧下に微量溶存するIBAおよびその他の低沸留分
を留去した後、温度85℃、圧力20011+1Hfの
条件下で水を留去してギ酸ナトリウムを晶出させ、さら
に蒸発皿に移し、湯せん上で水留去の後乾燥器で乾燥し
、248゜3部のギ酸ナトリウムを得た。
The raffinate was transferred to a rotary evaporator flask, and after distilling off trace amounts of dissolved IBA and other low-boiling fractions under reduced pressure, water was distilled off at a temperature of 85°C and a pressure of 20011+1Hf to obtain sodium formate. was crystallized, further transferred to an evaporating dish, water was distilled off on a hot water bath, and then dried in a drier to obtain 248.3 parts of sodium formate.

このギ酸す) IJウムの品質を第3表に示した。The quality of this formic acid is shown in Table 3.

一方、2次抽出液(粗IBA)はそのま\22回目原料
のIBA源として使用した。
On the other hand, the second extract (crude IBA) was used as it was as an IBA source for the 22nd raw material.

2回目の反応および後処理の方法はIBA源に抽出液(
粗IBA)を使用したほかは全く1回目と同様に行なっ
た結果、NPC,およびギ酸ナトリウムを各々370部
、250部を得た。
The second reaction and post-treatment method is to add the extract (
The procedure was carried out in the same manner as the first time except that crude IBA) was used, and as a result, 370 parts and 250 parts of NPC and sodium formate were obtained, respectively.

1回目及び2回目のNPC品質を第2表に示した。Table 2 shows the NPC quality for the first and second times.

第2表 1回目と2回目のNPC取得量に差が出ているのは循環
系内のホールドアツプによるものである。
The difference in the amount of NPC obtained between the first and second times in Table 2 is due to the hold-up within the circulatory system.

実施例 2 実施例1の方法と同様に反応生成液を二層分離して得た
上層液にメチルイソブチルケトン(MIBKと称する)
 160部を加えて振とう攪拌し、次いで静置して抽出
液層(上層)と抽残液層とを分離した。
Example 2 Methyl isobutyl ketone (referred to as MIBK) was added to the upper layer obtained by separating the reaction product liquid into two layers in the same manner as in Example 1.
160 parts of the mixture was added, shaken and stirred, and then left to stand to separate the extract layer (upper layer) and raffinate layer.

しかるのち、再びMIBK  160部をその抽残液層
に加え、同様の処理でNPCの抽出を行なった。
Thereafter, 160 parts of MIBK was again added to the raffinate layer, and NPC was extracted in the same manner.

このMIBKによる抽出を5回くり返した。This extraction with MIBK was repeated 5 times.

こうして得た抽残液中のNPG1ギ酸ナトリウムおよび
MIBKは各々2.496.38.1%及び1.1%で
あった。
The contents of sodium NPG1 formate and MIBK in the raffinate thus obtained were 2.496.38.1% and 1.1%, respectively.

一方、5回のMIBK抽出で得た抽出液の全量を混合し
、水洗浄した後の抽出液を減圧下にMIBKを回収し、
次いで、真空蒸留を行ない145℃/75o+mHrの
留分としてNPC348,0部を得た。これを1回目製
品とし品質を第4表に示した。
On the other hand, the total amount of the extract obtained from the five MIBK extractions was mixed, and the extract after washing with water was used to collect MIBK under reduced pressure.
Next, vacuum distillation was performed to obtain 348.0 parts of NPC as a fraction at 145°C/75o+mHr. This was the first product and its quality is shown in Table 4.

次いでMIBK抽出によって得た抽残液の全量と抽出液
の水洗浄の際に得た水層とを混合し減圧下で脱MIBK
を行なった。この脱MIBKした抽残液と二層分離して
得た下層液とを混合し、実施例1と同様に抽残液および
反応生成液二層分離下層液の処理を行なった。
Next, the entire amount of the raffinate obtained by MIBK extraction and the aqueous layer obtained when washing the extract with water were mixed and MIBK was removed under reduced pressure.
I did this. The raffinate obtained by removing MIBK and the lower layer obtained by separation into two layers were mixed, and the raffinate and the lower layer obtained by separating the two layers of the reaction product liquid were treated in the same manner as in Example 1.

こ、のような方法によって2回くり返したNP−ト一・ Gおよびギ酸ナトリウムの各々の取得量および品質を第
5表と第6表に示した。
Tables 5 and 6 show the amount and quality of NP-To-G and sodium formate obtained by repeating the method twice.

第5表 第6表 実施例 3 反応生成液を二層分離して得た上層液にMIBKを加え
る代りにベンゼンを用いたほかは実施例2と同様の方法
でNPCおよびギ酸す) IJウムを得た。
Table 5 Table 6 Example 3 NPC and formic acid were used in the same manner as in Example 2 except that benzene was used instead of adding MIBK to the upper layer obtained by separating the reaction product liquid into two layers. Obtained.

取得量および製品品質を第7表と第8表に各々示した。The amount obtained and product quality are shown in Tables 7 and 8, respectively.

なお、これらは1回目、2回目の製品を混合したもの\
量および品質である。
Please note that these are a mixture of the first and second products.
It's quantity and quality.

実施例 4 反応生成液を二層分離して得た上層液にMIBKを加え
る代りにメチレンクロライドを用いたほかは実施例2と
同様の方法でNPCおよびギ酸ナトリウムを得た。
Example 4 NPC and sodium formate were obtained in the same manner as in Example 2, except that methylene chloride was used instead of adding MIBK to the upper layer obtained by separating the reaction product liquid into two layers.

取得量および製品品質を第7表と第8表に各々示した。The amount obtained and product quality are shown in Tables 7 and 8, respectively.

なお、これらは1回目、2回目の製品を混合したもの〜
量および品質である。
These are a mixture of the first and second products.
It's quantity and quality.

実施例 5 反応生成液を二層分離して得た上層液にMIBKを加え
る代りにジイソプロピルエーテルを用いたほかは実施例
2と同様の方法でNPCおよびギ酸ナトリウムを得た。
Example 5 NPC and sodium formate were obtained in the same manner as in Example 2, except that diisopropyl ether was used instead of adding MIBK to the upper layer obtained by separating the reaction product liquid into two layers.

取得量および製品品質を第7表と第8表に各告示した。The amount obtained and product quality are shown in Tables 7 and 8.

なお、これらは1回目、2回目の製品を混合したもの\
量および品質である。
Please note that these are a mixture of the first and second products.
It's quantity and quality.

実施例 6 第1図に示した工程図に従いNPCとギ酸ナトリウムの
連続製造を20日間連続して実施した。
Example 6 Continuous production of NPC and sodium formate was carried out for 20 consecutive days according to the process chart shown in FIG.

反応生成液の二層分離器14より第9表に示した組成の
下層液 1,302部/時を第1抽出塔35の中上段部
に供給し、経路2より純度99.096のIBA  5
90.7部/時と蒸発缶38より留出回収した純度78
.5%のIBA  12部/時で経路49より第2抽出
塔17で得た抽出液を更に脱油塔2()で脱油した際に
得られた水層液の一部と反応生成液下層液中にリークし
たNPGを抽出した。
From the two-layer separator 14 of the reaction product liquid, 1,302 parts/hour of the lower layer liquid having the composition shown in Table 9 is supplied to the middle upper part of the first extraction column 35, and from route 2 IBA 5 with a purity of 99.096 is supplied.
90.7 parts/hour and purity 78 distilled and recovered from evaporator 38
.. A portion of the aqueous layer liquid obtained when the extract obtained in the second extraction tower 17 was further deoiled in the deoiling tower 2 () via route 49 with 12 parts/hour of 5% IBA and the lower layer of the reaction product liquid. NPG leaked into the liquid was extracted.

この際の抽出塔は2節からなり下半分を充填層、上半分
をプレート層からなる型式のものを用い温度35℃の条
件で抽出を行なった。
The extraction column was of a two-section type, with a packed bed in the lower half and a plate bed in the upper half, and the extraction was carried out at a temperature of 35°C.

仁−で得た抽出液(粗IBA)相 665゜0部/時の
組成は第10表の如くであった。
The composition of the extract (crude IBA) phase 665.0 parts/hour obtained from the plant was as shown in Table 10.

次いで、この抽出液(粗IBA)の全量を経路36より
、また同様に反応生成液の二層分離の上層液をIBA抽
出した際に得た第2次抽残液 111.5部/時(組成
は第11表に示す)を経路19より反応器1にそのま\
供給した。
Next, the entire amount of this extract (crude IBA) was transferred through route 36, and 111.5 parts/hour of the second raffinate obtained when the upper layer of the reaction product liquid was similarly extracted with IBA from the two-layer separation (111.5 parts/hour) The composition is shown in Table 11) was directly added to reactor 1 via route 19.
supplied.

これらのIBA源に対して、54%ホルマリン(ホルム
アルデヒド 54.2%、メタノール1.3%)  9
23.9部/時および48.25%の水酸化す) IJ
ウム水溶液 705.5部/時を添加し、温度63℃、
滞留時間1.′9時間の条件下にアルドール縮合反応と
交叉力ニラアロ反応を特に反応条件等区別することなく
同時に反応を行なわせた。
For these IBA sources, 54% formalin (formaldehyde 54.2%, methanol 1.3%)9
23.9 parts/hour and 48.25% hydroxide) IJ
Aqueous solution of 705.5 parts/hour was added, temperature was 63℃,
Residence time 1. The aldol condensation reaction and the cross-force nilaallo reaction were carried out simultaneously under conditions of 9 hours without distinguishing between reaction conditions.

第9表 反応生成液 2,403.9部/時は中和槽6において
、経路7より純度80%のギ酸 11.0部/時を加え
て中和し、pH9,0とした。
2,403.9 parts/hour of the reaction product liquid in Table 9 was neutralized in neutralization tank 6 by adding 11.0 parts/hour of formic acid with a purity of 80% through route 7 to adjust the pH to 9.0.

中和後、経路13より低沸留分カット9へ供給し、温度
62℃、圧カフ00ffllHりの塔頂条件下で連続蒸
留し、塔頂よりメタノールおよび水を主成分きする低沸
点留分 38部/時をカットし、経路12を経て系外に
排出した。
After neutralization, the low-boiling fraction is supplied to the low-boiling fraction cut 9 through the route 13, and is continuously distilled under conditions of a temperature of 62° C. and a pressure cuff of 00 ffllH at the top of the column to produce a low-boiling fraction that mainly contains methanol and water from the top of the column 38 parts/hour were cut and discharged to the outside of the system via route 12.

低沸留分カット塔9の塔底から抜き出した反応生成液 
2576.9部/時を分gI器14に送り、温度45℃
で二層分離を行なった。
Reaction product liquid extracted from the bottom of the low boiling fraction cut tower 9
Send 2576.9 parts/hour to minute gl unit 14, temperature 45℃
Two-layer separation was performed.

二層分離して得た上層液量 1074.7部/時の組成
は第12表の如くであった。また下層液の量は1502
部/時でその組成は前記第9表の通りであった。
The composition of the upper layer obtained by separating the two layers was as shown in Table 12, with an amount of 1074.7 parts/hour. Also, the amount of lower layer liquid is 1502
The composition in parts/hour was as shown in Table 9 above.

第10表 第11表 第12表 反応生成液を二層分離して得た上層液全量を第2抽出塔
17に供給し、脱油塔20より脱油して得、液分液槽2
4の上層IBA相 308゜5部/時と経路50より純
度99,096、IBA12.7部/時および第2抽出
塔17の中上段に液分離槽24の下層水相の一部 37
゜3部/時を供給しながらNPCの連続抽出を行なった
Table 10 Table 11 Table 12 The entire amount of the upper layer liquid obtained by separating the reaction product liquid into two layers is supplied to the second extraction tower 17, and the oil is removed from the oil removal tower 20.
4 upper IBA phase 308° 5 parts/hour, purity 99,096 from route 50, IBA 12.7 parts/hour and part of the lower aqueous phase of liquid separation tank 24 in the middle upper stage of second extraction column 17 37
Continuous extraction of NPC was carried out while feeding 3 parts/hour.

この際、第2抽出塔としては、往復回転式連続抽出塔を
用い、温度35°C1往復回転数400 C,P、 m
  の条件とした。
At this time, a reciprocating rotary continuous extraction tower was used as the second extraction tower, with a temperature of 35°C and a reciprocating rotation speed of 400C, P, m.
The conditions were set as follows.

得られた抽出液相 1327.5部/時の組成は第13
表の如くであり、第2次抽残液相111.5部/時の組
成は前記第11表の如くであった。
The composition of the obtained extracted liquid phase was 1327.5 parts/hour.
The composition of the second raffinate liquid phase (111.5 parts/hour) was as shown in Table 11 above.

第15表 こ\で得た抽出液相は脱油塔20に供給して温度65℃
、圧力600+1111HPの塔頂条件下で連続蒸留し
、塔頂よりIBAと水を主成分とする留分 474.1
部/時を、塔底より粗NPGB55.2部/時を各々連
続的に抜き出した。
The extracted liquid phase obtained in Table 15 is fed to the deoiling tower 20 at a temperature of 65°C.
, continuous distillation under column top conditions with a pressure of 600 + 1111 HP, and a distillate containing IBA and water as main components from the column top 474.1
55.2 parts/hour of crude NPGB were continuously extracted from the bottom of the column.

塔頂よりの留分は更に分液槽24で分液し、上層の純度
92.596のIBA  308.5部/時を前記第2
抽出塔17の中下段部に、また下層の水相の一部 37
.3部/時を中上段に供給し、残部 127.5部/時
を経路49より第1抽出塔35へ供給した。
The fraction from the top of the column is further separated in a liquid separation tank 24, and 308.5 parts/hour of IBA with a purity of 92.596 in the upper layer is added to the second layer.
Part of the lower aqueous phase in the middle and lower part of the extraction tower 17 37
.. 3 parts/hour was supplied to the middle upper stage, and the remaining 127.5 parts/hour was supplied to the first extraction column 35 via route 49.

脱油塔20の塔底よりの粗NPGは理論段数7段からな
る充填塔式精留塔30に供給し、温度145℃、圧カフ
0mmHりの塔頂条件下で連続蒸留し、塔頂より高純度
の品質(第14表に示す)のNPG  845.1部/
時(IBA基準収率98.1モル96)を得た。
The crude NPG from the bottom of the deoiling tower 20 is fed to a packed column type rectification tower 30 consisting of 7 theoretical plates, where it is continuously distilled under conditions of a temperature of 145°C and a pressure cuff of 0 mmH. NPG of high purity quality (as shown in Table 14) 845.1 parts/
(Yield based on IBA: 98.1 mol 96).

また塔底部より8.1部/時の高沸点留分を抜き出し、
経路34より糸外に排出した。
In addition, a high boiling point fraction of 8.1 parts/hour is extracted from the bottom of the tower.
It was discharged to the outside of the yarn through the path 34.

一方、前記第1抽出塔、塔底部より抜き出された抽残液
 1567.7部/時(組成は第15表1ζ示す)は蒸
発缶38に供給し、こ\で溶存および同伴したIBAを
留去回収した後次いでギ酸塩、濃縮晶出缶43において
経路48か7時の水を留去してギ酸す) IJウムを晶
出させ、次いで遠心弁#46においてギ酸ナトリウムを
分取し、P液はギ酸塩濃縮缶43へ循環した。
On the other hand, 1567.7 parts/hour of the raffinate extracted from the bottom of the first extraction column (the composition is shown in Table 15, 1ζ) is supplied to the evaporator 38, where the dissolved and entrained IBA is removed. After distilling and recovering the formate, the water from route 48 or 7 is distilled off to form formic acid in the concentrated crystallization can 43. IJum is crystallized, and then sodium formate is fractionated in the centrifugal valve #46. The P solution was circulated to the formate concentration can 43.

得られたギ酸す) ILウム 575.0部/時の品質
は第16表に示す如くであった。(収率97.9mo−
13%/NaOH基準)第14表 第15表 第16表
The quality of the obtained formic acid (575.0 parts/hour) was as shown in Table 16. (Yield 97.9mo-
13%/NaOH standard) Table 14 Table 15 Table 16

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に用いられる工程図の1例である。 1・・・反応缶、6・・・中和槽、 9・・・低沸点留
分カット塔、14・・・分離器、17・・・第2抽出塔
。 20・・・脱油塔、24・・・液分液槽、27・・・水
留め槽、3()・・・精留塔、37・・・第1抽出塔、
38・・・蒸発缶、43・・・濃縮晶出缶、46・・・
遠心分m機。 11.22.32.40・・・熱交換器特許出願人 三
菱瓦斯化学株式会社 代表者長野和吉
The drawing is an example of a process diagram used in the present invention. DESCRIPTION OF SYMBOLS 1... Reactor, 6... Neutralization tank, 9... Low-boiling fraction cut column, 14... Separator, 17... Second extraction column. 20... Oil removal tower, 24... Liquid separation tank, 27... Water retention tank, 3 ()... Rectification tower, 37... First extraction tower,
38... Evaporator, 43... Concentration crystallizer, 46...
Centrifuge machine. 11.22.32.40 Heat exchanger patent applicant Kazuyoshi Nagano, representative of Mitsubishi Gas Chemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] イソブチルアルデヒドとホルムアルデヒドとをアルカリ
金属水酸化物の存在下に反応させて得たネオペンチルグ
リコールとギ酸塩とを含有する反応生成液を二層分離し
、その各々を別途に処理し、それぞれからネオペンチル
グリコールとギ酸塩を分離回収することを特徴とするネ
オペンチルグリコールの製造法。
The reaction product solution containing neopentyl glycol and formate obtained by reacting isobutyraldehyde and formaldehyde in the presence of an alkali metal hydroxide is separated into two layers, each of which is treated separately, and neopentyl glycol is separated from each layer. A method for producing neopentyl glycol, which is characterized by separating and recovering pentyl glycol and formate.
JP59211121A 1984-10-08 1984-10-08 Preparation of neopentyl glycol Granted JPS6191144A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59211121A JPS6191144A (en) 1984-10-08 1984-10-08 Preparation of neopentyl glycol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59211121A JPS6191144A (en) 1984-10-08 1984-10-08 Preparation of neopentyl glycol

Publications (2)

Publication Number Publication Date
JPS6191144A true JPS6191144A (en) 1986-05-09
JPH0421651B2 JPH0421651B2 (en) 1992-04-13

Family

ID=16600742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59211121A Granted JPS6191144A (en) 1984-10-08 1984-10-08 Preparation of neopentyl glycol

Country Status (1)

Country Link
JP (1) JPS6191144A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003420A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyol
KR20160040564A (en) * 2013-08-06 2016-04-14 옥세아 비숍 엘엘씨 Improved manufacture of methylolalkanes
KR20160040563A (en) * 2013-08-06 2016-04-14 옥세아 비숍 엘엘씨 Manufacture of methylolalkanes with augmented heat transfer and improved temperature control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809313B2 (en) 2017-03-14 2021-01-06 株式会社村田製作所 Positive electrodes, batteries, battery packs, electronic devices, electric vehicles, power storage devices and power systems

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2135063A (en) * 1937-07-06 1938-11-01 Du Pont Method of producing pentaglycol

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1057083B (en) * 1957-07-02 1959-05-14 Basf Ag Process for the preparation of 2,2-dimethylpropanediol-1,3

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2135063A (en) * 1937-07-06 1938-11-01 Du Pont Method of producing pentaglycol

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002003420A (en) * 2000-06-27 2002-01-09 Mitsubishi Gas Chem Co Inc Method for producing polyol
KR20160040564A (en) * 2013-08-06 2016-04-14 옥세아 비숍 엘엘씨 Improved manufacture of methylolalkanes
KR20160040563A (en) * 2013-08-06 2016-04-14 옥세아 비숍 엘엘씨 Manufacture of methylolalkanes with augmented heat transfer and improved temperature control
JP2016527311A (en) * 2013-08-06 2016-09-08 オクシア・ビショップ・エルエルシー Improved production of methylol alkanes.
JP2016527310A (en) * 2013-08-06 2016-09-08 オクシア・ビショップ・エルエルシー Production of methylol alkanes with increased heat transfer and improved temperature control
JP2019131584A (en) * 2013-08-06 2019-08-08 オクシア・ビショップ・エルエルシー Manufacture of methylolalkanes with augmented heat transfer and improved temperature control
JP2019142894A (en) * 2013-08-06 2019-08-29 オクシア・ビショップ・エルエルシー Improved manufacturing of methylol alkane

Also Published As

Publication number Publication date
JPH0421651B2 (en) 1992-04-13

Similar Documents

Publication Publication Date Title
US4209646A (en) Process for crystallizing an adduct of 2,2-di(4-hydroxyphenyl) propane and phenol
US3972950A (en) Process for the purification of bisphenol A
RU2338737C2 (en) Method of obtaining formaldehyde raw material with low water content
US3972955A (en) Process for preparation of isoprene
EP0123210A2 (en) Improved method for purification of bisphenol A
US3290391A (en) Production and purification of a diphenylolpropane
JP3340068B2 (en) Improved method for simultaneous production of propylene oxide and styrene monomer
FI87188C (en) Continuous process for extraction of carboxylic acids, aldehydes, ketones, alcohols and phenols from dilute aqueous solutions
JPS6191144A (en) Preparation of neopentyl glycol
US4349418A (en) Production of methylnaphthalenes and tar bases including indole
US4038329A (en) Process for purification of neopentyl glycol
US4565890A (en) Process for the preparation of N-acetyl-P-aminophenol
IL28384A (en) Process for recovery of glycidol
EP0153292B1 (en) Purification of crude sorbic acid
IE49091B1 (en) A novel process for the preparation of 2',6'-dialkyl-n-alkoxymethyl-2-chloro-acetanilides
RU2021253C1 (en) Method of regeneration of acrylic acid and/or ethylacrylate from sulfur acid residue
US3201419A (en) Process for the manufacture of 1, 3, 5-trioxane
US4352941A (en) Process for purification of phenylhydrazine
US4294998A (en) Preparation of high purity 1,4-butanediol
US6494996B2 (en) Process for removing water from aqueous methanol
CA2307593C (en) Continuous process for the production of carboxylic acid esters of alkylene glycol monoalkyl ethers
EP0221216B1 (en) Improved process for the preparation of n-acetyl-p-aminophenol
JPH08325183A (en) Production of bisphenol a
JP3164708B2 (en) Method for recovering 1,3-dimethyl-2-imidazolidinone
US4562264A (en) Process for the recovery of five-membered ring dicarboxylic acid anhydrides