JPH03179697A - Position detector device of charged particle - Google Patents

Position detector device of charged particle

Info

Publication number
JPH03179697A
JPH03179697A JP12112690A JP12112690A JPH03179697A JP H03179697 A JPH03179697 A JP H03179697A JP 12112690 A JP12112690 A JP 12112690A JP 12112690 A JP12112690 A JP 12112690A JP H03179697 A JPH03179697 A JP H03179697A
Authority
JP
Japan
Prior art keywords
charged particle
electrodes
signal
charged particles
vacuum duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12112690A
Other languages
Japanese (ja)
Inventor
Shuhei Nakada
修平 中田
Takashi Hifumi
敬 一二三
Takafumi Nakagawa
隆文 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to US07/533,451 priority Critical patent/US5057766A/en
Priority to DE69024540T priority patent/DE69024540T2/en
Priority to EP90306174A priority patent/EP0402124B1/en
Publication of JPH03179697A publication Critical patent/JPH03179697A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

PURPOSE:To detect charged particles with high reliability through simple constitution, by installing a plurality of transmission means to transmit a part of the detection signals based on an induced charge from each of a plurality of electrodes, as it is, and the rest part of the detection signals, after it is delayed. CONSTITUTION:A part of the detection signals given to transmission lines 6-9 through a position detector 1 are sent to an adder 24 as they are or after they are delayed by delay cables 21-23, and the divided into three signals by a distributor 25, and the DC compounds of detection signals are extracted through a filter 31, and if it is assumed that the voltages induced and detected in transmission lines 6-9 are V1 to V4, V1+V2+V3+V4 is provided to an output terminal 34. The detection signals inputted to a mixer 29 are mixed into oscillation signals delayed by 90 deg. from an oscillator 14 so that they are taken out as V1-V2+V3-V4 at an output terminal 35 and the detection signals inputted into a mixture 30 are mixed into oscillation signals and V1+V2-V3-V4 is taken out at an output terminal 36 through a filter 33. It is thus possible to determine the position of charged particles from voltage provided to the output terminals 34-36.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、例えば円形荷電粒子加速器または粒子蓄積
リング装置に用いられ、加速された荷電粒子の位置を検
出する荷電粒子位置検出装置、特に荷電粒子の位置を正
確に、感度良く、しかも高速で検出できる荷電粒子位置
検出装置に間するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a charged particle position detection device that is used, for example, in a circular charged particle accelerator or a particle storage ring device and detects the position of accelerated charged particles, and in particular to a charged particle position detection device that detects the position of accelerated charged particles. The present invention is intended to be used as a charged particle position detection device that can detect the position of particles accurately, with high sensitivity, and at high speed.

[従来の技術] 第5図は、例えば「アイイーイーイー・トランザクショ
ンズ・オン・ニュクリア・サンエンス(IEEE Tr
ansactions on Nuclear 5ci
ence)、 Vol。
[Prior Art] FIG. 5 shows, for example, "IEEE Transactions on Nuclear Science (IEEE Tr.
answers on Nuclear 5ci
ence), Vol.

N5−30.No4(1983年8月号〉、第2356
〜2358ページに掲載されたティー イエイリ(T、
Ieiri)ら著の論文に開示された従来の荷電粒子位
置検出装置の位置検出器および信号処理回路を示す回路
図である。
N5-30. No. 4 (August 1983 issue), No. 2356
~ Tea Yeiri (T, published on page 2358)
1 is a circuit diagram showing a position detector and a signal processing circuit of a conventional charged particle position detection device disclosed in a paper by Ieiri et al.

図において、(1)は例えば円形荷電粒子加速器や粒子
蓄積リング装置などの粒子加速器に用いられ、真空ダク
トを通過する荷電粒子の位置を検出する位置検出器、(
2)〜(5)は真空ダクトに取り付けられて位置検出器
(1)を構成し、通過荷電粒子の位置を誘起電荷として
取り出す複数個〈ここでは4個)の電極、(6)〜(9
)はそれぞれ電極(2)〜(5)と電気的に接続され各
電極で検出された検出信号を後段に伝える伝送線路、(
10)〜(13〉はそれぞれ伝送線路(6〉〜(9)と
電気的に接続されると共に発振器(14)にも接続され
、荷電粒子が各電極(2)〜(5)を通過する際の通過
周波数の二次高調波成分を取り出すためのフィルタ付き
ミキサである。
In the figure, (1) is a position detector used in a particle accelerator such as a circular charged particle accelerator or a particle storage ring device, and detects the position of charged particles passing through a vacuum duct;
2) to (5) are attached to a vacuum duct to constitute a position detector (1), which includes a plurality of (four in this case) electrodes that extract the position of a passing charged particle as an induced charge, and (6) to (9).
) are transmission lines that are electrically connected to the electrodes (2) to (5) and transmit the detection signals detected at each electrode to the subsequent stage, (
10) to (13) are electrically connected to the transmission lines (6> to (9)) and also connected to the oscillator (14), so that when charged particles pass through each electrode (2) to (5), This is a mixer with a filter for extracting the second harmonic component of the pass frequency.

第6図および第7図は、第5図に示した位置検出器(1
〉に使用されかつ例えば「プロシーディング・オン・ザ
・フィフス・シンポシュウム・オン・アクセルレータ・
サイエンス・アンド・テクノロジ4  (Procee
ding of The 5th Syn+posiu
n+ on 八ccelerator 5cience
 and Technology第154 ′156(
1984年〉に開示された従来の位置検出器の一例を示
す断面図である。図において、(15)は真空ダクトま
たは真空チェンバを形成するパイプ、(16)は荷電粒
子の軌道である。
Figures 6 and 7 show the position detector (1) shown in Figure 5.
) and for example ``Proceedings on the Fifth Symposium on Accelerator.''
Science and Technology 4 (Procee)
ding of The 5th Syn+posiu
n+ on 8ccelerator 5science
and Technology No. 154 '156 (
FIG. 1 is a cross-sectional view showing an example of a conventional position detector disclosed in 1984. In the figure, (15) is a pipe forming a vacuum duct or vacuum chamber, and (16) is a trajectory of charged particles.

