JPH03180754A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPH03180754A
JPH03180754A JP89319489A JP31948989A JPH03180754A JP H03180754 A JPH03180754 A JP H03180754A JP 89319489 A JP89319489 A JP 89319489A JP 31948989 A JP31948989 A JP 31948989A JP H03180754 A JPH03180754 A JP H03180754A
Authority
JP
Japan
Prior art keywords
oxygen
oxygen sensor
sensor
loss
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP89319489A
Other languages
Japanese (ja)
Other versions
JP2925196B2 (en
Inventor
Takafumi Kajima
孝文 鹿嶋
Hideo Yamamoto
秀男 山本
Katsuaki Nakamura
中村 克明
Atsunari Ishibashi
石橋 功成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1319489A priority Critical patent/JP2925196B2/en
Publication of JPH03180754A publication Critical patent/JPH03180754A/en
Application granted granted Critical
Publication of JP2925196B2 publication Critical patent/JP2925196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To improve response by providing a sensor constituting member contg. a low-dielectric material in the upper position of electrodes laminated on an ion conductor. CONSTITUTION:The sensor constituting member 10 contg. the low-dielectric material is provided in the upper position of the electrodes 2A, 2B laminated on the ion conductor 1. This sensor constituting member 10 is constituted of a packing material 11 provided on the platinum electrode 2A and a sealing material 12 covering the entire part of the packing material 11 formed of crystallized glass. The packing material 11 is formed by mixing steatite having, for example, 6.0 specific dielectric constant epsilon and 4X10<-4> loss angle of dielectric loss and the crystallized glass at 5:1 weight ratio. The electrostatic capacity of the sensor constituting member 10 is decreased in this way and the loss quantity of the oxygen ions moving in the electrodes is decreased.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、地下室の酸欠事故防止、ボイラなどの燃焼
管理等に使用される限界電流式の酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION "Field of Industrial Application" The present invention relates to a limiting current type oxygen sensor used for preventing oxygen deficiency accidents in basements, controlling combustion in boilers, etc.

「従来の技術j 近年、安定化ジルコニアからなる固体電解質を用いた限
界電流式の酸素センサが実用化されている。
``Conventional Technologyj'' In recent years, limiting current type oxygen sensors using solid electrolytes made of stabilized zirconia have been put into practical use.

この酸素センサは、第4図に示すように安定化ジルコニ
ア(例えば、z ro t−8y to 3)等のイオ
ン導電性を有する固体電解質により形成され、かつ中央
に上下に貫通する気体拡散孔IAが形成された薄厚なイ
オン導電体1と、このイオン導電体1の両面に設けられ
て、一定のセンサ監視電圧が印加される多孔質の白金電
極2A・2Bと、前記イオン導電体1の一方側に位置す
る白金電極2A上にガラス3A・3Aにより接合された
キャップ3と、前記イオン導電体lを加熱するヒータ4
とから構成されている。
As shown in Fig. 4, this oxygen sensor is made of a solid electrolyte having ionic conductivity such as stabilized zirconia (for example, ZRO t-8Y to 3), and has a gas diffusion hole IA that penetrates vertically in the center. a thin ionic conductor 1 formed with a thin ionic conductor 1; porous platinum electrodes 2A and 2B provided on both sides of the ionic conductor 1 to which a constant sensor monitoring voltage is applied; and one of the ionic conductors 1. A cap 3 bonded to a platinum electrode 2A located on the side by glass 3A, and a heater 4 for heating the ion conductor l.
It is composed of.

なお、上記キャップ3の構成材料としては、例えばジル
コニアなどが使用される。
Note that, as a constituent material of the cap 3, for example, zirconia or the like is used.

そして、このように構成された酸素センサては、イオン
】導電体1内において、酸素ポンピング作用により、気
体拡散孔IAから取り込まれた酸素がイオンとなって流
れ、このイオン電流の電流値から周囲の酸素濃度が測定
されるようになっている。
In the oxygen sensor configured as described above, oxygen taken in from the gas diffusion hole IA flows in the form of ions in the conductor 1 due to the oxygen pumping action, and the current value of this ionic current is used to determine the surrounding environment. The oxygen concentration is now measured.

「発明が解決しようとする課題」 ところで、上記のような酸素センサては、レスポンスの
改善がいくつかなされている。
"Problem to be Solved by the Invention" By the way, several improvements have been made in the response of the oxygen sensor described above.

例えば、使用温度を高めてイオンJり電性を向上させた
り、イオン導電体lの各面に位置する電極2A・2Bの
多孔質構造、厚み、成分等の改善がなされている。
For example, the use temperature has been raised to improve the ion conductivity, and the porous structure, thickness, composition, etc. of the electrodes 2A and 2B located on each surface of the ion conductor 1 have been improved.

しかしながら、このような改善では木た十分なレスポン
ス向上がなされたとはいえず、例えば第4図に示す酸素
センサの場合に、酸素l農度を0%から21%に上昇さ
せたときにレスポンスは10〜15secの範囲、酸素
濃度を21%から0%に低下させたときにレスポンスは
12〜17secの範囲であり、レスポンスの向上とい
った点で改良の余地が残されていた。
However, it cannot be said that these improvements have sufficiently improved the response. For example, in the case of the oxygen sensor shown in Figure 4, when the oxygen level is increased from 0% to 21%, the response is The response was in the range of 10 to 15 seconds, and when the oxygen concentration was lowered from 21% to 0%, the response was in the range of 12 to 17 seconds, leaving room for improvement in terms of improved response.

この発明は、上記の事情に鑑みてなされたものであって
、材料の面から改良してレスポンスの向上を図った酸素
センサの提供を目的とする。
The present invention has been made in view of the above-mentioned circumstances, and an object of the present invention is to provide an oxygen sensor whose response is improved by improving the material.

「課題を解決するための手段」 上記の目的を達成するために、本発明では、イオン導電
体の各面に所定の電圧が印加される電極を積層し、気体
拡散孔を通じて取り込んだ試料ガス中の酸素が、酸素ポ
ンピング作用により固体電解質中をイオンとなって流れ
、このイオン電流の電流値から周囲の酸素、農度が測定
される酸素センサにおいて、前記イオン導電体に積層さ
れた電極の上部位置に、低誘電性材料を含有したセンサ
構成部材を設けるようにしている。
"Means for Solving the Problems" In order to achieve the above object, in the present invention, electrodes to which a predetermined voltage is applied are stacked on each surface of an ionic conductor, and a sample gas taken in through a gas diffusion hole is Oxygen flows in the form of ions in a solid electrolyte due to the oxygen pumping action, and the surrounding oxygen and agricultural level are measured from the current value of this ionic current. A sensor component containing a low dielectric material is provided at the location.

「作用」 この発明によれば、イオン導電体に積層された電極の上
部位置に低誘電性材f−1を含有したセンサ構成部材、
例えばジルコニアより比誘電率の低いアルミナ、ステア
タイト、フォルステライトなどの低誘電性材料を含有し
た充填材、封+h材を設けることにより、前記センサ構
成部材の静電容量を小さくすることができ、これにより
、電極内を移動する酸素イオンの損失遣を小さくするこ
とかできる。
"Function" According to the present invention, a sensor component containing a low dielectric material f-1 at an upper position of an electrode laminated on an ionic conductor;
For example, by providing a filler or sealing material containing a low dielectric material such as alumina, steatite, or forsterite, which has a dielectric constant lower than that of zirconia, the capacitance of the sensor component can be reduced, This makes it possible to reduce the loss of oxygen ions moving within the electrode.

「実施例」 本発明の第1実施例を第1図を参照して説明する。なお
、本実施例に示す酸素センサは、「従来の技術」に示す
酸素センサと基本構成が同一であるので、構成を共通と
する箇所に同一符号を付し説明を簡略化する。
"Embodiment" A first embodiment of the present invention will be described with reference to FIG. The oxygen sensor shown in this embodiment has the same basic configuration as the oxygen sensor shown in "Prior Art", so the same reference numerals are given to parts having the same structure to simplify the explanation.

まず、本実施例に示す酸素センサか「従来の技術」に示
す酸素センサと構成を異にするのは、イオン導電体Iに
積層された白金電極2A上に低1誘電性材料を含有した
センサ構成部材10が設けられている点である。
First, the difference in configuration between the oxygen sensor shown in this example and the oxygen sensor shown in "prior art" is that the sensor contains a low dielectric material on the platinum electrode 2A laminated on the ion conductor I. This is because the component 10 is provided.

このセンサ構成部材10は、白金電極2A上に設けられ
た充填材11と、結晶化ガラスにより形成され、前記充
填材itを全体的に覆う封止材I2とから構成されてい
る。
This sensor component 10 is composed of a filler 11 provided on a platinum electrode 2A, and a sealing material I2 made of crystallized glass and covering the filler it entirely.

前記充填材11は、比誘電率εが6.0 、誘電損失の
損失角(tanδ)か4XIO−’であるステアタイト
(MgO−3iO,に近い組成のセラミックス)と、結
晶化ガラスとを5:lの重量比で混Bしたちのである。
The filler 11 is made of steatite (ceramic with a composition close to MgO-3iO) with a dielectric constant ε of 6.0 and a dielectric loss angle (tan δ) of 4XIO-', and crystallized glass. It is mixed with B at a weight ratio of :l.

なお、前記充填材11に添加されている結晶化ガラスは
単なる充填材として使用しても良く、また、焼成してス
テアタイトの粉末粒子を互いに結きさせるパインタとし
て使用してち良い。
Incidentally, the crystallized glass added to the filler 11 may be used simply as a filler, or may be used as a pincer that binds the steatite powder particles together by firing.

そして、このような組成の充填材11を用いた酸素セン
サでは、酸素濃度を0%から21%に上界させたときに
レスポンスは3〜5sec、/iQ素濃度を21%から
0%に低下させたときにレスポンスは2〜4 secと
なり、レスポンスが大幅に向上したことか実験により確
認され−Cいる(ヒータ11の加熱温度は450 ’C
に設定)。
In an oxygen sensor using the filler 11 with such a composition, when the oxygen concentration is increased from 0% to 21%, the response is 3 to 5 seconds, and the /iQ elementary concentration is decreased from 21% to 0%. The response time was 2 to 4 seconds, and it was confirmed through experiments that the response was significantly improved (the heating temperature of the heater 11 was 450'C).
).

なお、前記充填材11の成分に、従来使用されていたジ
ルコニア(比誘電率εか30、誘電損失の損失角(ta
nδ)が40X]O−’)と比較して比誘電率ε、誘電
損失の損失角(tanδ)の低いステアタイトを使用し
たが、これは、前記充填(イ11の静電容量及び誘電損
失を全体的に小さくすることにより、白金電極2A内を
移動する酸素イオンの充填材11に対する損失を小さく
することかでき、これにより白金型fM 2 A〜2B
間の電流(2達速度の(氏子を防止し、レスポンスの向
上が図られろからである。
In addition, the components of the filler 11 include zirconia (relative dielectric constant ε or 30, loss angle of dielectric loss (ta), which has been conventionally used).
We used steatite, which has a lower dielectric constant ε and a lower loss angle (tan δ) of dielectric loss than that of 40 By making the entire platinum mold fM 2 A to 2B smaller, the loss of oxygen ions moving within the platinum electrode 2A to the filler 11 can be reduced.
This is because it is possible to prevent the current between the two (double speed) parishioners and improve the response.

本発明の第2実施例を第2図を参照して説明する。この
実施例に示す酸素センサか、第1実施例に示す酸素セン
サと構成を兄にする点は、イオン導電体1の上部に設け
られたセンサ構成部材に3である。
A second embodiment of the present invention will be described with reference to FIG. The oxygen sensor shown in this embodiment has a structure similar to that of the oxygen sensor shown in the first embodiment in that the sensor component provided on the upper part of the ion conductor 1 is 3.

