JPH0318069A - Semiconductor photosensor - Google Patents

Semiconductor photosensor

Info

Publication number
JPH0318069A
JPH0318069A JP1151896A JP15189689A JPH0318069A JP H0318069 A JPH0318069 A JP H0318069A JP 1151896 A JP1151896 A JP 1151896A JP 15189689 A JP15189689 A JP 15189689A JP H0318069 A JPH0318069 A JP H0318069A
Authority
JP
Japan
Prior art keywords
light receiving
light
energy gap
receiving part
receiving device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1151896A
Other languages
Japanese (ja)
Inventor
Shigeru Nagao
長尾 茂
Hideyuki Sugiura
秀幸 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP1151896A priority Critical patent/JPH0318069A/en
Publication of JPH0318069A publication Critical patent/JPH0318069A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To get photosensitivity which is stable over a board wave length region by detecting the light of short wave-length with an upper photosensor where the energy gap of a light receiving part is greater, and detecting the light of long wavelength with a lower photosensor where the energy gap of the light receiving part is smaller. CONSTITUTION:This has such constitution that two or more kinds of semiconductor photosensors are arranged vertically, that the energy gap of the light receiving part existing above is larger than that of the light receiving part existing below, and that the center axis of the light receiving window of each photosensor is almost aligned. And since elements are electrically separated completely with an insulating film 7, they can be operated separately by arranging independent electrode terminals 17-20. Hereby, photosensitivity, which is stable over the range of a road wavelength, can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体受光装置に関し、特にSiおよび化合物
半導体で形成された受光装置および発光装置の光半導体
素子のチップ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor light-receiving device, and more particularly to a chip structure of an optical semiconductor element of a light-receiving device and a light-emitting device formed of Si and compound semiconductors.

従来の技術 光通信技術の発展にともない、近年、化合物半導体で形
戒された高性能で高信頼性のある受発光装置の研究開発
が行なわれている。
BACKGROUND OF THE INVENTION With the development of optical communication technology, research and development has been conducted in recent years on high performance and highly reliable light receiving and emitting devices made of compound semiconductors.

従来、例えば受光装置の場合には、0.85μm帯の光
検出としては、受光径φ100〜400μmの大きさを
持つSi−PINフォトダイオードを用い、波長λ=0
.85μmで量子効率70%、遮断周波数1 0 0M
Hz〜IGtlzの素子が実現されている。これよりも
長波長帯では、GeあるいはInGaAs−PINフォ
トダイオードが実用化されており、波長λ−1.3μm
で量子効率70%、遮断周波数100MHz〜I GH
zの特性が得られている。
Conventionally, for example, in the case of a light receiving device, a Si-PIN photodiode with a receiving diameter of φ100 to 400 μm is used to detect light in the 0.85 μm band, and the wavelength λ=0.
.. Quantum efficiency 70% at 85μm, cutoff frequency 100M
Hz to IGtlz elements have been realized. In a wavelength band longer than this, Ge or InGaAs-PIN photodiodes have been put into practical use, and have a wavelength of λ-1.3 μm.
quantum efficiency 70%, cutoff frequency 100MHz ~ IGH
The characteristics of z have been obtained.

また、受光装置の場合にも同様に、0,85μm帯とし
ては、GaAi!As高速LEDが、1.3μm帯とし
ては、InGaAsP高速LEDが既に実現化されてお
り、通信ケーブル網を初めとする光伝送分野に広く採用
されている。
Similarly, in the case of a light receiving device, as for the 0.85 μm band, GaAi! As for As high-speed LEDs, InGaAsP high-speed LEDs have already been realized in the 1.3 μm band, and are widely used in optical transmission fields including communication cable networks.

発明が解決しようとする課題 以上のような秀れた特性を有する発受光素子を単独で用
いると、Si−PINフォトダイオードの場合には、波
長1.1μm以下の範囲では、充分な受光感度と遮断周
波数が確保され、安定な動作特性を示すが、波長1.2
μm以上の範囲に対しては、結晶自体の持つ吸収係数が
、急激に低下するため、受光感度の低下が著しい。
Problems to be Solved by the Invention When a light emitting/receiving element having excellent characteristics as described above is used alone, in the case of a Si-PIN photodiode, sufficient light receiving sensitivity can be achieved in the wavelength range of 1.1 μm or less. Although the cutoff frequency is secured and stable operating characteristics are exhibited, the wavelength is 1.2.
In the range of .mu.m or more, the absorption coefficient of the crystal itself decreases rapidly, resulting in a significant decrease in light-receiving sensitivity.

このような理由から、光結合器などで、0.85μm帯
の光ファイバ通信網と、1.3μm帯の光ファイバ通信
網を結合することができず、各々独立した伝送回路系を
使用せざるを得ない状況となっている。
For these reasons, it is not possible to combine the 0.85 μm band optical fiber communication network with the 1.3 μm band optical fiber communication network using an optical coupler, and it is necessary to use independent transmission circuit systems for each. We are in a situation where we are unable to obtain any benefits.

一方、1.3μm帯の光検出では、前述のようにGeあ
るいはInGaAs長波長PINフォトダイオードが実
用化されており、1.0μm以上の波長領域では、高速
の信号検出が可能で受光感度も充分あるものの、0.8
5μm付近では、結晶の持つ吸収係数が非常に大きく、
Pn接合をたとえ浅く作ったとしても受光感度の大幅な
低下は避けられない。
On the other hand, for light detection in the 1.3 μm band, Ge or InGaAs long-wavelength PIN photodiodes have been put into practical use as mentioned above, and in the wavelength region of 1.0 μm or more, high-speed signal detection is possible and light receiving sensitivity is sufficient. Although there is, 0.8
At around 5 μm, the absorption coefficient of the crystal is very large.
Even if the Pn junction is made shallow, a significant drop in light-receiving sensitivity cannot be avoided.

以上のように、一台の受光装置で、0.6μm〜1.6
μmにおよぶ大幅な波長範囲にわたって、高い受光感度
と高い応答性を持つ受光装置を実現することは非常に困
難である。
As mentioned above, with one light receiving device, 0.6 μm to 1.6 μm
It is extremely difficult to realize a light receiving device that has high light receiving sensitivity and high responsiveness over a wide wavelength range of μm.

本発明は、このような問題点をかえりみて、たとえば広
い波長領域にわたって安定した受光感度を持つ受光装置
を実現化できる方法を提供するものである。
The present invention takes these problems into consideration and provides a method for realizing a light receiving device having stable light receiving sensitivity over a wide wavelength range, for example.

課題を解決するための手段 この目的を達成するために本発明の半導体装置は、2種
類以上の半導体受光装置を縦方向に配列し、上部に存在
する受光部のエネルギーギャップが下部に存在する受光
部のエネルギーギャップより大きく、各々の受光装置の
受光窓の中心軸が(ほぼ)一致している構成を有してい
る。
Means for Solving the Problems In order to achieve this object, the semiconductor device of the present invention has two or more types of semiconductor light receiving devices arranged in the vertical direction, and the energy gap of the light receiving part existing in the upper part is replaced by the light receiving part existing in the lower part. The central axes of the light-receiving windows of each light-receiving device are (almost) aligned.

作用 この構成によって、短波長の光に対しては受光部のエネ
ルギーギャップが大きい上部の受光装置により検知し、
長波長の光に対しては受光部のエネルギーギャップの小
さい下部の受光装置により検知し、広い波長領域の光を
1つの受光装置により検知することができる。
Effect: With this configuration, short wavelength light is detected by the upper light receiving device, which has a large energy gap in the light receiving section.
Long wavelength light can be detected by a lower light receiving device with a small energy gap in the light receiving section, and light in a wide wavelength range can be detected by one light receiving device.

実施例 本発明の半導体受光装置の実施例を第1図に示した受光
装置の断面図を参照して説明する。
Embodiment An embodiment of the semiconductor light receiving device of the present invention will be described with reference to the sectional view of the light receiving device shown in FIG.

第1図は、液相成長法により作威された長波長InGa
AsPINフォトダイオード9の上に絶縁膜層7を介し
てSiPINフォトダイオード10が接着された構造で
ある。
Figure 1 shows long-wavelength InGa produced by liquid phase growth.
In this structure, a SiPIN photodiode 10 is bonded onto an AsPIN photodiode 9 with an insulating film layer 7 interposed therebetween.

5〜8 X 1 0111(!lm−3のSがドーブさ
れたnInP基板lの上に、n形のInP層2が形威さ
れ、このn−1nP層2の上に直径80μmのn−In
GaAs層3,P”−1nGaAs層4が形成されてい
る。そして、P”−1nGaAs層4上に反射防止膜5
がコートされている。TiAuで形成されたP型オーミ
ック電極6の上に絶縁膜7が形成され、この上にSnを
含む接着金属8が載っている。
An n-type InP layer 2 is formed on an nInP substrate l doped with S of 5 to 8
A GaAs layer 3 and a P''-1nGaAs layer 4 are formed.An antireflection film 5 is formed on the P''-1nGaAs layer 4.
is coated. An insulating film 7 is formed on a P-type ohmic electrode 6 made of TiAu, and an adhesive metal 8 containing Sn is placed on this.

このような構造を持つ長波長PINフォトダイオード9
の上部に受光領域の中心を合わせた短波長PINフォト
ダイオード10が搭載されている。
Long wavelength PIN photodiode 9 with such a structure
A short wavelength PIN photodiode 10 whose light receiving area is centered is mounted on the top of the photodiode.

n型Si基板(比抵抗1〜3Ω・cm)11上に高比抵
抗層12(300〜500Ω・cm)を有し、この一部
を拡散によりP型層13を形成している。14.15は
P型およびn型オーミック電極である。素子全体は表面
保護を目的としてSi02膜16でおおわれた構造であ
る。P型層13の直下のn型Si基板11には、n型オ
ーミック金属15を付けず、長波長の光が透過できるよ
うφ300μmの凹部が設けられている。
A high resistivity layer 12 (300 to 500 Ω·cm) is formed on an n-type Si substrate 11 (specific resistance 1 to 3 Ω·cm), and a P-type layer 13 is formed by diffusion. 14.15 are P-type and n-type ohmic electrodes. The entire device is covered with a Si02 film 16 for surface protection. Immediately below the P-type layer 13, the n-type Si substrate 11 is not provided with the n-type ohmic metal 15, and a recessed portion having a diameter of 300 μm is provided so that long wavelength light can pass therethrough.

これらの長波長PINフォトダイオード9とSi−PI
Nフォトダイオード10は、前述したSnを含むA u
 / S n合金8によって、接着されている。
These long wavelength PIN photodiodes 9 and Si-PI
The N photodiode 10 includes the aforementioned Sn-containing A u
/Sn alloy 8 is used for adhesion.

Si−PINフォトダイオード単体の特性は、バで、量
子効率n=70%,暗電流1 d=o. l nA,遮
断周波数fc=300MHzである。
The characteristics of a single Si-PIN photodiode are as follows: quantum efficiency n=70%, dark current 1, d=o. l nA, cutoff frequency fc = 300 MHz.

長波長PINフォトダイオード単体の特性は、波長λ=
1.3μmで量子効率η=70%,暗電流1d=1nA
,遮断周波数fc=500MHzである。
The characteristics of a single long wavelength PIN photodiode are as follows: wavelength λ=
At 1.3μm, quantum efficiency η = 70%, dark current 1d = 1nA
, cutoff frequency fc=500MHz.

これらの素子は、絶縁膜7によって、電気的に完全に分
離されているので、全く独立した電極端子17〜20を
配置することによって、別々に動作させることが可能で
あり、上部に接着されたSi−PINフォトダイオード
のみを動作させることも、また、下部に存在する長波長
PINフォトダイオードのみを単独で動作させることも
可能である。
Since these elements are completely electrically isolated by the insulating film 7, they can be operated separately by arranging completely independent electrode terminals 17 to 20, and the It is also possible to operate only the Si-PIN photodiode or to operate only the long wavelength PIN photodiode located below.

さらに、Siの熱膨脹係数(2.5X10−6deg 
’)とInPの熱膨脹係数(4.75X10−6deg
)は、ほぼ近い値であり、熱圧着工程における結晶の歪
み等も少なく、高信頼性を有している。
Furthermore, the coefficient of thermal expansion of Si (2.5X10-6deg
') and the coefficient of thermal expansion of InP (4.75X10-6deg
) are almost close values, there is little crystal distortion during the thermocompression bonding process, and the reliability is high.

なお実施例において上部の受光装置をSiPINフォト
ダイオード、下部の受光装置をI nGaAs−P I
Nフォトダイオードとじたが、地の材料を使った受光装
置、たとえば、SiとGe.InPとInGaAsなど
の組み合わせとしてもよいことは言うまでもない。また
2種類以上の受光装置を組み合わせれば、さらに広い波
長領域の光を検知することができる。
In this example, the upper light receiving device is a SiPIN photodiode, and the lower light receiving device is an InGaAs-PI photodiode.
N photodiodes are used, but photodetectors using basic materials, such as Si and Ge. Needless to say, a combination of InP and InGaAs may also be used. Furthermore, by combining two or more types of light receiving devices, it is possible to detect light in an even wider wavelength range.

発明の効果 本発明の半導体受光装置によれば、広い波長範囲にわた
って安定した受光感度を有する素子を実現することがで
きる。
Effects of the Invention According to the semiconductor light receiving device of the present invention, an element having stable light receiving sensitivity over a wide wavelength range can be realized.

また、2つの受光部分が上,下方向に近接して配置され
ており、両者の光軸等を別々に調整する必要がなく光軸
調整が容易である。
Further, since the two light receiving portions are arranged close to each other in the upper and lower directions, there is no need to separately adjust the optical axes of both parts, making it easy to adjust the optical axes.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例における半導体受光装置の断
面図である。 1・・・・・・n−1nP基板、2・・・・・・n−1
nP層、3・・・・・・n−1nGaAs層、4・・・
・・・P+InGaAs層、5・・・・・・反射防止膜
、6・・・・・・P電極(TiAu)、7・・・・・・
絶縁膜、8・・・・・・Snを含む接着金属、9・・・
・・・長波長PINフォトダイオード部分、IO・・・
・・・SiPINフォトダイオード部分、11・・・・
・・n−Si基板、12・・・・・・高比抵抗層、l3
・・・・・・P−Si層、14・・・・・・P電極、1
5・・・・・・N電極、l6・・・・・・表面保護膜、
■7〜20・・・・・・電極端子。
FIG. 1 is a sectional view of a semiconductor light receiving device in one embodiment of the present invention. 1...n-1nP substrate, 2...n-1
nP layer, 3...n-1nGaAs layer, 4...
... P+InGaAs layer, 5 ... Antireflection film, 6 ... P electrode (TiAu), 7 ...
Insulating film, 8... Adhesive metal containing Sn, 9...
...Long wavelength PIN photodiode part, IO...
...SiPIN photodiode part, 11...
...n-Si substrate, 12... High resistivity layer, l3
...P-Si layer, 14 ...P electrode, 1
5... N electrode, l6... surface protective film,
■7-20... Electrode terminal.

Claims (3)

【特許請求の範囲】[Claims] (1)2種類以上の半導体受光装置を縦方向に配列し、
上部に存在する受光部のエネルギーギャップが下部に存
在する受光部のエネルギーギャップより大きいことを特
徴とする半導体受光装置。
(1) Two or more types of semiconductor photodetectors are arranged vertically,
1. A semiconductor light-receiving device characterized in that an energy gap of a light-receiving section located in an upper part is larger than an energy gap of a light-receiving part located in a lower part.
(2)2種類以上の半導体受光装置の受光窓の中心軸を
実質的に一致させ、スズ(Sn)を含む合金により接着
されていることを特徴とする特許請求範囲第1項記載の
半導体受光装置。
(2) The semiconductor light receiving device according to claim 1, wherein the central axes of the light receiving windows of two or more types of semiconductor light receiving devices are made to substantially coincide with each other and are bonded together with an alloy containing tin (Sn). Device.
(3)縦方向に配列された各々の受光装置が絶縁膜を介
して電気的に接続されていることを特徴とする特許請求
範囲第1項または第2項記載の半導体受光装置。
(3) The semiconductor light receiving device according to claim 1 or 2, wherein the light receiving devices arranged in the vertical direction are electrically connected via an insulating film.
JP1151896A 1989-06-14 1989-06-14 Semiconductor photosensor Pending JPH0318069A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1151896A JPH0318069A (en) 1989-06-14 1989-06-14 Semiconductor photosensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1151896A JPH0318069A (en) 1989-06-14 1989-06-14 Semiconductor photosensor

Publications (1)

Publication Number Publication Date
JPH0318069A true JPH0318069A (en) 1991-01-25

Family

ID=15528563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1151896A Pending JPH0318069A (en) 1989-06-14 1989-06-14 Semiconductor photosensor

Country Status (1)

Country Link
JP (1) JPH0318069A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373182A (en) * 1993-01-12 1994-12-13 Santa Barbara Research Center Integrated IR and visible detector
WO2011007703A1 (en) * 2009-07-13 2011-01-20 浜松ホトニクス株式会社 Photodetector
JP4897675B2 (en) * 2004-07-01 2012-03-14 グレート スタッフ インコーポレイテッド System and method for controlling the winding of a linear tool

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593275A (en) * 1979-01-09 1980-07-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light wave separating detector
JPS60251678A (en) * 1984-05-28 1985-12-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-receiving element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5593275A (en) * 1979-01-09 1980-07-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light wave separating detector
JPS60251678A (en) * 1984-05-28 1985-12-12 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light-receiving element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5373182A (en) * 1993-01-12 1994-12-13 Santa Barbara Research Center Integrated IR and visible detector
JP4897675B2 (en) * 2004-07-01 2012-03-14 グレート スタッフ インコーポレイテッド System and method for controlling the winding of a linear tool
WO2011007703A1 (en) * 2009-07-13 2011-01-20 浜松ホトニクス株式会社 Photodetector
JP2011023400A (en) * 2009-07-13 2011-02-03 Hamamatsu Photonics Kk Photodetector
CN102473790A (en) * 2009-07-13 2012-05-23 浜松光子学株式会社 Photodetector
US8564036B2 (en) 2009-07-13 2013-10-22 Hamamatsu Photonics K.K. Photodetector for detecting energy line in a first wavelength region and in a second wavelength region
TWI502725B (en) * 2009-07-13 2015-10-01 Hamamatsu Photonics Kk Photodetector

Similar Documents

Publication Publication Date Title
US6683326B2 (en) Semiconductor photodiode and an optical receiver
US6043550A (en) Photodiode and photodiode module
Averine et al. Geometry optimization of interdigitated Schottky-barrier metal–semiconductor–metal photodiode structures
JP2706029B2 (en) pin diode
JPH077166A (en) Method for using high power capacitance optical receiver and photodetector dispersedly arranged
KR960001190B1 (en) Photo-detector
EP0901170A1 (en) Wavelength selective photodiode and module comprising the same
CA2331992A1 (en) High speed semiconductor photodetector
US20020110950A1 (en) Method of fabricating a light receiving device
US20020135036A1 (en) Semiconductor photodetector, semiconductor photo receiver and semiconductor device
JP3419312B2 (en) Light receiving element and light receiving element module
CN101521244A (en) Semiconductor light-reception element
JP4755341B2 (en) Highly doped p-type contact for high speed front illuminated photodiodes
JP2661341B2 (en) Semiconductor light receiving element
TWI818027B (en) Universal broadband photodetector design and fabrication process
JPH0318069A (en) Semiconductor photosensor
JPS5812377A (en) High speed photoelectric detecting element and method of producing same
JPS62254473A (en) Iii-v multi-element compound semiconductor pin photo diode
JP3427125B2 (en) Semiconductor device with optical lens function
JPH04263475A (en) Semiconductor photodetector and manufacture thereof
JPS6222473B2 (en)
JP2945438B2 (en) Optical semiconductor device and optical receiver using the same
JP2004158763A (en) Semiconductor photo detector
WO2023199403A1 (en) Light-receiving element
JPH0480973A (en) Semiconductor photodetector