第8図は、例えばカツラ・トモタロウ(To+mota
r。
Figure 8 shows, for example, Katsura Tomotaro (To+mota).
r.

Katsura)およびシバタ・シンキチ(Shink
ichiShibata)による「フォトン・ファクト
リ−・ストレージ・リング用ビーム位置モニタ装置(B
eamPosition Mon1tor  for 
 the Photon  FactoryStora
ge Ring)に開示された従来の位置検出器の他の
例を示す断面図であり、図において(1^)は位置検出
器、(17)は荷電粒子の位置を示す検出信号を外部に
取り出すBNCコネクタ、(18)はこのBNCコネク
タ(17〉を支承する支持ガイド、(19)は荷電粒子
、(16^)は荷電粒子(19)の中心軸である。なお
、電極(2)はBNCコネクタ(17〉と同様に支持ガ
イド(18)で支承され、荷電粒子(19)の周囲に生
じた電界により電荷が誘起されると、これを荷電粒子位
置を示す検出信号としてBNCコネクタ(1)に与える
。電極(3)〜(5)も電i&(2)と同様に、図示し
ないが支持ガイドで支承されかつBNCコネクタに検出
信号を与える。(4)は荷電粒子を加速する真空チェン
バ、BNCコネクタ(1)のアースはバンブ(15)と
共通に取られている。
Katsura) and Shinkichi Shibata (Shink
Photon Factory Storage Ring Beam Position Monitoring Device (B
eamPosition Mon1tor for
the Photon Factory Stora
ge Ring), in which (1^) is a position detector, and (17) is a device for extracting a detection signal indicating the position of a charged particle to the outside. BNC connector, (18) is a support guide that supports this BNC connector (17), (19) is a charged particle, and (16^) is the central axis of the charged particle (19).The electrode (2) is a BNC connector. Like the connector (17), it is supported by a support guide (18), and when a charge is induced by the electric field generated around the charged particle (19), this is used as a detection signal indicating the position of the charged particle and sent to the BNC connector (1). Similarly to electrodes (2), electrodes (3) to (5) are also supported by support guides (not shown) and provide detection signals to the BNC connector. (4) is a vacuum chamber that accelerates charged particles; The ground of the BNC connector (1) is shared with the bump (15).

第5図〜第7図に示した従来の荷電粒子位置検出装置は
上述したように構成され、その動作原理は次のようにな
る。真空ダクト中の軌道(16)内の成る位置を荷電粒
子が通過すると、電極(2)〜(5)にはその各々と上
述した位置との距離の関数として電荷が誘起されること
により誘起電圧が得られ、伝送線路(6〉〜(9)を通
してフィルタ付ミキサ(10)〜(13)に送られ、信
号処理される。この場合、電極の誘起電圧(Vl)〜(
V、)と荷電粒子の中心軸との固定座標での位置(x)
 、 (y)の関係は、X(C(Vl +V2  V3
  V4)yoc  (Vl  L+V3  V4)と
して与えられる。これにより各誘起電圧(■1)〜(■
4〉を測定できれば荷電粒子の位置(x)、 (y)を
知ることができる。伝送線路(6)〜(9)を通してフ
ィルタ付ミキサ(10〉〜(13)に送出された誘起電
圧(■1)〜(■、〉は、そこで荷電粒子の通過周波数
の2倍の信号が取り出され、混合されて、上記の式から
(x) 、 (y)が決定される。
The conventional charged particle position detection device shown in FIGS. 5 to 7 is constructed as described above, and its operating principle is as follows. When a charged particle passes through a position in the trajectory (16) in the vacuum duct, an electric charge is induced in the electrodes (2) to (5) as a function of the distance between each of them and the above-mentioned position, resulting in an induced voltage. is obtained and sent to filter mixers (10) to (13) through transmission lines (6> to (9)) for signal processing. In this case, the induced voltage of the electrode (Vl) to (
V, ) and the fixed coordinate position (x) of the central axis of the charged particle
, (y) is X(C(Vl +V2 V3
V4) yoc (Vl L+V3 V4). This allows each induced voltage (■1) to (■
If we can measure 4>, we can know the positions (x) and (y) of the charged particles. The induced voltages (■1) to (■, ) sent to the mixers with filters (10> to (13)) through the transmission lines (6) to (9) are extracted there as a signal with twice the passing frequency of the charged particles. (x) and (y) are determined from the above equation.

また、各電極(2)〜(5〉に誘起された電荷量を直接
比較することにより荷電粒子の通過位置を検出できる。
Further, by directly comparing the amount of charge induced in each electrode (2) to (5>), the passing position of the charged particle can be detected.

第8図に示した従来の位置検出器(1^)では、荷電粒
子(19)が真空ダクト内を運動してその周囲に電界を
発生させ、電極(2)〜(5)に電荷を誘起する。
In the conventional position detector (1^) shown in Fig. 8, charged particles (19) move in a vacuum duct and generate an electric field around them, inducing charges in the electrodes (2) to (5). do.

ここで、これらの4つの電極(2)〜〈5〉に誘起され
た電荷により生じた検出信号としての電圧をそれぞれv
、 、v2.v3.v、とする。今、第8図に示したよ
うに、真空ダクト内を運動する荷電粒子(19)の動作
をシミュレーションし、真空ダクト内での荷電粒子位置
のx、y座標(x) 、 (y)と電圧v、 、v2.
v、、v。
Here, the voltage as a detection signal generated by the charges induced in these four electrodes (2) to <5> is respectively v.
, ,v2. v3. Let v. Now, as shown in Figure 8, we simulate the motion of a charged particle (19) moving in a vacuum duct, and calculate the x, y coordinates (x), (y) of the charged particle position in the vacuum duct, and the voltage. v, ,v2.
v,,v.

により与えられる関係[(V4+Vl)−(V2+V3
)コ :(Vl + V2 + L + V4 )およ
び[(Vl+V2)−(V4+V3)コニ  (Vl 
+ V2+ V3+ L )を予め求めておく。これに
より、実際に測定したVl 、V2.V−、V4の値か
ら第9図の較正曲線により荷電粒子(19)の位置を知
ることができる。
The relationship given by [(V4+Vl)-(V2+V3
)ko: (Vl + V2 + L + V4) and [(Vl+V2)-(V4+V3)koni (Vl
+V2+V3+L) is determined in advance. As a result, the actually measured Vl, V2. The position of the charged particle (19) can be determined from the values of V- and V4 using the calibration curve shown in FIG.

[発明が解決しようとする課題] 第5図のような従来のような荷電粒子位置検出装置では
、位置検出器で検出された検出信号Gま4本の伝送線路
を介して後段に伝送されてb)た、このため一般には多
数(ここでは4本)の伝送線d各が必要になるという課
題があった。また、信号処理回路には伝送線路に対応し
てフィルタ付ミキサなどが複数個設けられているので、
これらの要素の間での固体差をなくさなくてはならず、
このため多くの労力が必要になるという課題もあった。
[Problems to be Solved by the Invention] In the conventional charged particle position detection device as shown in Fig. 5, the detection signal G detected by the position detector is transmitted to the subsequent stage via four transmission lines. b) For this reason, there is a problem in that a large number (four in this case) of transmission lines d are generally required. In addition, the signal processing circuit is equipped with multiple mixers with filters corresponding to the transmission lines, so
Individual differences among these elements must be eliminated,
Therefore, there was also the problem that a lot of labor was required.

また、荷電粒子の通過に伴った誘起電荷の符号の高速変
化のために検出できる電荷量が低下したり、荷電粒子の
運動量によって誘起電荷量が変化したりするなどの課題
もあった6 更に、第8図のような従来の位置検出器を使用した場合
には、BNCコネクタが真空ダクトと共通にアースされ
るので、真空ダクトがアンテナとして作用して外部から
のノイズを拾い、BNCコネクタへの検出信号に混在さ
せ易くなるという課題があった。また、このような場合
に、荷電粒子の電荷量が少ないと、位置検出器からの検
出信号レベルも低くなり、検出信号がノイズに埋もれて
検出できなくなり、従って荷電粒子の位置を検出できな
いという課題もあった。
In addition, there were also problems such as the amount of charge that could be detected decreased due to the rapid change in the sign of the induced charge as the charged particle passed, and the amount of induced charge changed depending on the momentum of the charged particle6. When using a conventional position detector like the one shown in Figure 8, the BNC connector and the vacuum duct are commonly grounded, so the vacuum duct acts as an antenna and picks up noise from the outside, causing noise to reach the BNC connector. There was a problem in that it was easy to mix it into the detection signal. In addition, in such cases, if the amount of charge of the charged particle is small, the detection signal level from the position detector will also be low, and the detection signal will be buried in noise and cannot be detected, resulting in the problem that the position of the charged particle cannot be detected. There was also.

この発明は、上述したような課題を全て解決するために
なされたもので、位置検出器の電極で検出されかつ荷電
粒子の位置を示す検出信号を単一の伝送線路で後段に導
くことができ、構成が簡単で、信頼度が高くしかも高速
で演算を行える荷電粒子位置検出装置を得ることを目的
とする。
This invention was made in order to solve all of the above-mentioned problems, and it is possible to lead a detection signal detected by the electrode of a position detector and indicating the position of a charged particle to a subsequent stage through a single transmission line. The object of the present invention is to obtain a charged particle position detection device that has a simple configuration, high reliability, and can perform calculations at high speed.

この発明は、また、荷電粒子の電荷量および位置を精密
に検出できる荷電粒子位置検出装置を得ることを目的と
する。
Another object of the present invention is to obtain a charged particle position detection device that can accurately detect the charge amount and position of charged particles.

この発明は、更に、荷電粒子の電荷量が少なくて検出信
号のレベルが低い時でも、荷電粒子の位置を正確に検出
できる荷電粒子位置検出装置を得ることを目的とする。
A further object of the present invention is to obtain a charged particle position detection device that can accurately detect the position of a charged particle even when the amount of charge of the charged particle is small and the level of the detection signal is low.

[課題を解決するための手段] この発明に係る荷電粒子位置検出装置は、荷電粒子が通
過する真空ダクトに取り付けられ、通過荷電粒子の位置
を誘起電荷として取り出す複数個の電極を有する位置検
出手段と、前記複数個の電極の各々からの誘起電荷に基
づく検出信号を一部はそのま・残りは遅延させて伝送す
る複数の伝送手段と、これらの伝送手段の出力信号を加
算して1つの信号にする加算手段と、この加算手段の出
力信号から前記荷電粒子の電極通過を示す波形の直流成
分、基本波成分、90°移和した基本波成分をそれぞれ
取り出す手段とを備えたものである。
[Means for Solving the Problems] A charged particle position detection device according to the present invention includes a position detection means that is attached to a vacuum duct through which charged particles pass, and has a plurality of electrodes that extracts the position of the passing charged particles as an induced charge. , a plurality of transmission means for transmitting detection signals based on the induced charges from each of the plurality of electrodes, some of which are transmitted as is and the rest of the signals delayed, and the output signals of these transmission means are added to form a single signal. The device is equipped with an addition means for converting the signal into a signal, and means for extracting, from the output signal of the addition means, a DC component, a fundamental wave component, and a 90° shifted fundamental wave component of a waveform indicating the passage of the charged particle through the electrode. .

この発明に係る荷電粒子位置検出装置は、また、電極の
表面に誘電体を付加した位置検出手段、もしくは荷電粒
子が通過する真空ダクトに取り付けられ、通過荷電粒子
の位置を誘起電荷として取り出す複数個の電極と、これ
ら電極の各々と電気的に接続され、その出力を外部に取
り出すと共に前記電極をシールドするコネクタと、この
コネクタを前記真空ダクトから完全に浮がす絶縁材とを
有する位置検出手段を備えたものである。
The charged particle position detection device according to the present invention also includes a position detection means in which a dielectric is added to the surface of an electrode, or a plurality of position detection means that are attached to a vacuum duct through which the charged particles pass and extract the position of the passing charged particles as an induced charge. position detection means, comprising: electrodes; a connector electrically connected to each of these electrodes to take out its output to the outside and shield the electrodes; and an insulating material that completely floats the connector from the vacuum duct. It is equipped with the following.

この発明に係る荷電粒子位置検出装置は、荷電粒子が通
過する真空ダクトに取り付けられ、2重にシールドされ
、先端に誘電体が設けられ、がっ通過荷電粒子の位置を
誘起電荷として取り出す複数個の電極を有する位置検出
手段と、前記複数個の電極の各々からの誘起電荷に基づ
く検出信号を一部はそのまN残りは遅延させて伝送する
複数の伝送手段と、これら伝送手段の出力信号を加算し
て1つの信号にする加算手段と、この加算手段の出力信
号と基準信号とを乗算する信号出力手段とを備えたもの
である。
The charged particle position detection device according to the present invention is attached to a vacuum duct through which charged particles pass, is doubly shielded, has a dielectric material at its tip, and has a plurality of devices that extract the positions of passing charged particles as induced charges. a position detection means having electrodes, a plurality of transmission means for transmitting a detection signal based on the induced charge from each of the plurality of electrodes, part of which is transmitted as is and the rest delayed, and output signals of these transmission means. , and signal output means for multiplying the output signal of the adding means and a reference signal.

[作 用コ この発明では、複数個の電極で検出された複数の検出信
号が後段へは1つの検出信号として送出され、しかもこ
の1つの検出信号は高速で演算される。
[Function] In this invention, a plurality of detection signals detected by a plurality of electrodes are sent to a subsequent stage as one detection signal, and this one detection signal is calculated at high speed.

また、この発明で使用される位置検出器の電極は電気的
に絶縁されているので、真空ダクトを通過する荷電粒子
の電荷量に比例した電荷量が誘起され、また電極はシー
ルドされているので、ノイズが乗り難い。
Furthermore, since the electrodes of the position detector used in this invention are electrically insulated, a charge proportional to the charge of charged particles passing through the vacuum duct is induced, and since the electrodes are shielded, , the noise is difficult to ride.

[実施例] 第1図はこの発明に係る荷電粒子位置検出装置の一実施
例を示す回路図であり、(1〉〜(9〉および(14〉
は従来装置におけるのと全く同一のものである。(21
〉〜(23)は粒子位置検出手段としての位置検出器(
1〉の電極(3)〜(5)からの伝送線路(7)〜(9
)に接続され、これら伝送線路(7)〜〈9)と共に遅
延伝送手段を構成する遅延ケーブル、(24)は伝送線
路(6)および遅延ケーブル(21〉〜(23)に接続
され、荷電粒子の位置を示す4つの検出信号を加算する
加算手段としての加算器、(25)はこの加算器(24
〉の出力側に接続され、1つにまとめられた検出信号を
3つに分ける分配器、(14〉は荷電粒子の電極通過周
波数を有する検出信号の基本波に相当する基本周波数を
持つ発振信号を発生する発振器、(26)はこの発振器
(14)に接続され、位置検出器(1)からの検出信号
に対して発振器(14)からの発振信号の位相を調整す
る移相器、(27〉はこの移相器(26)からの移相さ
れた発振信号を2つに分ける分配器、(28)はこの分
配器(26)に接続され、この分配器(27)および移
相器(28)を通して発振器(14)から送出されて来
た発振信号の位相を90°遅延させる遅延回路、(29
)は分配器(25)および遅延回路(28)に接続され
、位置検出器(1)からの検出信号と発振器〈14)か
らの、移相かつ遅延された発振信号とを混合し、検出信
号の90°遅延基本波成分を得るミキサ、(30)は分
配器(25〉および(27〉に接続され、検出信号と発
振器(14)からの移相された発振信号とを混合し、検
出信号の基本波成分を得るミキサ、(31)は分配器(
25)からの分割された検出信号から直流成分を取り出
すフィルタ、(32)はミキサ(29)から検出信号の
90°遅延基本波戒分を得るフィルタ、そして(33)
はミキサ(30)から検出信号の基本波成分を得るフィ
ルタである。なお、遅延ケーブル(21〉〜(23)の
うち、遅延ケーブル(21)の信号遅延量は、荷電粒子
の通過周期の174、遅延ケーブル(22)は2/4、
遅延ケーブル(23)は3/4である。
[Embodiment] FIG. 1 is a circuit diagram showing an embodiment of the charged particle position detection device according to the present invention, and (1> to (9> and (14>)
is exactly the same as in the conventional device. (21
〉~(23) are position detectors as particle position detection means (
Transmission lines (7) to (9) from electrodes (3) to (5) of 1>
), the delay cable (24) is connected to the transmission line (6) and the delay cables (21> to (23)) and constitutes a delay transmission means together with the transmission lines (7) to <9), and the delay cable (24) is connected to the transmission line (6) and the delay cables (21> to (23)), An adder (25) serves as an adding means for adding four detection signals indicating the position of the adder (24).
〉 is connected to the output side of 〉 and divides the combined detection signal into three. 〉 is an oscillation signal having a fundamental frequency corresponding to the fundamental wave of the detection signal having the electrode passing frequency of charged particles. An oscillator (26) that generates oscillator (14) is connected to this oscillator (14), and a phase shifter (27) adjusts the phase of the oscillation signal from the oscillator (14) with respect to the detection signal from the position detector (1). > is a divider that divides the phase-shifted oscillation signal from this phase shifter (26) into two, and (28) is connected to this divider (26), and this divider (27) and phase shifter ( a delay circuit that delays the phase of the oscillation signal sent from the oscillator (14) by 90° through (28);
) is connected to the distributor (25) and the delay circuit (28), mixes the detection signal from the position detector (1) and the phase-shifted and delayed oscillation signal from the oscillator (14), and generates the detection signal. A mixer (30) is connected to the distributors (25〉 and (27〉) to obtain a 90° delayed fundamental wave component of The mixer that obtains the fundamental wave component of (31) is the distributor (
(25) is a filter that extracts the DC component from the divided detection signal from the mixer (29), (32) is a filter that obtains the 90° delayed fundamental wave component of the detection signal from the mixer (29), and (33)
is a filter that obtains the fundamental wave component of the detection signal from the mixer (30). In addition, among the delay cables (21> to (23)), the signal delay amount of the delay cable (21) is 174 of the passage period of charged particles, and that of the delay cable (22) is 2/4,
The delay cable (23) is 3/4.

このように構成された荷電粒子位置検出装置においては
、従来例と同様に位置検出器(1)の電極(2)〜(5
)に誘起された検出電圧と荷電粒子の位置か比例関係に
あることを利用して荷電粒子の位置が検出される。即ち
、位置検出器(1)の電fi(2)〜(5)を通して伝
送線路(6)〜(9)に与えられた検出信号はそのま)
、またそれぞれ遅延ケーブル〈21)〜(23)で上述
したように遅延されてから加算器(24)に送出される
。加算器(24)で1つにまとめrj、れな検出信号は
分配器(25)で3つの信号に分けられ、それぞれフィ
ルタ(31)、ミキサ(29)、ミキサ(30〉に送出
される。フィルタ(31〉では検出信号の直流成分が抽
出され、位置検出器(1)の伝送線路(6)〜(9〉に
それぞれ誘起検出された電圧をV、 、V2゜v、、v
4トするとV、 + V2+v3+v4が出力端子(3
4〉に与えられる。同様にミキサ(29)に入力された
検出信号は発振器(14)からの90°遅延された発振
信号と混合され、出力端子(35)にL−V2+V3−
V4として取り出される。更に、ミキサ(30)に入力
された検出信号は発振信号と混合され、フィルタ(33
)を通して出力端子(36)にV、+L−V、−Lが取
り出される。これらの出力端子(34)〜(36)に与
えられた電圧から従来例と同様に荷電粒子の位置が決定
される。
In the charged particle position detection device configured in this way, the electrodes (2) to (5) of the position detector (1) are arranged as in the conventional example.
) The position of the charged particle is detected by utilizing the fact that there is a proportional relationship between the detected voltage induced in the field and the position of the charged particle. In other words, the detection signals given to the transmission lines (6) to (9) through the electric fis (2) to (5) of the position detector (1) remain as they are)
, and are each delayed by the delay cables <21) to (23) as described above before being sent to the adder (24). The adder (24) collects the rj and rena detection signals into one, and the distributor (25) divides them into three signals, which are sent to a filter (31), a mixer (29), and a mixer (30>), respectively. The filter (31) extracts the DC component of the detection signal, and converts the voltages induced in the transmission lines (6) to (9) of the position detector (1) to V, , V2゜v, , v
4, V, +V2+v3+v4 becomes the output terminal (3
4〉. Similarly, the detection signal input to the mixer (29) is mixed with the 90° delayed oscillation signal from the oscillator (14), and the output terminal (35) is L-V2+V3-.
It is taken out as V4. Furthermore, the detection signal inputted to the mixer (30) is mixed with the oscillation signal and passed through the filter (33).
), V, +L-V, and -L are taken out to the output terminal (36). The position of the charged particle is determined from the voltages applied to these output terminals (34) to (36) in the same way as in the conventional example.

なお、上記実施例では位置検出器に電極を装着したもの
を使用したが、その他の位置検出器を使用しても同様の
動作を期待できる。
In the above embodiment, a position detector equipped with an electrode was used, but similar operation can be expected even if other position detectors are used.

また、上記実施例では位置検出器からの検出信号の信号
線路として4本の伝送線路を使用したが、これらの本数
が何本であっても伝送線路を1本にすることができ、同
様の動作を期待できる。
In addition, in the above embodiment, four transmission lines were used as signal lines for the detection signal from the position detector, but no matter how many there are, the number of transmission lines can be reduced to one, and the same You can expect it to work.

第2図は、第1図に示した位置検出器の代りに使用でき
る位置検出器を示す断面図である。第2図の位置検出器
(IB)は、電極(2)〜(5〉の表面に誘電体(37
)を付加した点が第5図〜第7図の位置検出器(1)と
違う。第2図の位置検出器(IB)では、荷電粒子が通
過すると、まず誘電体(37)に分極を誘起する。誘電
体(37)上に誘起された電荷は、誘電体(37)に接
触している電極(2)〜〈5)上に誘起された電荷と加
算され、伝送線路に流出する。この流出電荷を積算する
ことにより誘電体(37)に誘起された電荷量が分かり
、従って真空ダクトを通過する荷電粒子の電荷量を知る
ことができる。また、上述した誘起電荷から荷電粒子の
位置を検出することもできる。
FIG. 2 is a sectional view showing a position detector that can be used in place of the position detector shown in FIG. The position detector (IB) in Fig. 2 has a dielectric material (37
) is different from the position detector (1) shown in FIGS. 5 to 7. In the position detector (IB) of FIG. 2, when a charged particle passes, it first induces polarization in the dielectric (37). The electric charge induced on the dielectric (37) is added to the electric charge induced on the electrodes (2) to (5) that are in contact with the dielectric (37), and flows out to the transmission line. By integrating this outflow charge, the amount of charge induced in the dielectric (37) can be determined, and therefore the amount of charge of the charged particles passing through the vacuum duct can be determined. Further, the position of the charged particle can also be detected from the above-mentioned induced charge.

第3図は、第8図に示した従来の位置検出器を改良した
位置検出器を示す断面図である。BNCコネクタ(17
)を真空ダクトのパイプ(15〉から完全に浮かすため
の絶縁材であるセラミックスがBNCコネクタ(17)
と支持ガイド〈18〉の間に挿入された点、および多電
8i!(2)〜(5)を覆うようにそのアースを形成し
、外部がらのノイズを3重にシールドするシールド(3
9)が設けられた点が第8図の位置検出器(1^)と違
う。
FIG. 3 is a sectional view showing a position detector that is an improved version of the conventional position detector shown in FIG. BNC connector (17
) completely floats from the vacuum duct pipe (15). Ceramic is an insulating material that is used as a BNC connector (17).
and the point inserted between the support guide <18>, and the polyelectric 8i! A shield (3
9) is different from the position detector (1^) in FIG. 8.

このように構成された位置検出器(IC)においては、
BNCコネクタ(17)はセラミックス(38)により
真空ダクトのパイプ(15〉から完全に浮かされ、また
BNCコネクタ(17)からのシールド(39)が電極
(2)まで延在してそのアースとなり、外部がらのノイ
ズを遮断するようにしたので、ノイズレベルが低くなり
、荷電粒子の電荷量が少なくても荷電粒子の位置を示す
信号を検出できる。荷電粒子の位置は従来例と全く同様
に第9図のシミュレーションプロットと検出信号の電圧
v、 、v2.v、、v、の比較により求めることがで
きる。
In the position detector (IC) configured in this way,
The BNC connector (17) is completely suspended from the pipe (15) of the vacuum duct by the ceramics (38), and the shield (39) from the BNC connector (17) extends to the electrode (2) and serves as its ground. Since the noise level is reduced, the signal indicating the position of the charged particle can be detected even if the amount of charge of the charged particle is small.The position of the charged particle is the same as in the conventional example. It can be determined by comparing the simulation plot in the figure with the detection signal voltages v, , v2.v, , v.

なお、電極(2)〜(5)の形状は特別には定めてない
が、任意の形状のものを使用して同様の効果を期待する
ことができる。また、真空ダクトは円形のものを示した
が、任意の形状のものを使用して同様の効果を期待する
ことができる。
Note that the shapes of the electrodes (2) to (5) are not particularly determined, but similar effects can be expected by using electrodes of any shape. Furthermore, although a circular vacuum duct is shown, a similar effect can be expected by using a vacuum duct of any shape.

第4図はこの発明の変形例を示す回U図であり、こ\て
使用される位置検出器(ID)は、先端に誘電体(37
)が設けられかつ2重にシールドされた電極(2A)〜
(5^)を有する。また、加算器(24〉の出力信号と
発振器(14)の発振信号即ち基準信号とは乗算器(4
0)で乗算されて積信号となり、この積信号はフィルタ
例えばローパスフィルタ(41)でろ波された後に出力
端子(42)から出力される゛。なお、乗算器(40〉
とフィルタ(41)は信号出力手段を構成する。
FIG. 4 is a circuit diagram showing a modification of the present invention, and the position detector (ID) used here has a dielectric material (37
) and doubly shielded electrode (2A) ~
It has (5^). Furthermore, the output signal of the adder (24) and the oscillation signal of the oscillator (14), that is, the reference signal, are different from the output signal of the adder (24).
0) to form a product signal, and this product signal is outputted from an output terminal (42) after being filtered by a filter, for example, a low-pass filter (41). In addition, the multiplier (40〉
and the filter (41) constitute a signal output means.

[発明の効果] 以上詳しく説明したように、この発明は、荷電粒子が通
過する真空ダクトに取り付けられ、通過荷電粒子の位置
を誘起電荷として取り出す複数個の電極を有する位置検
出手段と、前記複数個の電極の各々からの誘起電荷に基
づく検出信号を一部はそのまN残りは遅延させて伝送す
る複数の伝送手段と、これらの伝送手段の出力信号を加
算して1つの信号にする加算手段と、この加算手段の出
力信号から前記荷電粒子の電極通過を示す波形の直流成
分、基本波成分、90°移相した基本波成分をそれぞれ
取り出す手段とを備えたので、簡単な構成で信頼度の高
い荷電粒子位置検出装置が得られるという効果を奏し、
また、電極の表面に誘電体を付加した位置検出手段、も
しくは荷電粒子が通過する真空ダクトに取り付けられ、
通過荷電粒子の位置を誘起電荷として取り出す複数個の
電極と、これら電極の各々と電気的に接続され、その出
力を外部に取り出すと共に前記電極をシールドするコネ
クタと、このコネクタを前記真空ダクトから完全に浮か
す絶縁材とを有する位置検出手段を備えたので、検出で
きる電荷量が増え従って検出感度が上がることに加えて
検出感度が荷電粒子の運動量に依存し難いという効果、
もしくは荷電粒子の電荷が少なくてもノイズレベル以上
の信号および荷電粒子の位置を検出できるという効果を
奏し、更に荷電粒子が通過する真空ダクトに取り付けら
れ、2重にシールドされ、先端に誘電体が設けられ、か
つ通過荷電粒子の位置を誘起電荷として取り出す複数個
の電極を有する位置検出手段と、前記複数個の電極の各
々からの誘起電荷に基づく検出信号を一部はそのま\残
りは遅延させて伝送する複数の伝送手段と、これら伝送
手段の出力信号を加算して1つの信号にする加算手段と
、この加算手段の出力信号と基準信号とを乗算する信号
出力手段とを備えたので、従来、実験室と制御室の間に
はりめぐらされた非常に沢山の配線を簡略化でき、荷電
粒子の位置を高速で検出でき、ノイズを低減して高精度
の検出を行なえ、かつ信号を高感度で検出できるという
効果を奏する6
[Effects of the Invention] As explained in detail above, the present invention includes a position detecting means that is attached to a vacuum duct through which charged particles pass and has a plurality of electrodes that extracts the position of the passing charged particles as an induced charge; A plurality of transmission means for transmitting detection signals based on the induced charge from each of the electrodes, some of which are transmitted as they are, while the rest are delayed, and an addition method that adds the output signals of these transmission means to one signal. and a means for extracting the DC component, the fundamental wave component, and the 90° phase-shifted fundamental wave component of the waveform indicating the passage of the charged particles through the electrodes from the output signal of the adding means, so the configuration is simple and reliable. It has the effect of providing a highly accurate charged particle position detection device,
In addition, position detection means with a dielectric added to the surface of the electrode, or attached to a vacuum duct through which charged particles pass,
A plurality of electrodes extracting the positions of passing charged particles as induced charges, a connector electrically connected to each of these electrodes to extract the output to the outside and shielding the electrodes, and a connector that is completely connected to the vacuum duct. Since the position detection means is equipped with an insulating material floating on the surface, the amount of charge that can be detected increases, and therefore the detection sensitivity increases. In addition, the detection sensitivity is less dependent on the momentum of the charged particles.
Alternatively, even if the charge of the charged particles is small, it is possible to detect a signal above the noise level and the position of the charged particles.In addition, it is attached to a vacuum duct through which the charged particles pass, is double shielded, and has a dielectric material at the tip. a position detecting means having a plurality of electrodes which extract the position of a passing charged particle as an induced charge; and a detection signal based on the induced charge from each of the plurality of electrodes, a part of which is left as it is and the rest of which is delayed. The present invention is equipped with a plurality of transmission means for transmitting the same signal, an addition means for adding together the output signals of these transmission means to form one signal, and a signal output means for multiplying the output signal of the addition means by a reference signal. , it is possible to simplify the large amount of wiring that was conventionally routed between the laboratory and the control room, to detect the position of charged particles at high speed, to reduce noise and perform highly accurate detection, and to transmit signals. 6, which has the effect of being able to detect with high sensitivity

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す回路図、第2図およ
び第3図はこの発明で使用される位置検出器を示す断面
図、第4図はこの発明の変形例を示す回路図、第5図は
従来の荷電粒子位置検出装置を示す回路図、第6図〜第
8図は従来の位置検出器を示す断面図、第9図はシミュ
レーション較正図である。 図において、(1)と(IB)〜(ID〉は位置検出器
、(2)〜(5)と(2八)〜(5^)は電極、(6)
〜(9)は伝送線路、(15〉は真空ダクトのパイプ、
(17)はコネクタ、(19)は荷電粒子、(21)〜
(23)は遅延ケーブル(24)は加算器、(28)は
遅延回路、(29)〜(3o)はミキサ、(31)〜(
33)と(41)はフィルタ、(37)は誘電体、(3
8)は絶縁材、(39ンはシールド、(4o)は乗算器
である。 なお、図中、同一符号は同−又は相当部分を示す。
FIG. 1 is a circuit diagram showing one embodiment of this invention, FIGS. 2 and 3 are sectional views showing a position detector used in this invention, and FIG. 4 is a circuit diagram showing a modified example of this invention. , FIG. 5 is a circuit diagram showing a conventional charged particle position detection device, FIGS. 6 to 8 are cross-sectional views showing a conventional position detector, and FIG. 9 is a simulation calibration diagram. In the figure, (1) and (IB) to (ID> are position detectors, (2) to (5) and (28) to (5^) are electrodes, and (6)
~(9) is a transmission line, (15> is a vacuum duct pipe,
(17) is a connector, (19) is a charged particle, (21) ~
(23) is a delay cable (24) is an adder, (28) is a delay circuit, (29) to (3o) are mixers, (31) to (
33) and (41) are filters, (37) is a dielectric, (3
8) is an insulating material, (39) is a shield, and (4o) is a multiplier. In the drawings, the same reference numerals indicate the same or equivalent parts.

Claims (4)

【特許請求の範囲】[Claims] (1)荷電粒子が通過する真空ダクトに取り付けられ、
通過荷電粒子の位置を誘起電荷として取り出す複数個の
電極を有する位置検出手段と、前記複数個の電極の各々
からの誘起電荷に基づく検出信号を一部はそのまゝ残り
は遅延させて伝送する複数の伝送手段と、これらの伝送
手段の出力信号を加算して1つの信号にする加算手段と
、この加算手段の出力信号から前記荷電粒子の電極通過
を示す波形の直流成分、基本波成分、90°移相した基
本波成分をそれぞれ取り出す手段とを備えたことを特徴
とする荷電粒子位置検出装置。
(1) attached to a vacuum duct through which charged particles pass;
A position detecting means having a plurality of electrodes that extracts the position of a passing charged particle as an induced charge, and a detection signal based on the induced charge from each of the plurality of electrodes, a part of which is transmitted as is and the rest is delayed and transmitted. a plurality of transmission means; an addition means for adding the output signals of these transmission means into one signal; and a DC component and a fundamental wave component of a waveform representing the passage of the charged particles through the electrode from the output signal of the addition means; A charged particle position detection device comprising: means for extracting fundamental wave components phase-shifted by 90 degrees.
(2)電極の表面に誘電体を付加した位置検出手段を備
えたことを特徴とする荷電粒子位置検出装置。
(2) A charged particle position detection device comprising a position detection means in which a dielectric material is added to the surface of an electrode.
(3)荷電粒子が通過する真空ダクトに取り付けられ、
通過荷電粒子の位置を誘起電荷として取り出す複数個の
電極と、これら電極の各々と電気的に接続され、その出
力を外部に取り出すと共に前記電極をシールドするコネ
クタと、このコネクタを前記真空ダクトから完全に浮か
す絶縁材とを有する位置検出手段を備えたことを特徴と
する荷電粒子位置検出装置。
(3) attached to a vacuum duct through which charged particles pass;
A plurality of electrodes extracting the positions of passing charged particles as induced charges, a connector electrically connected to each of these electrodes to extract the output to the outside and shielding the electrodes, and a connector that is completely connected to the vacuum duct. A charged particle position detecting device comprising: a position detecting means having an insulating material floating on the charged particle position detecting device.
(4)荷電粒子が通過する真空ダクトに取り付けられ、
2重にシールドされ、先端に誘電体が設けられ、かつ通
過荷電粒子の位置を誘起電荷として取り出す複数個の電
極を有する位置検出手段と、前記複数個の電極の各々か
らの誘起電荷に基づく検出信号を一部はそのまゝ残りは
遅延させて伝送する複数の伝送手段と、これら伝送手段
の出力信号を加算して1つの信号にする加算手段と、こ
の加算手段の出力信号と基準信号とを乗算する信号出力
手段とを備えたことを特徴とする荷電粒子位置検出装置
(4) attached to a vacuum duct through which charged particles pass;
a position detecting means having a plurality of electrodes that are double shielded, have a dielectric material at the tip, and extract the position of a passing charged particle as an induced charge, and detection based on the induced charge from each of the plurality of electrodes; A plurality of transmission means for transmitting a part of the signal as it is and the rest with a delay, an addition means for adding the output signals of these transmission means to make one signal, and an output signal of the addition means and a reference signal. A charged particle position detection device characterized by comprising: signal output means for multiplying .
JP12112690A 1989-06-06 1990-05-14 Position detector device of charged particle Pending JPH03179697A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US07/533,451 US5057766A (en) 1989-06-06 1990-06-05 Apparatus for detecting position of charged particle
DE69024540T DE69024540T2 (en) 1989-06-06 1990-06-06 Device for determining the position of charged particles
EP90306174A EP0402124B1 (en) 1989-06-06 1990-06-06 Apparatus for detecting the position of charged particles

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP14206589 1989-06-06
JP1-142065 1989-06-06
JP14409189 1989-06-08
JP1-144091 1989-06-08
JP1-236354 1989-09-11

Publications (1)

Publication Number Publication Date
JPH03179697A true JPH03179697A (en) 1991-08-05

Family

ID=26474196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12112690A Pending JPH03179697A (en) 1989-06-06 1990-05-14 Position detector device of charged particle

Country Status (1)

Country Link
JP (1) JPH03179697A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005213A (en) * 2015-05-07 2018-01-15 에이에스엠엘 네델란즈 비.브이. Measuring device and method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180005213A (en) * 2015-05-07 2018-01-15 에이에스엠엘 네델란즈 비.브이. Measuring device and method
JP2018521444A (en) * 2015-05-07 2018-08-02 エーエスエムエル ネザーランズ ビー.ブイ. Measuring apparatus and method

Similar Documents

Publication Publication Date Title
KR960004555B1 (en) System and method for detecting partial discharge of gas-insulated switch gear
US8536879B2 (en) Rotating electric-field sensor
US4393710A (en) Electrostatic accelerometer
US5057766A (en) Apparatus for detecting position of charged particle
CN100454028C (en) Impedance measuring circuit, its method, and capacitance measuring circuit
CN110658421A (en) Partial discharge measurement system
CN1229474A (en) Method, device and sensor for capacitive detecting of field and voltage and use thereof
JPH03179697A (en) Position detector device of charged particle
EP0165051A2 (en) Color display of related parameters
US6498501B2 (en) Measuring circuit
JPH112650A (en) Device and method for measuring grounding resistance
CA2255975C (en) Measuring circuit
JPS55140163A (en) Non-contact voltage measurement device
CN1108512C (en) Underwater displacement measuring method and equipment
Yanagida et al. A BPM System for the SPring-8 Linac
RU2715360C1 (en) Method for cable insulation damage point determining
CN109585253A (en) A kind of signal processing circuit based on triple quadrupole mass spectrometer
JPS5478165A (en) Measuring method of eddy corrent type displacement
SU611160A1 (en) Meter of group time delay of four-pole networks
SU661450A1 (en) Magnetometer pickup
SU1117540A1 (en) Device for mesuring one component of electric field strength vector
Ellison et al. Nondestructive diagnostics for measuring the phase, position and intensity of 15 enA beams from the IUCF cyclotron
Zabar et al. A detector to identify a de-energized feeder among a group of live ones
SU718809A1 (en) Electrostatic field strength meter
SU754983A1 (en) Plant for electron beam parameter investigation