このセンサ構成部材13は、内側に空間部14を有する
二層の封止材I5・16により構成されるものであって
、内側に1立置する封止材15は/ルコニアに結晶化ガ
ラスを例えば106〜201の割合でl見合して焼成し
たものであり、また、外側に位置する封止材16は結晶
化カラスにステアタイトを例えば1003  の割合で
解合したものである。
This sensor component 13 is composed of two layers of sealing material I5 and 16 having a space 14 inside, and the sealing material 15 placed vertically inside is made of crystallized glass on luconia For example, it is fired at a ratio of 106 to 201 parts, and the sealing material 16 located on the outside is made by dissolving steatite into crystallized glass at a ratio of 1003 parts, for example.

なお、前記外側の封止材16に添加したステアタイトは
、第1実施例で示したステアタイトと同様に、ジルコニ
アと比較して比誘電率ε、誘雷損失の損失Iff(ta
nδ)か低いものである。
Note that, similar to the steatite shown in the first embodiment, the steatite added to the outer sealing material 16 has a relative permittivity ε and dielectric loss loss Iff (ta) compared to zirconia.
nδ) is low.

そして、このように構成された酸素センサては、酸素、
!E度を0%から21%に」二層させたときにレスポン
スは7〜8sec、酸素濃度を21%から0%に低下さ
せたときにレスポンスは6〜8 secとなり、従来の
酸素センサと比較してレスポンスが改善されたことが確
認された〈ヒータ4の加熱温度は450℃に設定)。
The oxygen sensor configured in this way has oxygen,
! The response is 7 to 8 seconds when the E degree is increased from 0% to 21% in two layers, and the response is 6 to 8 seconds when the oxygen concentration is decreased from 21% to 0%, compared to conventional oxygen sensors. It was confirmed that the response was improved (heating temperature of heater 4 was set at 450°C).

なお、前記封止材15・16の内側には空間部14か形
成されているか、この空間部14は(−)まず白金電極
2A上にカーホンその池の有機物を塗布し、(ニ)更に
その上に、商運したように封止材15の原打料である、
/ルコニアに結晶化ガラスを例えば10・6〜20:1
の割合でi =したものを塗布し、(三)前記カーボン
その池の有機物を一定温度以上で加熱してカス化させる
ことにより得られるものである(このときのガスは、加
熱することでポーラス体に形成された封止材15を通じ
て外部に放出される)。
It should be noted that a space 14 is formed inside the sealing materials 15 and 16.This space 14 is formed by (-) first applying an organic matter of carbon dioxide on the platinum electrode 2A, and (d) further applying the organic matter to the platinum electrode 2A. As mentioned above, it is the raw material for the sealing material 15,
/ Luconia and crystallized glass, for example, 10.6 to 20:1
It is obtained by coating the carbon at a ratio of i = (3) heating the organic matter in the carbon pond above a certain temperature to form a scum. (is released to the outside through a sealant 15 formed on the body).

そして、このように封止材15の内側に空間部14が形
成されたならば、更に、該封止材15の上面に、該封止
材15の全体を覆うように前記封止材16を塗布により
設けるようにしている。
Once the space 14 is formed inside the sealing material 15 in this way, the sealing material 16 is further placed on the upper surface of the sealing material 15 so as to cover the entirety of the sealing material 15. It is installed by coating.

本発明の第3実施例を第3図を参p、<< して説明す
る。この実施例に示す酸素センサか、第2実施例に示す
酸素センサと構成を児にする点は、二層のi4 +1:
材17・18により形成されたセンサ構成部材19の成
分である。
A third embodiment of the present invention will be described with reference to FIG. The structure of the oxygen sensor shown in this embodiment is similar to that of the oxygen sensor shown in the second embodiment.
This is a component of the sensor component 19 formed of materials 17 and 18.

前記センサ構成部材19の内、内側の封lL材17は結
晶化ガラスとフォルステライト(2MgO・5in2)
とを15のCQ 量比でdL合したちのであり、また、
外側の封止材18は全て結晶化カラスにより構成したも
のである。
The inner sealing material 17 of the sensor component 19 is made of crystallized glass and forsterite (2MgO・5in2).
and are combined in dL at a CQ ratio of 15, and
The outer sealing material 18 is entirely made of crystallized glass.

なお、ここて使cm したフォルステライトは、比1透
電率εか6、誘電1i失の損失角(tanδ)か5×1
0−4でありジルコニアと比較して比誘電率ε、誘電損
失の損失角(tanδ)が低いしのである。
The forsterite used here has a specific conductivity of ε or 6, and a dielectric loss angle (tan δ) of 5×1.
0-4, which means that the dielectric constant ε and dielectric loss angle (tan δ) are lower than those of zirconia.

そして、このように構成された酸素センサでは、酸素濃
度を0%から21%に上昇させたときにレスポンスは4
〜5sec、酸素l15度を21%から0%に低下させ
たときにレスポンスは3〜5 secとなり、従来の酸
素センサと比較してレスポンスか改善されたことか確認
された(ヒータ4の加熱、11A度を450’Cに設定
)。
In the oxygen sensor configured in this way, the response is 4 when the oxygen concentration is increased from 0% to 21%.
~5 seconds, and when the oxygen level was lowered from 21% to 0%, the response was 3 to 5 seconds, confirming that the response was improved compared to the conventional oxygen sensor (heating of heater 4, 11A degrees set to 450'C).

なお、上記第1実施例〜第3実施例では、センサ構成部
材10・13・19内にステアタイト、フォルステライ
トを添加したが、ステアタイト、フォルステライトと同
様にジルコニアより比誘型中ε1.涛電損失の損失角(
tanδ)か低いアルミナを選択してち良い。また、上
記第1実施(ガロこ示す酸素センサでは、白金電極2A
と封止材12との間の充填材11に少量の結晶化ガラス
を添加したが、焼成せず粉末の状態であるならば全てス
テアタイトであっても良い。
In the first to third embodiments described above, steatite and forsterite were added to the sensor component members 10, 13, and 19, but similar to steatite and forsterite, zirconia had a dielectric constant of ε1. Loss angle of surge loss (
It is best to select alumina with a low tan δ). In addition, in the oxygen sensor shown in the first embodiment (Garo), the platinum electrode 2A
Although a small amount of crystallized glass is added to the filler 11 between the filler 11 and the sealant 12, it may be entirely steatite as long as it is in a powder state without being fired.

また、」1記第1実施例〜第3実施到では、センサ構成
部材10・13・19の形状を四角に形成したが、これ
に限定されずドーム状に形成しても良い。
Furthermore, in the first to third embodiments described in Section 1, the sensor component members 10, 13, and 19 are formed into a square shape, but are not limited to this and may be formed into a dome shape.

また、上記第1実施例〜第3実施例で示す比誘電率ε、
1秀電損失の損失角(tanδ)は室温(25°C)に
より1制定したものである。
In addition, the relative permittivity ε shown in the first to third examples above,
The loss angle (tan δ) of 1 Shuden loss is determined by 1 at room temperature (25° C.).

「発明の効果」 以」二層*lIIに説明したように、この発明によれば
、イオン導電体に積層された電極の上部に低誘1且性材
料を含有したセンサ構成部材、例えばジルコニアより比
誘電率の低いアルミナ、ステアタイト、フォルステライ
トなどを含有した封止材を設けることにより、前記セン
サ構成部材の静電容量を小さくすることができ、これに
より、電極内を移動する酸素イオンの損失量を小さくす
ることができ、該電極の電流伝達速度の低下を防止しレ
スポンスの向上を図ることができるという効眼が?it
られる。
``Effects of the Invention'' As explained in ``2 Layer'' II, according to the present invention, a sensor component containing a low dielectric constant material, such as zirconia, is formed on the upper part of the electrode laminated on the ionic conductor. By providing a sealing material containing alumina, steatite, forsterite, etc. with a low dielectric constant, the capacitance of the sensor component can be reduced, thereby reducing the amount of oxygen ions moving within the electrode. The benefit is that it can reduce the amount of loss, prevent the current transmission speed of the electrode from decreasing, and improve the response. it
It will be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図は本発明の第1実施例〜第3実施到をそ
れぞれ示す正断面図、第4図は従来の酸素センサを示す
正断面図である。 l・・・・・・イオン導電体、IA・・・・拡散拡散孔
、2A・2B・・・・電極、lO・13・19・・ セ
ンサ構成部材。
1 to 3 are front sectional views showing first to third embodiments of the present invention, respectively, and FIG. 4 is a front sectional view showing a conventional oxygen sensor. l...Ion conductor, IA...diffusion hole, 2A/2B...electrode, lO/13/19...sensor component.

Claims (1)

【特許請求の範囲】 イオン導電体の各面に所定の電圧が印加される電極を積
層し、気体拡散孔を通じて取り込んだ試料ガス中の酸素
が、酸素ポンピング作用により固体電解質中をイオンと
なって流れ、このイオン電流の電流値から周囲の酸素濃
度が測定される酸素センサにおいて、 前記イオン導電体に積層された電極の上部位置に低誘電
性材料を含有したセンサ構成部材が設けられていること
を特徴とする酸素センサ。
[Claims] Electrodes to which a predetermined voltage is applied are laminated on each surface of the ionic conductor, and oxygen in the sample gas taken in through the gas diffusion holes becomes ions in the solid electrolyte due to the oxygen pumping action. In the oxygen sensor in which the ambient oxygen concentration is measured from the current value of this ionic current, a sensor component containing a low dielectric material is provided above the electrode laminated on the ionic conductor. An oxygen sensor featuring:
JP1319489A 1989-12-08 1989-12-08 Oxygen sensor Expired - Fee Related JP2925196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1319489A JP2925196B2 (en) 1989-12-08 1989-12-08 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1319489A JP2925196B2 (en) 1989-12-08 1989-12-08 Oxygen sensor

Publications (2)

Publication Number Publication Date
JPH03180754A true JPH03180754A (en) 1991-08-06
JP2925196B2 JP2925196B2 (en) 1999-07-28

Family

ID=18110782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1319489A Expired - Fee Related JP2925196B2 (en) 1989-12-08 1989-12-08 Oxygen sensor

Country Status (1)

Country Link
JP (1) JP2925196B2 (en)

Also Published As

Publication number Publication date
JP2925196B2 (en) 1999-07-28

Similar Documents

Publication Publication Date Title
KR100464466B1 (en) Sensor element and its manufacturing method
WO2020246174A1 (en) Method for manufacturing gas sensor element, gas sensor element, and gas sensor
CN108700546A (en) Gas sensor element
US4183798A (en) Stabilized zirconium dioxide compositions and oxygen sensors utilizing said compositions
US5421984A (en) Oxygen concentration sensor
US6203678B1 (en) Solid electrolyte sensor for measuring gaseous anhydrides
US6086948A (en) Process for manufacturing ceramic, diffusion-limiting layers and use of these layers
KR100322981B1 (en) Insulation layer system for circuit electrical insulation
JPH03180754A (en) Oxygen sensor
US20040040846A1 (en) Sensor element
US3974054A (en) Measuring cell for determining oxygen concentrations in a gas mixture
US6888109B2 (en) Heating device
KR102302837B1 (en) Sensor element for detecting at least one property of a measured gas in a measured gas chamber, and method for producing same
GB2087569A (en) Oxygen sensor element having thin layer of stabilized zirconia sintered on substrate
JPS6311847A (en) Air/fuel ratio detecting element
KR100327079B1 (en) Electrochemical sensor with sensor element
JPS62179653A (en) Threshold current type oxygen sensor
JP2005520766A (en) Insulating material and gas sensor
US8921738B2 (en) Gas sensor heating device insulation
JPH1062378A (en) Oxygen sensor
JPH03267751A (en) Oxygen sensor
JPH03180755A (en) Oxygen sensor
JPS59116536A (en) Humidity sensor
JP2812524B2 (en) Oxygen sensor
JP2866396B2 (en) Manufacturing method of limiting current type oxygen sensor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees