JPH03179300A - X-ray microscope - Google Patents

X-ray microscope

Info

Publication number
JPH03179300A
JPH03179300A JP31643189A JP31643189A JPH03179300A JP H03179300 A JPH03179300 A JP H03179300A JP 31643189 A JP31643189 A JP 31643189A JP 31643189 A JP31643189 A JP 31643189A JP H03179300 A JPH03179300 A JP H03179300A
Authority
JP
Japan
Prior art keywords
rays
ray
monochromatic
sample
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31643189A
Other languages
Japanese (ja)
Inventor
Mitsuo Sumiya
住谷 充夫
Katsunobu Ueda
上田 勝宣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP31643189A priority Critical patent/JPH03179300A/en
Publication of JPH03179300A publication Critical patent/JPH03179300A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To shorten an observation time and to improve resolving power by making X-rays from an SOR source monochromatic by an X-ray condensing part and condensing monochromatic X-rays to the sample provided in a microscope main body. CONSTITUTION:X-rays 2 incident on a rotary parabolic mirror 8 are converted to monochromatic X-rays 2a having a specific wavelength and the monochromatic X-rays 2a are emitted to the rotary parabolic mirror 8. Next, the X-rays 2a incident on the rotary parabolic mirror 8 are condensed to the sample 5 positioned at the focus 8a of the mirror 8 as X-rays 3. The X-rays 3 condensed to the sample 5 transmit through the sample 5 and the transmitted X-rays 3 are emitted to a Walter reflecting mirror 10. The X-rays 3a incident on a rotary oval mirror 16 are reflected from the false object point being one focus 19 of the rotary oval mirror 6 and the reflected X-rays 3b are formed into an image on the image forming means 1 positioned at the other focus 20 of the rotary oval mirror 16. In this case, X-ray efficiency is enhanced and, as a result, an observation time is shortened and resolving power can be improved.

Description

【発明の詳細な説明】 [発明の目的〕 (産業上の利用分野) 本発明は、例えば生体試料観察などに用いられるX線顕
微鏡に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to an X-ray microscope used, for example, for observing biological samples.

(従来の技術) X線は、可視光に比べて波長が短く、電子線に比べて透
過力が大きいという特徴をもつ。この特徴を利用したX
線顕微鏡は、物体の原子レベルでの情報を得る重要な手
段となっている。ところで、このX線顕微鏡は、物質の
吸収差を透過で観察する透過型が主である。また、光学
系としては、X線結像素子を用いる場合と用いない場合
とがある。X線結像素子を用いる場合としては、X線に
対して透明・不透明の同心円状のフレネルゾーンプレー
トを用いるゾーンプレート法、X線が鏡面すれすれに入
射する斜め入射ミラーを用いる斜め入射ミラー法、多層
膜によるX線反射率増大効果を利用した多層膜ミラー法
、X線を微小に集光して試料に照射しその透過量を二次
元的に測定しする走査法がある。
(Prior Art) X-rays are characterized by having shorter wavelengths than visible light and greater penetrating power than electron beams. X using this feature
Line microscopes have become an important means of obtaining information about objects at the atomic level. By the way, this X-ray microscope is mainly a transmission type that observes the absorption difference of substances through transmission. Further, as the optical system, there are cases in which an X-ray imaging element is used and cases in which it is not used. When using an X-ray imaging element, the zone plate method uses a concentric Fresnel zone plate that is transparent and opaque to X-rays, the oblique-incidence mirror method uses an oblique-incidence mirror in which the X-rays are barely incident on the mirror surface, There is a multilayer film mirror method that utilizes the effect of increasing the X-ray reflectance of a multilayer film, and a scanning method that focuses a small amount of X-rays, irradiates the sample, and measures the amount of transmitted light two-dimensionally.

(発明が解決しようとする課題) しかるに、上記のxl顕微鏡は、X線の一部をピンホー
ルなどで取りだし、試料に照射しているので、X線顕微
鏡として使用する時に照射強度が弱く観察するのに時間
がかかり、作業能率が著しく低くなることはもとより、
X線効率が低いために非経済である難点を持っている。
(Problem to be solved by the invention) However, since the above-mentioned XL microscope extracts a portion of the X-rays through a pinhole or the like and irradiates the sample, the irradiation intensity is weak when used as an X-ray microscope. Not only does it take a long time to do this, and work efficiency is significantly reduced, but
It has the drawback of being uneconomical due to its low X-ray efficiency.

本発明は、上記事情を勘案してなされたもので、短時間
で観察でき、X線効率の高いX線顕微鏡を提供すること
を目的とする。
The present invention has been made in consideration of the above circumstances, and an object of the present invention is to provide an X-ray microscope that allows observation in a short time and has high X-ray efficiency.

[発明の構成] (課題を解決するための手段と作用) 本発明のX線顕微鏡は、X線集光部により、SOR源か
らのX線を単色化し、単色化したX線を顕微鏡本体部内
に設けた試料に集光するようにしたもので、強力なX線
を得ることができることにより、X線効率が向上する結
果、観察時間が短縮し、分解能を改善することができる
[Structure of the Invention] (Means and Effects for Solving the Problems) The X-ray microscope of the present invention monochromates the X-rays from the SOR source using the X-ray condenser, and directs the monochromatic X-rays into the microscope main body. The X-ray beam is designed to focus light on a sample placed on the surface of the sample, and can obtain powerful X-rays, which improves X-ray efficiency, shortens observation time, and improves resolution.

(実施例) 以下、本発明の一実施例を図面を参照して詳述する。(Example) Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は、この実施例のX@顕微鏡を示している。この
X線顕微鏡は、SOR(Synchr−otron  
0rbital  Radiati−on;シンクロト
ロン軌道放射光)源(1)からの平行X線(2)を例え
ば波長44Aの特定波長の平行単色X線(3)に変換し
て集光させるX線集光部(4〉と、このX線集光部(4
)により集光されたX線(3〉の集光位置に設けられた
試料(5)の拡大像を形成する顕微鏡本体部(6)とか
らなっている。
FIG. 1 shows the X@microscope of this embodiment. This X-ray microscope uses SOR (Synchron-otron) technology.
An X-ray condenser that converts parallel X-rays (2) from a synchrotron orbital radiation source (1) into parallel monochromatic X-rays (3) with a specific wavelength of 44A, for example, and focuses the light. (4) and this X-ray condensing section (4)
) and a microscope main body (6) that forms an enlarged image of the sample (5) placed at the focusing position of the X-rays (3).

しかして、上記X線集光部(4〉は、SOR源(1)か
らのX線(2)を入射して特定波長の単色X線(2a)
に変換・出射する例えば平面回折格子などからなるモノ
クロメータ(7)と、このモノクロメータ(7)から出
射したX線(2a)を入射して試料(5)配置位置に集
光する回転放物面鏡(8)とからなっている。そして、
回転放物面鏡(8)は、その反射面が回転放物面をなす
もので、その先軸(4a)が、X線(2a)の光路に平
行となるように設けられている。また、回転放物面鏡(
8〉の焦点(8a)は、光軸(4a〉  上にあるとと
もに、この焦点(8a)位置に試料(5)が位置決めさ
れるようになっている。
The X-ray condensing unit (4) receives the X-rays (2) from the SOR source (1) and generates monochromatic X-rays (2a) of a specific wavelength.
A monochromator (7) consisting of, for example, a plane diffraction grating, which converts and emits the It consists of a plane mirror (8). and,
The paraboloid of revolution mirror (8) has a reflecting surface in the form of a paraboloid of revolution, and is provided so that its front axis (4a) is parallel to the optical path of the X-ray (2a). In addition, a parabolic mirror of revolution (
The focal point (8a) of 8> is on the optical axis (4a>), and the sample (5) is positioned at this focal point (8a).

一方、顕微鏡本体部(6〉は、いわゆる斜め入射ミラー
法のものであって、X線(3)の光軸と一致する光軸(
9〉を有している。そして、光軸(4a)と光軸(9〉
は交差し、この交差位置に試料(5〉が位置決めされる
ようになっている。そして、顕微鏡本体部(6〉は、こ
の試料(5)を支持する図示せぬ試料支持手段と、この
試料支持手段により支持された試料(5)を透過したX
線(3a)を入射して試料(5)の拡大像を得る円筒状
のウオルター(Wol−ter)型反射鏡(lO)と、
このウオルター型反射鏡(10)を経由してきたX線(
3b)を結像させ結像結果を電気信号に変換する結像手
段(11)と、上記試料支持手段、ウオルター型反射鏡
(lO)及び結像手段(11)を格納する格納体(12
)と、この格納体(12)を光軸(9〉に沿う方向に例
えば圧電素子などにより微小移動させる駆動手段(14
)とからなっている。しかして、ウォルター型反射鏡(
10)は、第2図に示すように、回転双曲面鏡(15)
と、この回転双曲面鏡(15)に同軸に連設された回転
楕円面鏡(16)とからなっている。そして、上述した
ように、X線(3〉とウオルター型反射鏡(lO)とは
、光軸(9〉を共通にしていて、試料(5)は、光軸(
9)上に位置している。さらに、回転双曲面鏡(15)
は、光軸(9)上に二つの焦点(17) 、 (18)
を有していて、一方の焦点(17)上に試料(5)がく
るように位置決めされている。つまり、回転放物面鏡(
8〉の焦点(8a)及び回転双曲面鏡(15)の一方の
焦点(17)は、同一の物点となっている。他方、回転
楕円面鏡(1B)は、二つの焦点(19) 、 (20
)を有していて、回転楕円面鏡(16)の一方の焦点(
19)と回転双曲面!1(15〉の他方の焦点(18)
は一致している。そして、回転楕円面鏡(16)の他方
の焦点(20)上に結像手段(11)が位置決めされて
いる。
On the other hand, the microscope main body (6) is of the so-called oblique incidence mirror method, and the optical axis (6) coincides with the optical axis of the X-ray (3).
9〉. Then, the optical axis (4a) and the optical axis (9>
intersect, and the sample (5>) is positioned at this intersecting position.The microscope main body (6>) includes a sample support means (not shown) that supports this sample (5), and a sample support means (not shown) that supports this sample (5). X transmitted through the sample (5) supported by the support means
a cylindrical Wolter-type reflecting mirror (lO) that receives the beam (3a) and obtains an enlarged image of the sample (5);
X-rays (
3b) and converts the imaging result into an electrical signal; and a storage body (12) that stores the sample support means, the Walter-type reflecting mirror (lO), and the imaging means (11).
), and a drive means (14) that minutely moves this storage body (12) in the direction along the optical axis (9>) using, for example, a piezoelectric element.
). However, the Walter type reflector (
10) is a rotating hyperboloid mirror (15) as shown in Figure 2.
and a rotating ellipsoidal mirror (16) coaxially connected to the rotating hyperboloidal mirror (15). As mentioned above, the X-ray (3) and the Walter type reflector (1O) share the optical axis (9), and the sample (5) has the same optical axis (9).
9) Located above. Furthermore, a rotating hyperboloid mirror (15)
has two focal points (17) and (18) on the optical axis (9).
The sample (5) is positioned on one focal point (17). In other words, a parabolic mirror of revolution (
8> focal point (8a) and one focal point (17) of the rotating hyperboloid mirror (15) are the same object point. On the other hand, the spheroidal mirror (1B) has two focal points (19) and (20
), and one focal point (
19) and a hyperboloid of rotation! The other focus (18) of 1 (15〉)
are in agreement. An imaging means (11) is positioned on the other focal point (20) of the spheroidal mirror (16).

つぎに、上記構成のX線顕微鏡の作動について述べる。Next, the operation of the X-ray microscope having the above configuration will be described.

まず、試料(5)を試料支持手段に支持させる。First, the sample (5) is supported by the sample support means.

つぎに、SOR源(()からX線(2)をモノクロメー
タ(7)に投射させる。すると、モノクロメータ(7)
に入射したX線(2〉は、特定波長の単色X線(2a)
に変換され、回転放物面鏡(8)に向かって出射する。
Next, the X-ray (2) is projected from the SOR source (() to the monochromator (7). Then, the monochromator (7)
The incident X-rays (2> are monochromatic X-rays (2a) of a specific wavelength)
and is emitted toward the parabolic mirror (8).

つぎに、回転放物面鏡(8)に入射したX線(2a)は
、X線(3〉としてその焦点(8a)に位置決めされて
いる試料(5)に集光する。そして、この試料(5)に
集光したX線(3)は、試料(5)を透過し、透過した
X線(3a)がウォルター型反射鏡(10)に向かって
出射する。つぎに、このX線(3a)がウォルター型反
射鏡(10)の回転双曲面鏡(15)に入射すると、こ
のX線(3a)は、あたかも、回転双曲面m(15)の
他方の焦点(18)から出射したように、つまり、回転
双曲面!(15)の他方の焦点(1B)を虚の物点とし
て反射し、回転楕円面鏡(16〉に入射する。
Next, the X-rays (2a) incident on the parabolic mirror of revolution (8) are focused as X-rays (3) on the sample (5) positioned at its focal point (8a). The X-rays (3) focused on (5) are transmitted through the sample (5), and the transmitted X-rays (3a) are emitted toward the Walter type reflector (10). When the X-ray (3a) enters the rotation hyperboloid mirror (15) of the Walter-type reflector (10), this X-ray (3a) appears as if it were emitted from the other focal point (18) of the rotation hyperboloid m (15). In other words, the other focal point (1B) of the hyperboloid of revolution! (15) is reflected as an imaginary object point and enters the spheroidal mirror (16>).

すると、この回転楕円面鏡(16)に入射したX線(3
a〉は、回転楕円面鏡(16)の一方の焦点(19)を
虚の物点として反射し、反射したX線(3b)が回転楕
円面鏡(16)の他方の焦点(20〉位置に位置決めさ
れている結像手段(1工)上に結像する。なお、試料(
5)の観察部分を順次拡げたい場合には、駆動手段(1
4〉により格納体(12〉を光軸(9)に沿って矢印(
25)方向に進退させればよい。
Then, the X-rays (3
a〉, one focal point (19) of the spheroidal mirror (16) is reflected as an imaginary object point, and the reflected X-ray (3b) is reflected at the other focal point (20〉 position) of the spheroidal mirror (16). The image is formed on the imaging means (1st piece) positioned at the sample (
5) If you want to expand the observation area sequentially, use the driving means (1
4>, move the container (12> along the optical axis (9) with the arrow (
25) It is sufficient to advance or retreat in the direction.

以上のように、この実施例のX線顕微鏡は、・X線集光
部(4)により、単色X線(3)を1、顕微鏡本体部(
6〉内に設けた試料(5)に集光するようにしているの
で、強力なX線を得ることができるようになる。よって
、X線効率が向上することにより、観察時間が短縮し、
分解能を改善することができる。
As described above, the X-ray microscope of this embodiment is capable of emitting one monochromatic X-ray (3) using the X-ray condensing section (4) and one monochromatic X-ray (3) using the
Since the light is focused on the sample (5) provided within the X-ray tube, powerful X-rays can be obtained. Therefore, by improving X-ray efficiency, observation time is shortened,
Resolution can be improved.

なお、上記実施例において、顕微鏡本体部(6)を、ゾ
ーンプレート法、多層膜ミラー法及び走査法のもので構
成してもよい。さらに、回転放物面鏡(8〉の反射面上
に、第3図に示すように、多層膜(31)を形成しても
よい。この多層膜(3i〉は、重元素(例えばタングス
テン、バナジウム、金)(32〉と、軽元素(例えば炭
素)(33)とからなる膜対(34)が、ブラッグ(B
ragg)条件を満足するように積層されて人工格子と
なっているものである。この多層膜(31)により、X
 l (3)の臨界入射角を大きく出来るので、試料(
5)から結像手段(11)までの距離を短くできる。さ
らにまた、回転放物面鏡(8〉の環R1面上にX線(2
)の単色化が可能な放物面回折格子を形成すれば、モノ
クロメータ(7)を省略できる。また、駆動手段(14
〉により格納体(12)を光軸(9〉に直角な矢印(4
0〉方向に進退させるようにしてもよい。
In the above embodiments, the microscope main body (6) may be constructed using a zone plate method, a multilayer mirror method, or a scanning method. Furthermore, a multilayer film (31) may be formed on the reflective surface of the parabolic mirror of revolution (8>, as shown in FIG. 3). A film pair (34) consisting of vanadium, gold) (32) and a light element (e.g. carbon) (33) is formed by Bragg (B
ragg) conditions are laminated to form an artificial lattice. With this multilayer film (31),
Since the critical incidence angle of l (3) can be increased, the sample (
5) to the imaging means (11) can be shortened. Furthermore, X-rays (2
) The monochromator (7) can be omitted by forming a parabolic diffraction grating that can be monochromatic. In addition, the driving means (14
> moves the container (12) to the arrow (4) perpendicular to the optical axis (9).
It may be made to advance and retreat in the 0> direction.

[発明の効果] 本発明のX線顕微鏡は、X線集光部により、SOR源か
らのX線を単色化し、単色化したX線を顕微鏡本体部内
に設けた試料に集光するようにしているので、強力なX
線を得ることができるようになる。よって、X線効率が
向上することにより、観察時間が短縮し、分解能を改善
することができる。
[Effects of the Invention] The X-ray microscope of the present invention monochromates the X-rays from the SOR source using the X-ray focusing section, and focuses the monochromatic X-rays onto a sample provided within the microscope main body. Because there is a powerful
You will be able to get the line. Therefore, by improving X-ray efficiency, observation time can be shortened and resolution can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例のX線顕微鏡の構成図、第2
図は同じく要部拡大図、第3図は本発明の他の実施例の
説明図である。 (1);SOR源、 (4)  ; X線集光部、 (
5)  ;試料、 (6)  ;顕微鏡本体部、 (7
)  ;モノクロメータ、 (8)  ;回転放物面鏡
、<14);駆動手段。
Figure 1 is a configuration diagram of an X-ray microscope according to an embodiment of the present invention;
The figure is also an enlarged view of the main part, and FIG. 3 is an explanatory diagram of another embodiment of the present invention. (1); SOR source, (4); X-ray condensing unit, (
5) ; Sample, (6) ; Microscope main body, (7
); Monochromator; (8); Parabolic mirror of revolution; <14); Driving means.

Claims (5)

【特許請求の範囲】[Claims] (1)SOR源から放射されたX線を入射して単色化し
た後この単色化されたX線を一定の位置に集光するX線
集光部と、このX線集光部による単色化されたX線の集
光位置に試料を支持しこの試料を透過したX線から上記
試料の拡大像を形成する顕微鏡本体部とを具備すること
を特徴とするX線顕微鏡。
(1) An X-ray condensing unit that inputs and monochromates the X-rays emitted from the SOR source and then condenses the monochromatic X-rays at a certain position, and monochromaticization by this X-ray condensing unit. 1. An X-ray microscope, comprising: a microscope main body that supports a sample at a position where X-rays are focused and forms an enlarged image of the sample from the X-rays transmitted through the sample.
(2)X線集光部により集光された単色X線の光軸と顕
微鏡本体部の光軸とは一致していることを特徴とする請
求項(1)記載のX線顕微鏡。
(2) The X-ray microscope according to claim (1), wherein the optical axis of the monochromatic X-rays focused by the X-ray focusing section and the optical axis of the microscope main body are aligned.
(3)X線集光部は、SOR源から放射されたX線を入
射して単色化するモノクロメータと、このモノクロメー
タから出射した単色X線を入射して一定の位置に集光す
る回転放物面鏡とからなることを特徴とする請求項(2
)記載のX線顕微鏡。
(3) The X-ray condensing unit consists of a monochromator that inputs the X-rays emitted from the SOR source to make it monochromatic, and a rotating unit that inputs the monochromatic X-rays emitted from the monochromator and focuses them at a fixed position. Claim (2) characterized in that it consists of a parabolic mirror.
) described X-ray microscope.
(4)回転放物面鏡の光軸は、モノクロメータから出射
した単色X線の光路に平行に設けられていることを特徴
とする請求項(3)記載のX線顕微鏡。
(4) The X-ray microscope according to claim (3), wherein the optical axis of the parabolic mirror of revolution is provided parallel to the optical path of monochromatic X-rays emitted from the monochromator.
(5)顕微鏡本体部は、X線集光部による単色化された
X線の集光位置における光軸方向に進退自在に駆動する
駆動手段を有すること特徴とする請求項(1)記載のX
線顕微鏡。
(5) The main body of the microscope has a driving means for moving forward and backward in the optical axis direction at the position where the monochromatic X-rays are focused by the X-ray focusing section.
line microscope.
JP31643189A 1989-12-07 1989-12-07 X-ray microscope Pending JPH03179300A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31643189A JPH03179300A (en) 1989-12-07 1989-12-07 X-ray microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31643189A JPH03179300A (en) 1989-12-07 1989-12-07 X-ray microscope

Publications (1)

Publication Number Publication Date
JPH03179300A true JPH03179300A (en) 1991-08-05

Family

ID=18077005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31643189A Pending JPH03179300A (en) 1989-12-07 1989-12-07 X-ray microscope

Country Status (1)

Country Link
JP (1) JPH03179300A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311565A (en) * 1991-05-31 1994-05-10 Olympus Optical Co., Ltd. Soft X-ray microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5311565A (en) * 1991-05-31 1994-05-10 Olympus Optical Co., Ltd. Soft X-ray microscope

Similar Documents

Publication Publication Date Title
US5583342A (en) Laser scanning optical system and laser scanning optical apparatus
JP4492507B2 (en) X-ray focusing device
JPH10339798A (en) Mirror for condensing x rays
JP4837964B2 (en) X-ray focusing device
JPH03179300A (en) X-ray microscope
JP3278812B2 (en) Latent image reading device
JP3141660B2 (en) X-ray irradiation device
US20050226372A1 (en) X-ray image magnifying device
JPS6188200A (en) X-ray irradiation system
JPH0511600B2 (en)
JPH08247967A (en) Fine area parallel beam irradiator
JPH08146199A (en) Parallel x-ray irradiation device
JP3049790B2 (en) Imaging soft X-ray microscope
JPH1073698A (en) Vacuum ultra-violet spectroscope for laser plasma x ray
JP2515893B2 (en) Imaging X-ray microscope
JP2995361B2 (en) X-ray irradiator with irradiation area monitor
JP2948662B2 (en) Radiation image magnifying observation device
JPH1020099A (en) Scanning confocal x-ray microscope
JP3047547B2 (en) X-ray generator
JPH06160311A (en) Radiation image reader
JP2002148521A (en) Microscope
JP3537652B2 (en) X-ray microscope
JP2004101404A (en) X-ray analysis system
JP2003536081A (en) X-ray optical system
JPH04258799A (en) X-ray irradiation device