JPH03181334A - Production of carrier for synthesis of nucleic acid - Google Patents

Production of carrier for synthesis of nucleic acid

Info

Publication number
JPH03181334A
JPH03181334A JP1321658A JP32165889A JPH03181334A JP H03181334 A JPH03181334 A JP H03181334A JP 1321658 A JP1321658 A JP 1321658A JP 32165889 A JP32165889 A JP 32165889A JP H03181334 A JPH03181334 A JP H03181334A
Authority
JP
Japan
Prior art keywords
silica gel
carrier
nucleic acid
porous glass
synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1321658A
Other languages
Japanese (ja)
Other versions
JP2958338B2 (en
Inventor
Minoru Fujisaki
稔 藤崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Original Assignee
FUJI DEBUISON KAGAKU KK
Fuji-Davison Chemical Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUJI DEBUISON KAGAKU KK, Fuji-Davison Chemical Ltd filed Critical FUJI DEBUISON KAGAKU KK
Priority to JP1321658A priority Critical patent/JP2958338B2/en
Publication of JPH03181334A publication Critical patent/JPH03181334A/en
Application granted granted Critical
Publication of JP2958338B2 publication Critical patent/JP2958338B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Saccharide Compounds (AREA)
  • Surface Treatment Of Glass (AREA)
  • Silicon Compounds (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain a carrier for synthesis of nucleic acid not causing scattering or sticking during reaction by dehydrating granular high purity silica gel having a specified diameter and a specified pore diameter and allowing the dehydrated silica gel to react with a silane coupling agent having alkylamino groups. CONSTITUTION:Spherical silica gel or porous glass having such high purity as >=95% silicon dioxide content and contg. <=5% boron oxide, <=5% aluminum oxide and <=5% other elements is used. The spherical silica gel having 30-200mum diameter and 900-2,000Angstrom pore diameter or the porous glass subjected to phase separation treatment and leaching by the principle of spinodal decomposition is satisfactorily dehydrated in an org. solvent or in a flow of gas and then allowed to react with a silane coupling agent having alkylamino groups. These alkylamino groups are bonded to isolated silanol groups on the surface of the silica gel or porous glass through alkoxysilane groups by 0.3-2.5mumol/m<2>.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は核酸合成用担体の製法に関するものであり、詳
しくは、核酸の合成効率の高く、合成核酸への不純物混
入量の少ない多孔質体よりなる核酸合成用担体の製法に
関するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for producing a carrier for nucleic acid synthesis, and more specifically, to a porous material that has high nucleic acid synthesis efficiency and reduces the amount of impurities mixed into the synthesized nucleic acid. The present invention relates to a method for producing a carrier for nucleic acid synthesis.

(先行技術) 固体の粉末などの担体の上で繰り返し反応を起こさせて
高分子量の重合体を得る、今日、固相合成法と呼ばれる
ものは、ペプチドを合成する目的でメリフィールド(M
errifield 、 1962 )により提案され
広く行われるようになった。この目的で当初用いられた
固相担体はポリスチレンとジビニルベンゼンの共重合体
にアミノ基を導入したものであったが、これが核酸の合
成に応用されるにあたって、シリカゲルや多孔質ガラス
の破砕型粉末が用いられるようになっており、今日では
細孔径が500Aぐらいの多孔質ガラスの表面にシラン
カップリング剤などを用いてアルキルアミノ基を結合さ
せたものを用いるのが一般的な方法となっている。しか
しながら、今日、通常の方法で製造された担体を使用す
ると、ヌクレオチドが5個あるいは15個結合した段階
(57−ないし15マー〉において、合成効率が急速に
低下し、これにより重合度の高い核酸を得ようとすると
、多量の副生成物が混入する結果になりがちである。
(Prior Art) The solid-phase synthesis method, in which polymers with high molecular weight are obtained by repeated reactions on a carrier such as a solid powder, is currently known as the solid-phase synthesis method, which was developed by Merrifield (M.
It was proposed by John E. Errifield, 1962) and became widely used. The solid support initially used for this purpose was a copolymer of polystyrene and divinylbenzene with amino groups introduced, but when this support was applied to nucleic acid synthesis, crushed powders of silica gel and porous glass were used. Today, the common method is to bond alkylamino groups to the surface of porous glass with a pore diameter of about 500A using a silane coupling agent or the like. There is. However, today, when using carriers manufactured by conventional methods, the synthesis efficiency rapidly decreases at the stage where 5 or 15 nucleotides are linked (57- to 15-mer), and this results in a highly polymerized nucleic acid. Attempts to obtain this result tend to result in the contamination of large amounts of by-products.

これは、一般に、担体表面において、このような長さの
核酸分子の末端にある反応点が担体表面の化学構造また
は隣接する成長中の核酸分子と接触して、好ましくない
副反応を起こしているのではないか、と考えられている
。このことを避けようとして、より長いアルキル基など
を介してアミノ基を結合させる方法が実施されているが
、これによっては、上記の欠点は殆ど改善されていない
This is generally due to the fact that on the carrier surface, reactive sites at the ends of nucleic acid molecules of such length come into contact with chemical structures on the carrier surface or with adjacent growing nucleic acid molecules, causing undesirable side reactions. It is thought that this may be the case. In an attempt to avoid this, a method has been implemented in which the amino group is bonded via a longer alkyl group, but the above-mentioned drawbacks have hardly been improved by this method.

これは、使用している担体表面の化学構造というものを
十分に理解していないこと、および、反応容器内での粉
状の担体の挙動に十分な注意が払われていないことによ
る結果であった。
This is the result of a lack of sufficient understanding of the chemical structure of the surface of the carrier used and insufficient attention to the behavior of the powdered carrier within the reaction vessel. Ta.

(発明が解決しようとする問題点〉 本発明は上記実情に鑑み、核酸合成効率が高く、しかも
、反応中に担体の飛散、付着がなく均一反応を行なうこ
とのできる核酸合成用担体を提供しようとするものであ
る。
(Problems to be Solved by the Invention) In view of the above-mentioned circumstances, the present invention provides a carrier for nucleic acid synthesis that has high nucleic acid synthesis efficiency and is capable of carrying out a uniform reaction without scattering or adhesion of the carrier during the reaction. That is.

(発明を解決するための手段) 本発明の目的は、あらかじめ球状に成形された高純゛度
シリカゲル又は多孔質ガラスを用い、しかも、特定の細
孔径と直径をもつ粒状物を十分なる脱水を施した後に、
特定のアミノ基密度となるような条件下で、アルキルア
ミノ基をもつシランカップリング剤と反応させることに
より達成される。
(Means for Solving the Invention) An object of the present invention is to use high-purity silica gel or porous glass that has been previously formed into a spherical shape, and to sufficiently dehydrate granular materials having a specific pore size and diameter. After applying
This is achieved by reacting with a silane coupling agent having an alkylamino group under conditions such that a specific amino group density is achieved.

すなわち、本発明の要旨は、二酸化ケイ素95%以上、
酸化ホウ素5%以下、酸化アルミニウム5%以下、その
他元素5%以下の組成を有し、細孔径900〜200O
Aで、しかも、直径30〜200μの球状に成型された
シリカゲル、又は、スピノーダル分解の原理を利用して
、分相処理とこれに引き続く酸による溶出処理により多
孔化して得た球状の多孔質ガラスを、有機溶媒中又は気
流中において十分に脱水した後、これをフルキルアミノ
基をもつシランカップリング剤と反応させることにより
、アルキルアミノ基を0.3〜2゜5μモル/Tdの割
合でアルコキシシラン基を介して表面の孤立型シラノー
ル基に結合させることを特徴とする核酸合成用担体の製
法に存する。
That is, the gist of the present invention is that 95% or more of silicon dioxide,
It has a composition of 5% or less of boron oxide, 5% or less of aluminum oxide, and 5% or less of other elements, and has a pore size of 900 to 200O.
In A, silica gel molded into a spherical shape with a diameter of 30 to 200μ, or a spherical porous glass obtained by making it porous by phase separation treatment and subsequent acid elution treatment using the principle of spinodal decomposition. is sufficiently dehydrated in an organic solvent or in an air stream, and then reacted with a silane coupling agent having a flukylamino group to convert the alkylamino group into an alkoxysilane at a ratio of 0.3 to 2.5 μmol/Td. The present invention relates to a method for producing a carrier for nucleic acid synthesis, characterized in that the carrier is bonded to an isolated silanol group on the surface via a group.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で対象となるシリカゲル又は多孔質ガラスの組成
としては、二酸化ケイ素95%以上の高純度のものであ
り、酸化ホウ素5%以下、酸化アルミニウム5%以下、
その他元素5%以下のものである。酸化アルミニウムは
核酸合成用担体として好ましくない影響を与える。従っ
て、本発明では、高純度シリカゲル、又は、高純度のホ
ウケイ酸ガラスを基礎ガラスとして製造されたアルミニ
ウムなどの不純元素を含まない多孔質ガラスあるいはア
ルミニウムを含む多孔質ガラスを酸又はアルカリにより
抽出処理し表面にあるアルミニウムの殆どを除去した多
孔質ガラスが用いられる。なお、本発明における多孔質
ガラスの調製法としては、所謂、スピノーダル分解の原
理を利用して分相処理とこれに引き続く酸による抽出処
理により多孔化する方法が対象となる。
The composition of the silica gel or porous glass targeted by the present invention is one with high purity of 95% or more silicon dioxide, 5% or less boron oxide, 5% or less aluminum oxide,
Contains 5% or less of other elements. Aluminum oxide has unfavorable effects as a carrier for nucleic acid synthesis. Therefore, in the present invention, porous glass that does not contain impurity elements such as aluminum or porous glass that contains aluminum, which is manufactured using high-purity silica gel or high-purity borosilicate glass as a base glass, is subjected to extraction treatment with acid or alkali. Porous glass from which most of the aluminum on the surface has been removed is used. Note that the method for preparing porous glass in the present invention is a method in which the glass is made porous by phase separation treatment and subsequent acid extraction treatment using the principle of so-called spinodal decomposition.

上述のシリカゲル又は多孔質ガラスは、その製造過程で
直径30〜200μ、好ましくは50〜100μの球状
物に成型したものが用いられる。
The above-mentioned silica gel or porous glass is formed into a spherical object having a diameter of 30 to 200 μm, preferably 50 to 100 μm during the manufacturing process.

核酸の自動合成が小型の反応容器で行われ、且つフィル
ターによる濾過の過程が必要であることから球状物の径
があまり大きくても小さくても、核酸合成用担体として
反応に用いた場合に不都合を生じるが、前記範囲のとき
には均一な反応を行なうことができる。多孔質ガラスの
球状化は例えば、公知法により、基礎ガラスの段階で成
型する方法などを採用し得る。なお、成型後の基礎ガラ
スを熱処理により分相したものは球の内部は多孔質化し
ていても表面は緻密な殻状の表皮が被っていることもあ
るので、これを予め、フッ酸などの酸または苛性ソーダ
によって洗浄処理して取り除いておくことが望ましい。
Since automatic synthesis of nucleic acids is carried out in a small reaction vessel and a filtration process is required, whether the diameter of the spherical particles is too large or small is inconvenient when used as a carrier for nucleic acid synthesis in the reaction. However, when it is within the above range, a uniform reaction can be carried out. Porous glass may be made into a spheroid by, for example, a known method in which it is molded at the stage of forming the base glass. In addition, when the base glass is phase-separated by heat treatment after molding, even though the inside of the sphere is porous, the surface may be covered with a dense shell-like skin. It is preferable to remove it by cleaning with acid or caustic soda.

また、シリカゲル又は多孔質ガラスの細孔径は500〜
200OA、好ましくは900〜1800Åであり、更
に、表面積は通常、10〜100TIt/qのものが望
ましい。要するに、この範囲の場合に、特に核酸収率が
高く担体として効率的な働きができる上、担体としての
強度も良好で均一な反応を与えることができる。
In addition, the pore diameter of silica gel or porous glass is 500~
200 OA, preferably 900 to 1800 Å, and the surface area is usually 10 to 100 TIt/q. In short, within this range, the nucleic acid yield is particularly high and it can work efficiently as a carrier, and it also has good strength as a carrier and can give a uniform reaction.

次に、球状のシリカゲル又は多孔質ガラスの表面に、ア
ルキルアミノ基をもつシランカップリング剤を作用させ
るが、本発明では、これに先だってシリカゲル又は多孔
質ガラスを十分に脱水することを要件とするものである
。この脱水を実施することにより、最終的に核酸合成用
担体として良好な性質をもつ担体を得ることができる。
Next, a silane coupling agent having an alkylamino group is applied to the surface of the spherical silica gel or porous glass, but the present invention requires that the silica gel or porous glass be sufficiently dehydrated before this. It is something. By carrying out this dehydration, it is possible to finally obtain a carrier having good properties as a carrier for nucleic acid synthesis.

脱水方法は通常、■トルエンなどの有機溶媒を例えば、
水素化カルシウムや塩化カルシウムなどの脱水剤で含水
量1100pl)以下に乾燥した後、これにシリカゲル
又は多孔質ガラスを浸漬し加熱還流処理する方法、又は
、■例えば、シリカゲル、五酸化リン、モレキュラーシ
ーブ、塩化カルシウムまたはこれらの組合せにより乾燥
した空気、窒素、又は酸素などの気流中にシリカゲル又
は多孔質ガラスを置き400〜700℃の温度で加熱乾
燥する方法などが挙げられる。そして、この脱水処理は
通常、シリカゲル又は多孔質ガラスの赤外線吸収スペク
トル(球状物を圧搾して薄板状として測定)の吸収が3
750cii−’にシャープなピークが得られるまで実
施するのが望ましい。すなわち、シリカゲル又は多孔質
ガラスの場合、シランカップリング剤との結合に必要な
表面化学構造は赤外線スペクトルにおいて3750ct
n−’に吸収を与える孤立型シラノール基と呼ばれる水
酸基のみであり、その他の水!!!基あるいは付着水分
は反応に好ましくない影響を与える。通常のシリカゲル
又は多孔質ガラスの場合、例えば、2個以上の隣接した
水酸基及びこれに付着する水分があり、これらの存在は
赤外線スペクトルにおいて3700ctn”以下の幅広
い吸収を示す。また、シリカゲル又は多孔質ガラス中に
含有されるアルミニウムなどの不純元素の影響によって
も活性な水酸基とこれによる付着水を有する場合がある
。これらの水分の存在はシランカップリング剤との反応
に悪い影響を与え、最終的に核酸合成用担体として望ま
しいものを得ることが難しくなる。
The dehydration method usually involves using an organic solvent such as toluene, for example.
After drying with a dehydrating agent such as calcium hydride or calcium chloride to a water content of 1100 pl or less, silica gel or porous glass is immersed in this and heated under reflux. Examples include a method in which silica gel or porous glass is placed in a stream of air, nitrogen, or oxygen dried with calcium chloride, or a combination thereof, and heated and dried at a temperature of 400 to 700°C. In this dehydration treatment, the absorption in the infrared absorption spectrum of silica gel or porous glass (measured as a thin plate by compressing a spherical object) is usually 3.
It is desirable to carry out the experiment until a sharp peak is obtained at 750 cii-'. That is, in the case of silica gel or porous glass, the surface chemical structure required for bonding with the silane coupling agent is 3750 ct in the infrared spectrum.
There is only a hydroxyl group called an isolated silanol group that gives absorption to n-', and other water! ! ! Groups or attached moisture have an unfavorable effect on the reaction. In the case of ordinary silica gel or porous glass, for example, there are two or more adjacent hydroxyl groups and water attached to them, and the presence of these shows a broad absorption of 3700 ctn'' or less in the infrared spectrum. Due to the influence of impurity elements such as aluminum contained in the glass, there may be active hydroxyl groups and adhering water.The presence of this water has a negative effect on the reaction with the silane coupling agent, and the final Therefore, it becomes difficult to obtain a carrier suitable for nucleic acid synthesis.

次に、アルキルアミノ ング剤との反応は、通常、乾燥した有機溶媒例えば、ト
ルエン中などで実施することができる。シリカゲル又は
多孔質ガラスの脱水を有機溶媒中で実施した場合には、
脱水処理後の混合物にシランカップリング剤を加えて引
き続き実施することができる。この反応における反応温
度は、例えば、80〜120℃、好ましくは100〜1
10℃であるが、通常、溶媒の沸点近くの温度、すなわ
ち、還流温度で実施するのが好ましい。また、反応時間
は、通常、6〜12時間程度である。
The reaction with the alkylaminating agent can then usually be carried out in a dry organic solvent such as toluene. When dehydrating silica gel or porous glass in an organic solvent,
A silane coupling agent can be added to the mixture after the dehydration treatment, and the dehydration treatment can be carried out subsequently. The reaction temperature in this reaction is, for example, 80-120°C, preferably 100-120°C.
Although the temperature is 10° C., it is usually preferable to carry out the reaction at a temperature near the boiling point of the solvent, that is, the reflux temperature. Moreover, the reaction time is usually about 6 to 12 hours.

アルキルアミノ基をもつシランカップリング剤としては
、通常、アミノプロプルトリエトキシシラン、アミノプ
ロピルトリメトキシシラン、アミノエチルトリメトキシ
シランなどの01〜4の低級アルキルアミノ酸で置換さ
れた低級アルコキシシランが挙げられる。また、本発明
においては、これと共にアルキルアミノ基のような反応
性質をもたないシランカップリング剤を併用して用いる
のが好ましい。このシランカップリング剤としては、例
えば、メチルトリメトキシシランなどの公知のものでよ
い。このシランカップリング剤の使用割合は、通常、ア
ルキルアミノ基をもつシランカップリング剤に対して、
10〜70モル%、好ましくは20〜60モル%である
。そして、本発明では、上記反応条件、及びシランカッ
プリング剤の使用割合などを調節し、後述する所定量の
アルキルアミノ基を導入し表面処理面のアミノ基密度(
アルキルアミノ基がアルコキシシラン基を介して孤立型
シラノール基に結合している割合〉−を制御するもので
ある。また、シランカップリング剤の使用量は導入すべ
きアミノ基量に応じて選定することができる。本発明に
おけるシリカゲル又は多孔質ガラスの表面アミノ基密度
は、0.3〜2、5μモル/m21好ましくは0.5〜
1.5μモル/尻であることが必要であり、この場合に
、核酸合成用担体として最も優れた効果が発揮される。
Examples of the silane coupling agent having an alkylamino group include lower alkoxysilanes substituted with lower alkyl amino acids of 01 to 4, such as aminopropyltriethoxysilane, aminopropyltrimethoxysilane, and aminoethyltrimethoxysilane. It will be done. Further, in the present invention, it is preferable to use a silane coupling agent that does not have reactive properties such as an alkylamino group in combination. This silane coupling agent may be, for example, a known one such as methyltrimethoxysilane. The usage ratio of this silane coupling agent is usually as follows:
It is 10 to 70 mol%, preferably 20 to 60 mol%. In the present invention, the above reaction conditions and the proportion of the silane coupling agent used are adjusted to introduce a predetermined amount of alkylamino groups, which will be described later, and the amino group density (
The ratio of the alkylamino group bonded to the isolated silanol group via the alkoxysilane group is controlled. Further, the amount of the silane coupling agent to be used can be selected depending on the amount of amino groups to be introduced. The surface amino group density of the silica gel or porous glass in the present invention is 0.3 to 2.5 μmol/m21, preferably 0.5 to 5 μmol/m21.
It is necessary that the amount is 1.5 μmol/end, and in this case, the most excellent effect as a carrier for nucleic acid synthesis is exhibited.

なお、表面のアミノ基密度の測定はビー・エフ・ギズイ
ンが1972年にアミノ化ポリスチレンついてアナリテ
イカル シミ力 アクタ誌上(B.F.Gisin,A
nal iticaChimica  Acta.58
巻、248−249頁、1972年)に報告した方法で
同様に測定することができる。すなわち、約30■の多
孔体試料にジクロロメタン中に溶かしたピクリン酸を吸
着させたのち、ジイソプロピルエチルアミンで置換、脱
着せしめ、脱離したピクリン酸の量を波長358nmの
紫外光の吸収強度によって定量する。なお、ここで最適
と認められた表面アミノ基密度の上限である1〜2μモ
ル/尻はガラス表面がすべてシラノール基でおおわれて
いるとした場合のその密度に相当するもので、本発明に
おけるアミノ基密度の最適値はガラス表面をすべて規則
正しく反応させてアルキルアミノ化した値を基準とし、
それよりやや小さいものと考えることが出来る。
The surface amino group density was measured by B.F. Gisin in 1972 on aminated polystyrene in the Analytical Stain Power Acta magazine (B.F. Gisin, A.
nal iticaChimica Acta. 58
248-249, 1972). That is, after adsorbing picric acid dissolved in dichloromethane onto a porous material sample of about 30 cm, it is substituted and desorbed with diisopropylethylamine, and the amount of desorbed picric acid is quantified by the absorption intensity of ultraviolet light with a wavelength of 358 nm. . The upper limit of the surface amino group density of 1 to 2 μmol/bottom, which was recognized as the optimum here, corresponds to the density when the entire glass surface is covered with silanol groups, and the amino group density in the present invention is The optimum value of the group density is based on the value obtained by reacting all the glass surfaces in an orderly manner to alkylaminate.
It can be considered to be slightly smaller than that.

上述の反応により得られた本発明の核酸合成用担体は常
法によって、分離、洗浄、乾燥し回収することができる
The carrier for nucleic acid synthesis of the present invention obtained by the above-mentioned reaction can be separated, washed, dried, and recovered by conventional methods.

この発明の担体を用いて核酸合成を行なう場合には、通
常、ホスホアミダイト法(あるいはホスホアミダイト法
、以下同じ〉、または、ホスフッイト法と呼ばれている
ところの、各種デオキシリボヌクレオシド−3’ −0
(N、N−ジイソプロピルアミノ)−β−シアノエチル
ホスホアミダイト(シアノエチル−ホスホアミダイト〉
またはデオキシリボヌクレオシド−3’ −0(N、N
−ジイソプロピルアミノ〉メチルホスホアミダイトを用
いる方法により実施することができる。これらの方法は
日本生化学会編、続生化学実験講座1、遺伝子研究法王
、核酸の化学と分析技術、第1章DNAの化学合成、1
〜33頁、東京化学同人(1986)、またはM、J、
ゲイト編オリゴニュクレオチドシンセシス、第3章(E
dited byM、 J、 Ga1t、” Qlig
onucleodide 5ynthesis、aE)
ractical approach”、 Chapt
er  3.5olid−phase  3ynthe
sis of Oligodeoxyribonucl
eot−ides by the  Phosphit
etriester  Method 。
When carrying out nucleic acid synthesis using the carrier of the present invention, various deoxyribonucleoside-3'-0
(N,N-diisopropylamino)-β-cyanoethylphosphoramidite (cyanoethyl-phosphoramidite)
or deoxyribonucleoside-3'-0 (N, N
-diisopropylamino> It can be carried out by a method using methylphosphoramidite. These methods are edited by the Japanese Biochemical Society, Biochemistry Experiment Course 1, Gene Research Pope, Nucleic Acid Chemistry and Analysis Techniques, Chapter 1 Chemical Synthesis of DNA, 1
~33 pages, Tokyo Kagaku Doujin (1986), or M, J.
Gate ed. Oligonucleotide Synthesis, Chapter 3 (E
Dited by M, J, Galt,” Qlig
onucleodide 5ynthesis, aE)
"ractical approach", Chapter
er 3.5 solid-phase 3ynthe
sis of Oligodeoxyribonucle
eot-ides by the Phosphit
etriester Method.

by T、 Atkinson and M、 Sm1
th、  I RLPress、 0xford、 1
984 、 )に記載されている方法に準じて行うこと
ができる。ただし、この発明の原理とするところは、リ
ン酸トリエステル法など他の核酸合成法において使用さ
れる担体にも当然適用することが可能である。
by T, Atkinson and M, Sm1
th, I RLPress, Oxford, 1
It can be carried out according to the method described in 984, ). However, the principles of this invention can of course be applied to carriers used in other nucleic acid synthesis methods such as the phosphotriester method.

(発明の効果) 本発明の核酸合成用担体によれば、核酸の合成効率が非
常に良好である。これは、原料となるシリカゲル又は多
孔質ガラスとして特定の細孔径及び直径を有するものを
選定し、また、十分なる乾燥を施した後、アルキルアミ
ノ基をもつシランカップリング剤とアミノ基のないシラ
ンカップリング剤を配合して反応させ核酸合成を行わせ
るのに最も適当な表面アミノ基密度を持った担体として
いるためである。すなわち、その結果、担体物性に優れ
、しかも、副反応が少なく、特定量のアミノ基密度を有
する担体が効果的に製造されるからである。
(Effects of the Invention) According to the carrier for nucleic acid synthesis of the present invention, nucleic acid synthesis efficiency is very good. This is done by selecting a raw material, silica gel or porous glass, with a specific pore size and diameter, and after thorough drying, a silane coupling agent with an alkylamino group and a silane without an amino group are combined. This is because the carrier has the most suitable density of surface amino groups to react with a coupling agent and perform nucleic acid synthesis. That is, as a result, a carrier having excellent carrier physical properties, less side reactions, and a specific amount of amino group density can be effectively produced.

(実施例〉 次に、本発明を実施例により更に具体的に説明するが、
本発明はその要旨を超えない限り、以下の実施例の記述
に限定されるものではない。
(Example) Next, the present invention will be explained in more detail with reference to Examples.
The present invention is not limited to the description of the following examples unless it exceeds the gist thereof.

実施例1(シリカゲルを用いた核酸合成用担体の製造〉
ケイ酸アルカリ溶液と鉱酸を原料とする製法により得た
、細孔径1195入、平均直径100μ、表面積25.
4Td/(jの球状シリカゲル(SiOz95%以上、
その他元素5%以下)1qを、水素化カルシウム上で含
水量10ppm以下に乾燥したトルエン100m1中に
浸漬し、還流下、7時間、煮沸処理し球状シリカゲルの
脱水を行なった。この際の球状シリカゲルの赤外線吸収
スペクトルを測定したところ、3750m−1にピーク
があり、3700ca−’以下のピークは殆んど認めら
れなかった。
Example 1 (Production of carrier for nucleic acid synthesis using silica gel)
Obtained by a manufacturing method using an alkaline silicate solution and mineral acid as raw materials, the pore size is 1195, the average diameter is 100μ, and the surface area is 25.
4Td/(j spherical silica gel (SiOz 95% or more,
1q of other elements (5% or less) was immersed in 100 ml of toluene dried over calcium hydride to a water content of 10 ppm or less, and boiled under reflux for 7 hours to dehydrate the spherical silica gel. When the infrared absorption spectrum of the spherical silica gel at this time was measured, there was a peak at 3750 m-1, and almost no peaks below 3700 ca-' were observed.

次いで、上澄みのトルエンをとり除き、別の乾燥トルエ
ン30−に7ミノプロビルトリエトキシシラン5d及び
メチルトリエトキシシラン15mを加えた混合液を添加
し、これを加熱して還流下、12時間、反応を行なった
Next, the supernatant toluene was removed, and a mixture of 5 d of 7minoprobyltriethoxysilane and 15 m of methyltriethoxysilane was added to another 30 mm of dry toluene, and the mixture was heated under reflux for 12 hours. The reaction was carried out.

そして、反応後の球状シリカゲルを乾燥剤を経由してア
スピレータ−で減圧乾燥後、真空乾燥することにより、
本発明の核酸合成用担体を得た。
Then, the spherical silica gel after the reaction is dried under reduced pressure with an aspirator via a desiccant, and then vacuum dried.
A carrier for nucleic acid synthesis of the present invention was obtained.

この担体のピクリン酸定量によるアミノ基量は52.1
μモル/qであり、また、表面アミノ基密度は2.1μ
モル/Tdであった。これに5′ジメトキシトリチルア
デノシンの3’ p−ニトロフェンニルコハク酸エステ
ルを作用させ、アミノ化シリカゲルにアデノシンを結合
させた。ジメトキシトリチル基をトリクロル酢酸によっ
て脱離させその脱離量からアデノシンの結合量を求める
と1グラム当たり18μモルであり、1平方メートル当
たり0.7μモルであった。
The amount of amino groups determined by picric acid determination of this carrier is 52.1
μmol/q, and the surface amino group density is 2.1μ
It was mol/Td. This was treated with 3' p-nitrophenylsuccinate of 5' dimethoxytrityladenosine to bond adenosine to the aminated silica gel. The dimethoxytrityl group was removed with trichloroacetic acid, and the amount of adenosine bound was determined from the amount of removal, which was 18 μmol per gram, and 0.7 μmol per square meter.

実施例2〈高純度ホウ珪酸ガラスを基礎ガラスとする多
孔質ガラスを用いた核酸合成用 担体の製造) ホウ珪酸ガラスを熱気流中で表面張力により球状の液滴
とすることにより得たガラス粒子を熱処理して分相させ
、これを塩酸で溶出させて、緻密な殻状の表皮を有する
多孔体を得、次いで、これを1%フッ酸で洗浄すること
により、平均粒径100μ、細孔径960A、表面積3
9.6尻/gの多孔質ガラスを製造した。
Example 2 (Production of carrier for nucleic acid synthesis using porous glass with high-purity borosilicate glass as the base glass) Glass particles obtained by forming borosilicate glass into spherical droplets due to surface tension in a hot air flow Heat treatment to separate the phases, elute this with hydrochloric acid to obtain a porous body with a dense shell-like skin, and then wash this with 1% hydrofluoric acid to obtain an average particle size of 100μ and a pore size. 960A, surface area 3
A porous glass of 9.6 butts/g was produced.

これを熱した乾燥気流中で十分に脱水した後、この多孔
体に、乾燥トルエン(含水m1ooppm以下)30−
に、アミノプロピルトリエトキシシランを10−、メチ
ルトリエトキシシランを10rIi1を含む混合液を注
ぎ、これを加熱して還流下、12時間反応させた。次い
で、吸引濾過した後アスピレータ−で減圧乾燥し、更に
真空下で乾燥することにより、本発明の担体を得た。
After sufficiently dehydrating this in a heated dry air stream, dry toluene (water content ml ooppm or less) 30
A mixed solution containing 10-aminopropyltriethoxysilane and 10rIi1 of methyltriethoxysilane was poured into the solution, and the mixture was heated and reacted under reflux for 12 hours. Next, the carrier of the present invention was obtained by suction filtration, drying under reduced pressure with an aspirator, and further drying under vacuum.

この担体のピクリン酸定量によるアミン基量は36.4
(μモル/CI)であり、表面アミノ基密度は0.9(
μモル/ホ)であった。
The amount of amine groups in this carrier determined by picric acid determination is 36.4
(μmol/CI), and the surface amino group density is 0.9(
μmol/e).

また、これと5′−ジメトキシトリチルアデノシンの3
’ p−ニトロコハク酸エステルを作用させ、アミン基
をニュクレオシド化した後、ジメトキシトリチル基の脱
離量からヌクレオシドの担持量を求めると1グラム当た
り14.8μモルであり1平方メートル当たり0.4μ
モルであった。
In addition, 3 of this and 5'-dimethoxytrityladenosine
' After reacting with p-nitrosuccinate to convert amine groups into nucleosides, the amount of nucleosides carried was determined from the amount of dimethoxytrityl groups released, which was 14.8 μmol per gram, which was 0.4 μmol per square meter.
It was a mole.

比較例1 特公昭62−25618号の方法に準じて製造された球
状多孔質ガラス、すなわち、分相と酸による溶出処理を
して得られた下記組成を有し、細孔径1095A、細孔
容積0.63cm3 /(Ill、表面積23TIt/
gのアルミニウムを含むガラス1gを1N硫酸40dに
浸漬し、還流下、110℃の温度で7時間、抽出処理を
行い、次いで、酸を傾斜し洗液が中性になるまで洗浄し
た後、110℃の温度で乾燥した。(この溶出処理で約
5%の重量減少が起った。) 表1 この多孔質ガラスをシリカゲルおよび五酸化りんの上を
通して乾燥した空気の気流の中で600 ’Cに加熱し
、6時間脱水処理を行なった。この際の多孔質ガラスの
赤外線吸収スペクトルを測定したところ、3750cm
”にピークが認められた。
Comparative Example 1 Spherical porous glass manufactured according to the method of Japanese Patent Publication No. 62-25618, that is, having the following composition obtained by phase separation and elution treatment with acid, pore diameter 1095A, pore volume 0.63cm3/(Ill, surface area 23TIt/
1 g of glass containing 1 g of aluminum was immersed in 40 d of 1N sulfuric acid, subjected to extraction treatment under reflux at a temperature of 110° C. for 7 hours, and then washed with acid until the washing liquid became neutral. Dry at a temperature of °C. (This elution process resulted in a weight loss of approximately 5%.) Table 1 The porous glass was heated to 600'C in a stream of dry air over silica gel and phosphorus pentoxide and dehydrated for 6 hours. processed. When the infrared absorption spectrum of the porous glass was measured at this time, it was found to be 3750 cm
”A peak was observed.

この多孔体に、乾燥トルエン30mにアミノプロピルト
リエトキシシランを3d、メチルトリエトキシシランを
9dを含む混合液を注ぎ、これを加熱し、還流下、12
時間反応させた後、吸引濾過し、アスピレータ−で減圧
乾燥し、更に油回転真空ポンプで真空乾燥することによ
り担体を得た。この担体のピクリン酸定量によるアミノ
基量は27.7μモル/qであり、表面アミン基密度は
1.2μモル/TIiであった。また、この担体に結合
したヌクレオシド量は1グラム当たり4.0マイクロモ
ルであり、表面密度は1平方メートル当たり0.17μ
モルであった。
A mixed solution containing 30 ml of dry toluene, 3 d of aminopropyltriethoxysilane and 9 d of methyltriethoxysilane was poured into this porous body, heated, and heated under reflux for 12 ml.
After reacting for a period of time, the mixture was suction filtered, dried under reduced pressure using an aspirator, and further vacuum dried using an oil rotary vacuum pump to obtain a carrier. The amount of amino groups of this carrier determined by picric acid quantification was 27.7 μmol/q, and the surface amine group density was 1.2 μmol/TIi. In addition, the amount of nucleosides bound to this carrier is 4.0 micromol per gram, and the surface density is 0.17 μmol per square meter.
It was a mole.

比較例2 細孔径960A平均粒子径100μの高純度ホウ珪酸ガ
ラスより製造した球状の多孔体1oに、3−7ミノプロ
ピルトリエトキシシラン15dを精製トルエン35−に
溶かした溶液を加え、還流下、110℃の温度で30分
反応させたのち、水0.1dを加えその後、11時間遠
流を続け、次いで、冷却、濾過、洗浄、乾燥することに
より担体を製造した。この担体のアミン基の定量を行な
ったところ、414.9μモル/gであり、この表面ア
ミノ基密度は10.5μモル/Tdであった。
Comparative Example 2 A solution of 3-7 minopropyltriethoxysilane 15d dissolved in purified toluene 35- was added to a spherical porous body 1o made of high-purity borosilicate glass with a pore diameter of 960A and an average particle diameter of 100μ, and under reflux, After reacting at a temperature of 110° C. for 30 minutes, 0.1 d of water was added, followed by continuous distal flow for 11 hours, followed by cooling, filtration, washing, and drying to produce a carrier. When the amine groups on this carrier were quantified, it was found to be 414.9 μmol/g, and the surface amino group density was 10.5 μmol/Td.

5′水酸基をジメトキシトリチル基で保護したアデニン
ヌクレオシドを結合させた後、ジメトキシトリチル基の
脱離量でヌクレオシド担持量を測定すると、1グラム当
たり47.9μモル、表面密度は1平方メートル当たり
1.2μモルであった。
After bonding an adenine nucleoside whose 5' hydroxyl group is protected with a dimethoxytrityl group, the amount of nucleoside supported is measured by the amount of dimethoxytrityl group released, and it is 47.9 μmol per gram, and the surface density is 1.2 μm per square meter. It was a mole.

く核酸の合成例〉 合成例1 日本ゼオン製造の自動DNA合成装置GenetAII
lを用い、5′ジメトキシトリチルβ−シアノエチルホ
スホールアミダイトをテトラゾールを縮合剤として、上
記実施例1で製造した本発明の担体であるアミン化シリ
カゲルに結合させ、ヨードを用いて酸化してホスホール
基をヌクレオチドとする通常の方法で15マーのオリゴ
ヌクレオチドを合成した。このときに用いた塩基配列は
5゛GGCTGCTACTACTGA3’であった。
Synthesis example of nucleic acid> Synthesis example 1 Automatic DNA synthesizer GenetAII manufactured by Nippon Zeon
5' dimethoxytrityl β-cyanoethyl phosphoramidite was bonded to the aminated silica gel, which is the carrier of the present invention prepared in Example 1, using tetrazole as a condensing agent, and oxidized with iodine to form a phosphole group. A 15-mer oligonucleotide was synthesized by a conventional method using the nucleotide as the nucleotide. The base sequence used at this time was 5'GGCTGCTACTACTGA3'.

シリカゲル上に結合したヌクレオシド量を100として
各ステップ毎に回収されるジメトキシトリチル基の量を
図1に示す。157−の最終収率は77%であった。
The amount of dimethoxytrityl groups recovered in each step is shown in FIG. 1, with the amount of nucleoside bound on the silica gel being 100. The final yield of 157- was 77%.

合成例2 担体として、上記実施例2で製造した本発明の多孔質ガ
ラスよりなる担体を用いて合成例1と同様な塩基配列の
15マーを合成したところ、15マーの最終収率は87
%であった。また、合成経過について図2に示す。
Synthesis Example 2 When a 15-mer having the same base sequence as in Synthesis Example 1 was synthesized using the porous glass carrier of the present invention produced in Example 2 above as a carrier, the final yield of the 15-mer was 87.
%Met. Further, the synthesis progress is shown in FIG. 2.

合成例3 比較例1で得た、アルミニウムを含む組成の多孔質ガラ
スから熱酸によりアルくニウムを出来るだけ抽出したの
ち本発明の方法によって表面にアルキルアミノ基を結合
させた担体を用いて合成例1と同じ塩基配列の核酸を同
じようにして合成した結果、図3の合成経過であり、最
終収率は76%とかなり良好な結果を得た。
Synthesis Example 3 After extracting as much aluminium as possible from the porous glass containing aluminum obtained in Comparative Example 1 with a hot acid, synthesis was performed using a carrier having an alkylamino group bonded to the surface by the method of the present invention. A nucleic acid having the same base sequence as in Example 1 was synthesized in the same manner, and the synthesis progress was as shown in FIG. 3, with a final yield of 76%, which was quite good.

合成例4 比較例2で得たアミノアルキル基を過剰に結合させた担
体を用いて合成例1と同じ塩基配列の核酸を合成した結
果、図4に示すような合成経過であり、57−付近まで
急速に収率が低下した。
Synthesis Example 4 A nucleic acid having the same base sequence as Synthesis Example 1 was synthesized using the carrier obtained in Comparative Example 2 to which aminoalkyl groups were bound in excess, and the synthesis progress was as shown in FIG. The yield decreased rapidly.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第4図は合成例1〜4における各々の核酸合成
の合成経過を示すグラフである。
FIGS. 1 to 4 are graphs showing the synthesis progress of each nucleic acid synthesis in Synthesis Examples 1 to 4.

Claims (1)

【特許請求の範囲】[Claims] (1)二酸化ケイ素95%以上、酸化ホウ素5%以下、
酸化アルミニウム5%以下、その他の元素5%以下の組
成を有し、細孔径900〜2000Åで、しかも、直径
30〜200μの球状に成型された、シリカゲル、又は
スピノーダル分解の原理を利用して、分相処理とこれに
引き続く酸による溶出処理により多孔化して得た多孔質
ガラスを、有機溶媒中又は乾燥気流中において十分に脱
水した後、これをアルキルアミノ基をもつシランカップ
リング剤と反応させることにより、アルキルアミノ基を
0.3〜2.5μモル/m^2の割合でアルコキシシラ
ン基を介して表面の孤立型シラノール基に結合させるこ
とを特徴とする核酸合成用担体の製法。
(1) 95% or more silicon dioxide, 5% or less boron oxide,
Utilizing the principle of silica gel or spinodal decomposition, which has a composition of 5% or less of aluminum oxide and 5% or less of other elements, and is molded into a spherical shape with a pore diameter of 900 to 2000 Å and a diameter of 30 to 200 μ, The porous glass obtained by making it porous through phase separation treatment and subsequent acid elution treatment is sufficiently dehydrated in an organic solvent or in a dry air stream, and then reacted with a silane coupling agent having an alkylamino group. A method for producing a carrier for nucleic acid synthesis, characterized in that alkylamino groups are bonded to isolated silanol groups on the surface via alkoxysilane groups at a rate of 0.3 to 2.5 μmol/m^2.
JP1321658A 1989-12-12 1989-12-12 Method for manufacturing carrier for nucleic acid synthesis Expired - Fee Related JP2958338B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1321658A JP2958338B2 (en) 1989-12-12 1989-12-12 Method for manufacturing carrier for nucleic acid synthesis

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1321658A JP2958338B2 (en) 1989-12-12 1989-12-12 Method for manufacturing carrier for nucleic acid synthesis

Publications (2)

Publication Number Publication Date
JPH03181334A true JPH03181334A (en) 1991-08-07
JP2958338B2 JP2958338B2 (en) 1999-10-06

Family

ID=18134967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1321658A Expired - Fee Related JP2958338B2 (en) 1989-12-12 1989-12-12 Method for manufacturing carrier for nucleic acid synthesis

Country Status (1)

Country Link
JP (1) JP2958338B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028060A (en) * 2004-07-14 2006-02-02 Canon Inc Dna substrate, method for producing the same and collection system using the same
JPWO2017119503A1 (en) * 2016-01-08 2018-10-25 株式会社ジーンデザイン Nucleic acid synthesis carrier using inorganic porous material produced by sol-gel method
CN113631264A (en) * 2019-03-29 2021-11-09 住友化学株式会社 Inorganic porous support and method for producing nucleic acid using same
WO2021230293A1 (en) 2020-05-13 2021-11-18 住友化学株式会社 Inorganic porous substrate, inorganic porous support, and nucleic acid production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950695A4 (en) * 2019-03-29 2023-01-25 Sumitomo Chemical Company, Limited Method for producing rna

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006028060A (en) * 2004-07-14 2006-02-02 Canon Inc Dna substrate, method for producing the same and collection system using the same
JPWO2017119503A1 (en) * 2016-01-08 2018-10-25 株式会社ジーンデザイン Nucleic acid synthesis carrier using inorganic porous material produced by sol-gel method
CN113631264A (en) * 2019-03-29 2021-11-09 住友化学株式会社 Inorganic porous support and method for producing nucleic acid using same
WO2021230293A1 (en) 2020-05-13 2021-11-18 住友化学株式会社 Inorganic porous substrate, inorganic porous support, and nucleic acid production method
KR20230009901A (en) 2020-05-13 2023-01-17 스미또모 가가꾸 가부시끼가이샤 Inorganic porous substrate, inorganic porous carrier, and manufacturing method of nucleic acid

Also Published As

Publication number Publication date
JP2958338B2 (en) 1999-10-06

Similar Documents

Publication Publication Date Title
US4954599A (en) Formed, polymeric, tertiary or secondary organosiloxane amine compounds, methods of their preparation and use
EP1890964B1 (en) Mesocellular foam particles
JPH10236818A (en) Production of hollow spherical silicate cluster
AU2005268888B2 (en) Monolithic shaped bodies for purifying and separating biopolymers
JP2012153893A (en) Method for producing monolithic molded article
KR20140142343A (en) Process for producing aerogels
JPH0479976B2 (en)
JPH03181334A (en) Production of carrier for synthesis of nucleic acid
JPH0454617B2 (en)
KR101400787B1 (en) Method for preparing hydrophobic surface aerogel by using silica gel recovered from slag and aerogel prepared therefrom
JP2981861B2 (en) Method for producing metal oxide airgel
JPH0355408B2 (en)
JP2000239006A (en) Activated alumina compact for production of hydrogen peroxide, its production, and purification of operating liquid for production of hydrogen peroxide by using the same
JPH0483711A (en) Production of anhydrous silica
Ojeda et al. Incorporation of a tungsten Fischer-type metal carbene covalently bound to functionalized SBA-15
JPH11268923A (en) Production of silica gel, synthetic quartz glass powder and quartz glass molding
KR101644310B1 (en) Aluminosilicates structure, manufacturing method thereof and use using the same
CN115254050B (en) Method for removing residual monochlorosilane in trisilicon-based nitrogen
JPH10182144A (en) Mesoporous molecular sieve material
JPH0142886B2 (en)
JP2006088041A (en) Catalyst for hydrolysis of sugars, and hydrolysis method of sugars using the same
Luisetto et al. mRNA purification: Technology aspects and impurities
JPH0617398B2 (en) Stable boron resin with high selective absorption
JPH05246708A (en) Production for powdery dry gel, silica glass powder and silica glass fusion molded goods
RU2211183C2 (en) Anhydrous magnesium sulfate production process

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees