JPH03179297A - Treatment of highly radioactive waste - Google Patents

Treatment of highly radioactive waste

Info

Publication number
JPH03179297A
JPH03179297A JP31840389A JP31840389A JPH03179297A JP H03179297 A JPH03179297 A JP H03179297A JP 31840389 A JP31840389 A JP 31840389A JP 31840389 A JP31840389 A JP 31840389A JP H03179297 A JPH03179297 A JP H03179297A
Authority
JP
Japan
Prior art keywords
platinum group
treatment
radioactive waste
highly radioactive
group element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31840389A
Other languages
Japanese (ja)
Other versions
JPH0740077B2 (en
Inventor
Mizuaki Horie
堀江 水明
Masahiro Fukumoto
雅弘 福本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Power Reactor and Nuclear Fuel Development Corp
Original Assignee
Power Reactor and Nuclear Fuel Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Reactor and Nuclear Fuel Development Corp filed Critical Power Reactor and Nuclear Fuel Development Corp
Priority to JP31840389A priority Critical patent/JPH0740077B2/en
Publication of JPH03179297A publication Critical patent/JPH03179297A/en
Publication of JPH0740077B2 publication Critical patent/JPH0740077B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To simplify a treatment process and to miniaturize a treatment apparatus by subjecting the calcined matter of highly radioactive waste to heating and melting treatment at high temp. of 1,000 deg.C or higher in a reductive state. CONSTITUTION:The calcined matter of highly radioactive waste is introduced into a melting container 10 to be subjected to heating reduction treatment at 1,000 deg.C or higher and molybdenum present in the calcined matter is reduced and alloyed with a platinum group element to be separated into a platinum group element layer 12 high in specific gravity and an oxide layer low in specific gravity. The platinum group element layer 12 and the oxide layer 14 successively flow down from the downflow nozzle 16 provided to the bottom part of the container 10 and are injected in separate containers to be solidified. By this method, the platinum group element can be separated and recovered without adding additives and a treatment process can be simplified and a treatment apparatus can be miniaturized. Since the oxide residue is solidified as it is, sharp volume reducing solidification as low as one over several tenths as compared with conventional glass solidifying treatment can be realized and storage disposal cost is reduced to a large extent.

Description

【発明の詳細な説明】 [産業上の利用分野〕 本発明は、使用済燃料の再処理工程等で発生する高レベ
ル放射性廃棄物の仮焼体を高温で処理することにより、
白金族元素を分離回収し、残渣酸化物を滅容度の高い廃
棄物固化体にする処理方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a method for treating calcined bodies of high-level radioactive waste generated in spent fuel reprocessing processes at high temperatures.
The present invention relates to a treatment method for separating and recovering platinum group elements and converting residual oxides into highly sterile solidified waste.

[従来の技術] ビューレックス法による使用済燃料の再処理で発生する
高レベル放射性廃棄物は、硝酸液中に崩壊生成物(フィ
ンジョン・プロダクト)が溶液またはスラリーの形で含
まれている。この高放射性廃棄物は、将来、ガラス等に
固体化される。この固体化の方法は媒体中に崩壊生成物
を混入する方法である。媒体としてはガラスや合成岩石
(シンロック)など多種類の材料が研究されている。媒
体中の崩壊生成物の濃度は、崩壊生成物中の元素の媒体
への溶解度や化学的耐久性(水への浸出率)の問題から
約10%程度に制限されている。固化体の体積は、その
貯蔵・処分の費用を低減させるため小さくすべきであり
、そのためには固化体中の崩壊生成物の含有率を上げる
必要がある、が、上記の理由により現状では困難である
[Prior Art] High-level radioactive waste generated in the reprocessing of spent fuel using the Burex method contains decay products (finsion products) in a nitric acid solution in the form of a solution or slurry. This highly radioactive waste will be solidified into glass and other materials in the future. This solidification method involves mixing decay products into the medium. Many different materials are being studied as media, including glass and synthetic rock (synrock). The concentration of the decay products in the medium is limited to about 10% due to the solubility of elements in the decay products in the medium and chemical durability (leaching rate into water). The volume of the solidified body should be reduced in order to reduce the cost of storage and disposal, and for this purpose it is necessary to increase the content of decay products in the solidified body, but this is currently difficult for the reasons mentioned above. It is.

一方、高放射性廃棄物中には有用元素であるRu(ルテ
ニウム)Pd(パラジウム)RhCロジウム〉の白金族
元素が含まれている。
On the other hand, highly radioactive waste contains platinum group elements such as Ru (ruthenium), Pd (palladium), RhC, and rhodium, which are useful elements.

高放射性廃棄物からこれら白金族元素を回収する試みは
長年続けられてきており、従来技術としては次の3つの
方法が知られている。それらは、 ■高放射性廃棄物の硝酸溶液から燐酸エステルを用いて
目的核種を分離する溶媒抽出法■高放射性廃棄物をガラ
ス溶融する際、鉛を添加し白金族元素を鉛層に移行させ
て分離する鉛抽出法 ■放射性廃棄物をイオン交換処理し、目的核種を分離す
るイオン交換法 である。
Attempts to recover these platinum group elements from highly radioactive waste have been ongoing for many years, and the following three methods are known as prior art. These are: ■ Solvent extraction method that uses phosphate ester to separate target nuclides from a nitric acid solution of highly radioactive waste; ■ When melting highly radioactive waste into glass, lead is added and platinum group elements are transferred to the lead layer. Lead extraction method for separation ■This is an ion exchange method that performs ion exchange treatment on radioactive waste and separates the target nuclide.

[発明が解決しようとする課題] しかし上記のような従来の白金族元素の回収方法は、そ
れぞれ次のような欠点がある。
[Problems to be Solved by the Invention] However, the conventional methods for recovering platinum group elements as described above each have the following drawbacks.

■溶媒抽出法は燐酸エステルが二次廃棄物となり、再処
理で使用するTBP ()リブチルフォスフエイト)と
は種類が異なるため、廃TBPと別個の廃溶媒処理方法
(処理方法の研究開発及び処理プラント建設等)が必要
となる。この費用は多大であり、回収する白金族元素の
コストを市販価格以上に引き上げ、高放射性廃棄物から
の白金族元素回収は経済的に引き合わないものとなる。
■In the solvent extraction method, phosphoric acid ester becomes a secondary waste, which is different from the TBP (butyl phosphate) used in reprocessing. Therefore, waste TBP and a separate waste solvent treatment method (research and development of treatment methods) and treatment plant construction, etc.). This expense is significant, raising the cost of the platinum group elements to be recovered above the commercial price, making recovery of the platinum group elements from highly radioactive waste economically unviable.

■鉛抽出法は、鉛以外の添加物を使用しない点で有利で
あるが、抽出効率を上げるため、高放射性廃棄物のガラ
ス固化体製造に使用するガラスと異なる&11戒の低粘
度のガラスを使わなければならず、鉛と白金族元素との
分離、使用した鉛の二次廃棄物化など解決しなければな
らない問題が多い。
■The lead extraction method is advantageous in that it does not use any additives other than lead, but in order to increase the extraction efficiency, we use glass with a low viscosity, which is different from the glass used for the production of vitrified highly radioactive waste. There are many problems that must be solved, such as separating lead from platinum group elements and turning used lead into secondary waste.

■イオン交換法の場合には、イオン交換樹脂が硝酸と接
触することにより燃焼性物質が生成するため、安全性の
面で問題がある。
■In the case of the ion exchange method, combustible substances are generated when the ion exchange resin comes into contact with nitric acid, which poses a safety problem.

更にこれらどの方法を採用しても二次廃棄物が生し、高
放射性廃棄物の高減容処理を行うことができない。
Furthermore, no matter which of these methods is adopted, secondary waste is generated, and highly radioactive waste cannot be treated to reduce the volume of the waste.

本発明の目的は上記のような従来技術の欠点を解消し、
添加物を加えることなく白金族元素を容易に回収でき、
また二次廃棄物が発生せず、高放射性廃棄物の高減容固
化を実現できる処理方法を提供することにある。
The purpose of the present invention is to eliminate the drawbacks of the prior art as described above,
Platinum group elements can be easily recovered without adding additives,
Another object of the present invention is to provide a processing method that does not generate secondary waste and can achieve high volume reduction and solidification of highly radioactive waste.

[課題を解決するための手段] 上記のような技術的課題を解決できる本発明は、高放射
性廃棄物の仮焼体を還元状態において1000℃以上の
高温で加熱溶融処理し、仮焼体中に存在するMo(モリ
ブデン)を還元して白金族元素と合金化させ、得られる
白金族合金層を酸化物層から沈降分離して回収し、残渣
酸化物を固化体にする高放射性廃棄物の処理方法である
[Means for Solving the Problems] The present invention, which can solve the above-mentioned technical problems, heats and melts a calcined body of highly radioactive waste at a high temperature of 1000°C or higher in a reduced state, and melts it in the calcined body. Mo (molybdenum) present in the oxide is reduced and alloyed with platinum group elements, the resulting platinum group alloy layer is separated from the oxide layer by sedimentation, and the residual oxide is solidified. This is a processing method.

高放射性廃棄物は、通常、使用済燃料の再処理工程にお
ける抽出残渣として得られる硝酸溶液であり、使用済燃
料中の殆ど全ての崩壊生成物を含有している。本発明で
は、この硝酸溶液を加熱し、水分及び硝酸を華発させて
仮焼体を得る。その仮焼体を還元状態において1000
℃以上の高温で加熱溶融処理すると、仮焼体中に存在す
るMOが還元され白金族元素と合金化じ、得られる白金
族合金層は酸化物層よりも下層に沈降し、酸化物層から
分離できる。白金族合金を回収し、残渣酸化物層を固化
体にする。
Highly radioactive waste is usually a nitric acid solution obtained as an extraction residue in the spent fuel reprocessing process, and contains almost all the decay products in the spent fuel. In the present invention, this nitric acid solution is heated to exude moisture and nitric acid to obtain a calcined body. 1000 in the reduced state
When heated and melted at a high temperature of ℃ or higher, MO present in the calcined body is reduced and alloyed with platinum group elements, and the resulting platinum group alloy layer settles below the oxide layer and is separated from the oxide layer. Can be separated. The platinum group alloy is recovered and the residual oxide layer is solidified.

本発明は二つの概念を有している。第1は処理の厄介な
二次廃棄物を生しる添加物を加えることなく、高放射性
廃棄物を固体化すること、第2は高放射性廃棄物中の白
金族元素を高温で還元し、金属態として分離することで
ある。
The present invention has two concepts. The first is to solidify highly radioactive waste without adding additives that create secondary waste that is difficult to dispose of, and the second is to reduce the platinum group elements in highly radioactive waste at high temperatures. It is to separate it as a metal.

高放射性廃棄物の加熱処理における酸化還元状態の制御
は、加熱温度、加熱雰囲気、還元剤の添加により行う。
The redox state during heat treatment of highly radioactive waste is controlled by the heating temperature, heating atmosphere, and addition of a reducing agent.

加熱温度は1000℃以上とする。1000℃未満では
Pd、Rhは金属に還元されるが、Ru、Moは還元さ
れない。よって1500〜2000℃で加熱処理するこ
とが好ましい。
The heating temperature is 1000°C or higher. At temperatures below 1000°C, Pd and Rh are reduced to metals, but Ru and Mo are not. Therefore, it is preferable to perform the heat treatment at 1500 to 2000°C.

2000℃以上ではRu −P d −Rh −M o
系の合金は溶融するので、それ以上の高温は必要ない。
At 2000°C or higher, Ru -P d -Rh -Mo
Since the alloys in the system melt, higher temperatures are not necessary.

加熱雰囲気の制御は還元反応を促進するために行う。空
気下においても、より高温にすることにより還元反応を
行わせることはできるが、2000°C以上では溶融炉
の構造、炉の材料、溶融容器の材料等、加熱技術におい
て多くの困難があり、より低い温度で処理することが必
要である。このため本発明では酸素含有量を低減した空
気、窒素もしくはアルゴンの雰囲気下で行うのが望まし
い。
The heating atmosphere is controlled to promote the reduction reaction. Although it is possible to carry out the reduction reaction under air by raising the temperature to a higher temperature, there are many difficulties in heating technology such as the structure of the melting furnace, the material of the furnace, and the material of the melting vessel at temperatures above 2000°C. It is necessary to process at lower temperatures. Therefore, in the present invention, it is preferable to carry out the process in an atmosphere of air, nitrogen, or argon with a reduced oxygen content.

還元剤は、より一層の還元反応促進のために使用する。The reducing agent is used to further promote the reduction reaction.

還元剤としては二次廃棄物を生しさせないため水素や一
酸化炭素等の気体還元剤、炭素等の酸化還元反応におい
て気体化する還元剤、アルカリ土類金属や希土類元素な
ど廃棄物となる酸化物層の構成元素である還元剤を使用
する。
As reducing agents, we use gaseous reducing agents such as hydrogen and carbon monoxide to avoid producing secondary waste, reducing agents that gasify in redox reactions such as carbon, and oxidizing agents that become waste such as alkaline earth metals and rare earth elements. A reducing agent that is a constituent element of the material layer is used.

これらの加熱温度、雰囲気、還元剤は反応条件により適
宜組み合わせて設定し使用する。
These heating temperatures, atmospheres, and reducing agents are set and used in appropriate combinations depending on the reaction conditions.

[作用] 使用済燃料中の核分裂生成物は■金属元素、■非金属元
素、■希土類元素に大別できる。金属元素としてはアル
カリ土類金属やMO等の遷移金属、白金族元素等がある
。高放射性廃液の仮焼体を高温で加熱することにより、
■の非金属元素および■の金属元素の中のアルカリ金属
の大部分が除去される。それらはSb、Te。
[Function] Nuclear fission products in spent fuel can be broadly classified into ■metallic elements, ■nonmetallic elements, and ■rare earth elements. Examples of the metal elements include alkaline earth metals, transition metals such as MO, and platinum group elements. By heating the calcined body of highly radioactive waste liquid at high temperature,
Most of the alkali metals in the nonmetallic elements (2) and the metallic elements (2) are removed. They are Sb and Te.

Cs、Rb等である。その結果、仮焼体の主成分は、燃
焼度45000 MWD/MTU 、冷却期間5年の使
用済燃料の場合、含有量が100 g/MT[I以下の
元素を除くと次のようになる。
Cs, Rb, etc. As a result, the main components of the calcined body, in the case of spent fuel with a burnup of 45,000 MWD/MTU and a cooling period of 5 years, have a content of 100 g/MT [excluding elements below I] as follows.

・アルカリ土類金属(Sr、Ba) ・・・ 3. 3kg/MTU   8. 7%・遷移
金属(Z r 、 M o 、 T c )・・・10
. 5kg/MTU  27. 9%・白金族元素(R
u、Rh、Pd) ・・・ 5. 4kg/MTU  14. 3%・希土
類元素(Y、La、Ce、Pr、Nd、Eu、Gd)・
・・18.5kg/門TL149.1%合計  ・・・
37 、 7kg/MTυ従って、この仮焼体を更に加
熱し焼結溶融することにより、通常の高放射性廃棄物の
固化体の崩壊生成物含有量約10%に比べて減容度の高
い固化体が得られる。ガラス固化体では崩壊生成物に対
し10倍の重量となり使用済燃料1トン当たり数百lの
容積の固化体となるが、本発明では容積数十lの固化体
にしうる。これはビューレックス法再処理で発生する廃
棄物とは種類の異なる二次廃棄物を生じさせることなく
可能である。
・Alkaline earth metals (Sr, Ba)... 3. 3kg/MTU 8. 7%・Transition metal (Z r , Mo , T c )...10
.. 5kg/MTU 27. 9%・Platinum group elements (R
u, Rh, Pd) ... 5. 4kg/MTU 14. 3%・Rare earth elements (Y, La, Ce, Pr, Nd, Eu, Gd)・
...18.5kg/gate TL149.1% total ...
37, 7kg/MTυ Therefore, by further heating, sintering and melting this calcined body, a solidified body with a high volume reduction rate compared to the decay product content of about 10% of a normal solidified body of highly radioactive waste can be obtained. is obtained. The vitrified material is 10 times as heavy as the decay products and has a volume of several hundred liters per ton of spent fuel, but in the present invention, the solidified material can have a volume of several tens of liters. This is possible without producing secondary waste of a different type than that produced by Burex reprocessing.

更に本発明では仮焼体の加熱溶融処理におし)で、系を
還元状態におくことにより白金族元素を回収分離できる
。白金族元素は、その酸化物生成の自由エネルギーが小
さく、加熱されることにより金属状態にまで還元される
ことが知られている。また仮焼体中には酸化物生成自由
エネルギーが比較的小さいMOが含まれている。
Furthermore, in the present invention, the platinum group elements can be recovered and separated by placing the system in a reduced state by heating and melting the calcined body. It is known that platinum group elements have low free energy for oxide formation and are reduced to a metallic state when heated. Further, the calcined body contains MO, which has a relatively small free energy of oxide formation.

仮焼体中に含まれるMOの融点は2623℃であり、白
金族元素の融点はPdが1554℃、Rhは1963℃
、Ruは2254’Cである。
The melting point of MO contained in the calcined body is 2623°C, the melting point of the platinum group elements is 1554°C for Pd, and 1963°C for Rh.
, Ru is 2254'C.

RuはRhとその結晶型を異にしているため全率に固溶
せず、またPdはRh、Ruと共晶点をもつ合金を生成
しない。従って白金族元素及プその合金系では、融点が
2000℃以上になることかあり、仮焼体の溶融により
白金族元素を単独または合金として酸化物である残渣と
分離させることは困難であった。相としては分離しても
、溶融体として二層に互いに分離させるには溶融温度は
極めて高くなる。
Since Ru has a different crystal type from Rh, it does not completely form a solid solution, and Pd does not form an alloy having a eutectic point with Rh and Ru. Therefore, the melting point of platinum group elements and their alloys can exceed 2000°C, and it is difficult to separate the platinum group elements alone or as an alloy from the oxide residue by melting the calcined body. . Even if the phases are separated, the melting temperature must be extremely high to separate them into two layers as a melt.

しかしMOが存在すると、それは白金族元素と融点の低
い合金を形成する。MOと白金族元素との合金において
、最も低い融点はMORu系で1948℃、Mo−Pd
系で1737℃、M o−Rh系で1940℃である。
However, when MO is present, it forms low melting point alloys with the platinum group elements. In alloys of MO and platinum group elements, the lowest melting point is 1948°C for MORu, Mo-Pd.
The temperature is 1737°C for the Mo-Rh system and 1940°C for the Mo-Rh system.

このようにRuのような融点が2254℃の白金族元素
もMOと合金化させることにより融点を下げることかで
きる。
In this way, the melting point of a platinum group element such as Ru, which has a melting point of 2254° C., can be lowered by alloying it with MO.

本発明はこの現象を利用し、Ru、PdRh、Moを2
000℃以下の温度で溶融する形態に還元し、溶融合金
層を形成させ、酸化物層と分離させることにより白金族
元素を回収し、残りの崩壊生成物の酸化物を滅容度の高
い固化体にするものである。
The present invention takes advantage of this phenomenon to combine Ru, PdRh, and Mo with 2
The platinum group elements are recovered by reducing them to a form that melts at temperatures below 000°C, forming a molten alloy layer, and separating it from the oxide layer, and solidifying the remaining decay product oxides with a high degree of sterility. It is something you put into your body.

この崩壊生Ili物の酸化物の組成は、前述の仮焼体の
成分の場合には次のようになる。
The composition of the oxide of this decay product Ili is as follows in the case of the components of the above-mentioned calcined body.

・アルカリ土類金属(Sr、Ba) ・・・ 3. 3kg/MTU  11. 9%・遷移
金属(Zr、Tc) ・・・ 6. 0kg/MTU  21. 6%・希土
類元素(Y、La、Ce、Pr、Nd、Eu、Gd)・
・・18. 5kg/MTU  66. 5%合計  
・・・27 、 8 kg/MTU白金族元素は、その
放射能の減衰または放射性同位体の分離によって有効利
用に供することができるから、放射性廃棄物として所謂
「地層処分」の対象となるのは残りの希土類元素を主成
分とする酸化物となる。これは使用済燃料1トン当たり
27.8kgであり、アクチニドのNp  (0,7k
g/MTU) 、  Am (0,5kg/MTII)
を加えても約30kgにすぎない。それらの比重は約5
であるから容量は6iMTUであり、ガラス固化体の容
量1801MTUに比較し1/30になる。
・Alkaline earth metals (Sr, Ba)... 3. 3kg/MTU 11. 9%・Transition metals (Zr, Tc)...6. 0kg/MTU 21. 6%・Rare earth elements (Y, La, Ce, Pr, Nd, Eu, Gd)・
...18. 5kg/MTU 66. 5% total
...27, 8 kg/MTU Platinum group elements can be put to effective use by attenuating their radioactivity or separating radioactive isotopes, so they are subject to so-called "geological disposal" as radioactive waste. The remaining rare earth elements become oxides as main components. This is 27.8 kg per ton of spent fuel, and the actinide Np (0.7 k
g/MTU), Am (0.5kg/MTII)
Even if you add that, it's only about 30 kg. Their specific gravity is about 5
Therefore, the capacity is 6iMTU, which is 1/30 of the capacity of the vitrified material, which is 1801MTU.

このように本発明により高放射性廃棄物の貯蔵・処分に
おける大幅な費用削減が可能となる。
As described above, the present invention makes it possible to significantly reduce costs in storing and disposing of highly radioactive waste.

即ち高放射性廃棄物を高温処理し、その酸化還元処理状
態を制御することにより、■α核種に比べ貯蔵・処分に
おいて低コストの取り扱いが期待されるβT核種である
揮発性元素と、■有用金属である白金族元素と、■希土
類を主成分とする酸化物の高減容の固化体に放射性廃棄
物を大別分離し処分することができる。
In other words, by treating highly radioactive waste at high temperatures and controlling its redox treatment state, it is possible to extract volatile elements, which are βT nuclides, which are expected to be handled at lower costs in storage and disposal than alpha nuclides, and ■ useful metals. Radioactive waste can be roughly separated and disposed of into highly reduced volume solidified bodies of platinum group elements and oxides whose main components are rare earth elements.

[実施例] 第1図は本発明方法を実施するための処理装置の一例を
示す概念図である。これはボトムフロー型の装置例であ
る。高放射性廃棄物の仮焼体は溶融容器10に入れられ
る。仮焼体は加熱還元処理され、比重の大きな白金族元
素の層12と比重の小さな酸化物層14に分離する。
[Example] FIG. 1 is a conceptual diagram showing an example of a processing apparatus for carrying out the method of the present invention. This is an example of a bottom flow type device. The calcined body of highly radioactive waste is placed in a melting container 10. The calcined body is subjected to a heat reduction treatment and is separated into a platinum group element layer 12 having a high specific gravity and an oxide layer 14 having a low specific gravity.

白金族元素の層12と酸化物の層14は順次底部の流下
ノズル16から流下し、別の容器内に注入し固化する。
The layer 12 of the platinum group element and the layer 14 of the oxide flow sequentially down from the bottom flow nozzle 16 and are injected into a separate container and solidified.

第2図は本発明方法の実施に用いる処理装置の他の例を
示す概念図であるにれはオバーフロー型の装置例である
。高放射性廃棄物の仮焼体は熔融容器20の中央部分に
入れられ、加熱熔融処理される。下方に位置する白金族
元素の層12及び上方に位置する酸化物の層14はそれ
ぞれ矢印で示す流路22,24を経て、流下ノズル26
.28から流下し、別の容器内に注入して固化する。
FIG. 2 is a conceptual diagram showing another example of the processing apparatus used for carrying out the method of the present invention. This is an example of an overflow type apparatus. The calcined body of highly radioactive waste is placed in the center of the melting container 20 and heated and melted. The platinum group element layer 12 located below and the oxide layer 14 located above pass through channels 22 and 24 indicated by arrows, respectively, to a downstream nozzle 26.
.. 28 and poured into another container to solidify.

装置構成は上記2つの例に限られるものではなく、ボト
ムフロー型とオバーフロー型の中間型の装置構成も考え
られる。即ち白金族元素層はボトムフローにより流下さ
せ注入固化し、酸化物層はオバーフローにより流下させ
注入固化する。
The device configuration is not limited to the above two examples, and an intermediate device configuration between a bottom flow type and an overflow type is also conceivable. That is, the platinum group element layer is caused to flow down by the bottom flow and is implanted and solidified, and the oxide layer is caused to flow down by the overflow and is implanted and solidified.

仮焼体の加熱処理は、高放射性廃棄物のガラス固化で採
用されているヒータ一方式や直接通電方式、高周波加熱
方式等を適用できる。
For the heat treatment of the calcined body, a single heater method, a direct energization method, a high frequency heating method, etc., which are used for vitrification of highly radioactive waste, can be applied.

次に具体的な実験例について述べる。燃焼度45000
?IWD/門TU 、冷却期間5年の使用済燃料中の崩
壊生成物の組成を0RIGENコードによって計算して
相当する高放射性廃液の模擬廃液を合威し、この模擬廃
液を600℃に加熱し仮焼体とした。
Next, a specific experimental example will be described. Burnup degree 45000
? IWD/Montu calculates the composition of decay products in spent fuel with a cooling period of 5 years using the 0RIGEN code, combines a simulated highly radioactive waste fluid with the equivalent amount, heats this simulated waste fluid to 600°C, and temporarily calculates the composition. It was made into a fired body.

仮焼体を45gボロンナイトライドのルツボに入れアル
ゴン雰囲気下で1800℃−1時間の加熱溶融処理を行
った。冷却後ルツボを破壊し内容物を取り出した。内容
物は2種類に分かれ、底部には金属の固まりがあり残渣
部分から容易に分離できた。金属部分をX線マイクロア
ナライザー(EPMA)で分析した結果、Ru−P d
 −M oが検出された。Rhは検出波長がRuの検出
波長と重なるため未確認である。この金属部分の重量は
仮焼体中のRu−PdRh−Moの重量の約90%であ
った。残渣部分について、その浸出量をJIS−R35
02に準した方式で測定した。浸出率は8×10g/c
m”  ・dであり、ガラス固化体とほぼ同程度であり
高放射性固化体としての化学的耐久性を有していること
が確認された。
The calcined body was placed in a crucible containing 45 g of boron nitride, and heated and melted at 1800° C. for 1 hour in an argon atmosphere. After cooling, the crucible was destroyed and the contents were taken out. The contents were divided into two types, and there was a lump of metal at the bottom, which could be easily separated from the residue. As a result of analyzing the metal part with an X-ray microanalyzer (EPMA), Ru-P d
-Mo was detected. Rh is unconfirmed because its detection wavelength overlaps with that of Ru. The weight of this metal portion was about 90% of the weight of Ru-PdRh-Mo in the calcined body. Regarding the residue part, the leaching amount is determined according to JIS-R35.
Measurement was performed using a method similar to 02. Leaching rate is 8 x 10g/c
m''·d, which is approximately the same as that of the vitrified solidified material, and it was confirmed that it has the chemical durability as a highly radioactive solidified material.

[発明の効果] 本発明は上記のように高放射性廃棄物の仮焼体を還元状
態において1000℃以上の高温で加熱溶融処理する方
法であるから、添加物を加えることなく白金族元素を分
離回収でき、処理プロセスの単純化並びに処理装置の小
型化を図ることができる。また添加物を加えないため二
次廃棄物が発生せず、残渣酸化物をそのまま固化体にす
るため従来のガラス固化処理に比べて数十分の−もの大
幅な減容固化を実現でき、高放射性廃棄物の貯蔵・処分
における大幅な費用削減が可能となる。
[Effects of the Invention] As described above, the present invention is a method of heating and melting calcined bodies of highly radioactive waste at a high temperature of 1000°C or higher in a reduced state, so platinum group elements can be separated without adding additives. It can be recovered, simplifying the treatment process and downsizing the treatment equipment. In addition, since no additives are added, no secondary waste is generated, and since the residual oxide is solidified as it is, it is possible to achieve a significant volume reduction and solidification by several tens of minutes compared to conventional vitrification treatment. This will enable significant cost reductions in the storage and disposal of radioactive waste.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の実施に用いる処理装置の一例を示
す概念図、第2図は処理装置の他の例を示す概念図であ
る。 10.20・・・溶融容器、12・・・白金族元素の層
、14・・・残渣酸化物層、16.26.28・・・流
下ノズル。
FIG. 1 is a conceptual diagram showing an example of a processing device used to carry out the method of the present invention, and FIG. 2 is a conceptual diagram showing another example of the processing device. 10.20... Melting vessel, 12... Platinum group element layer, 14... Residual oxide layer, 16.26.28... Downflow nozzle.

Claims (1)

【特許請求の範囲】 1、高放射性廃棄物の仮焼体を還元状態において100
0℃以上の高温で加熱溶融処理し、仮焼体中に存在する
モリブデンを還元して白金族元素と合金化させ、得られ
る白金族合金層を酸化物層から沈降分離して回収し、残
渣酸化物を固化体にすることを特徴とする高放射性廃棄
物の処理方法。 2、加熱溶融処理を1500〜2000℃で行う請求項
1記載の処理方法。
[Claims] 1. A calcined body of highly radioactive waste is heated to 100% in a reduced state.
The calcined body is heated and melted at a high temperature of 0°C or higher to reduce the molybdenum present in the calcined body and alloyed with platinum group elements, and the resulting platinum group alloy layer is collected by precipitation separation from the oxide layer, and the residue is recovered. A highly radioactive waste treatment method characterized by solidifying oxides. 2. The processing method according to claim 1, wherein the heating and melting treatment is carried out at 1500 to 2000°C.
JP31840389A 1989-12-07 1989-12-07 Highly radioactive waste treatment method Expired - Lifetime JPH0740077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31840389A JPH0740077B2 (en) 1989-12-07 1989-12-07 Highly radioactive waste treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31840389A JPH0740077B2 (en) 1989-12-07 1989-12-07 Highly radioactive waste treatment method

Publications (2)

Publication Number Publication Date
JPH03179297A true JPH03179297A (en) 1991-08-05
JPH0740077B2 JPH0740077B2 (en) 1995-05-01

Family

ID=18098765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31840389A Expired - Lifetime JPH0740077B2 (en) 1989-12-07 1989-12-07 Highly radioactive waste treatment method

Country Status (1)

Country Link
JP (1) JPH0740077B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328197A (en) * 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd Method of preventing deposition of platinum group in glass melting furnace
JP2012126630A (en) * 2010-12-17 2012-07-05 Ihi Corp Method for removing deposit in glass melting furnace

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002328197A (en) * 2001-05-01 2002-11-15 Ishikawajima Harima Heavy Ind Co Ltd Method of preventing deposition of platinum group in glass melting furnace
JP4491990B2 (en) * 2001-05-01 2010-06-30 株式会社Ihi Method for preventing platinum group deposition in glass melting furnace
JP2012126630A (en) * 2010-12-17 2012-07-05 Ihi Corp Method for removing deposit in glass melting furnace

Also Published As

Publication number Publication date
JPH0740077B2 (en) 1995-05-01

Similar Documents

Publication Publication Date Title
US5082603A (en) Method of treatment of high-level radioactive waste
EP2856472B1 (en) Methods of consolidating radioactive containing materials by hot isostatic pressing
Park et al. Recent progress in waste treatment technology for pyroprocessing at KAERI
US5185104A (en) Method of treatment of high-level radioactive waste
US4571307A (en) Process for conditioning radioactive waste
JP2633000B2 (en) How to treat highly radioactive waste
JP2551879B2 (en) Reduction method of vitrification of highly radioactive waste
JPH03179297A (en) Treatment of highly radioactive waste
Hampson et al. Melt refining of EBR-II fuel
JPS599598A (en) Method of making bulk sludge
US2822260A (en) Decontamination of uranium
Min et al. Distribution characteristics of radionuclides in high-temperature melt phase during melt decontamination of decommissioned metal waste
Steunenberg et al. Status of the salt transport process for fast breeder reactor fuels
Chellew et al. The Melt Refining of Irradiated Uranium: Application to EBR-II Fast Reactor Fuel. XI. Behavior of Iodine in Melt Refining
Chellew et al. Laboratory Studies of Iodine Behavior in the EBR-II Melt Refining Process
Rudolph et al. Lab-scale R+ D work on fission product solidification by vitrification and thermite processes
Ackerman Waste form development and characterization in pyrometallurgical treatment of spent nuclear fuel.
CN111684544A (en) Method for separating cesium and technetium
Crawford PROCESS FOR PRODUCTION OF URANIUM
JPH0694888A (en) Reprocessing method for spent nitrided fuel
Notley et al. Manufacture of Plutonium-beryllium Neutron Sources
Vienna et al. Waste management approach for a potential future US closed fuel cycle
Munnecke et al. CHEMICAL ENGINEERING DIVISON RESEARCH HIGHLIGHTS
Johnson Development of a Laboratory-size, Fluidized-bed Reactor
Zackay et al. The Air Melting of Iron-Aluminum Alloys