JP4491990B2 - Method for preventing platinum group deposition in glass melting furnace - Google Patents

Method for preventing platinum group deposition in glass melting furnace Download PDF

Info

Publication number
JP4491990B2
JP4491990B2 JP2001134383A JP2001134383A JP4491990B2 JP 4491990 B2 JP4491990 B2 JP 4491990B2 JP 2001134383 A JP2001134383 A JP 2001134383A JP 2001134383 A JP2001134383 A JP 2001134383A JP 4491990 B2 JP4491990 B2 JP 4491990B2
Authority
JP
Japan
Prior art keywords
glass
melting furnace
platinum group
lead
glass melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001134383A
Other languages
Japanese (ja)
Other versions
JP2002328197A (en
Inventor
武 坂下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2001134383A priority Critical patent/JP4491990B2/en
Publication of JP2002328197A publication Critical patent/JP2002328197A/en
Application granted granted Critical
Publication of JP4491990B2 publication Critical patent/JP4491990B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/005Melting in furnaces; Furnaces so far as specially adapted for glass manufacture of glass-forming waste materials
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/02Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating
    • C03B5/027Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in electric furnaces, e.g. by dielectric heating by passing an electric current between electrodes immersed in the glass bath, i.e. by direct resistance heating
    • C03B5/0275Shaft furnaces

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Glass Melting And Manufacturing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、放射性廃液とガラス原料とをガラス溶融炉で溶融する際に、ガラス溶融炉の炉底に白金族元素が堆積するのを防止するようにしたガラス溶融炉の白金族堆積防止方法に関するものである。
【0002】
【従来の技術】
原子力施設において発生する高放射性廃液は、高放射性廃液ガラス固化施設のガラス溶融炉により溶融し、ガラス固化体として処理された後、放射性廃棄物保管施設に保管される。
【0003】
上記のガラス固化施設においては、ガラス溶融炉の内部で原料ガラスを溶融する際に高放射性廃液を混入し、この高放射性廃液が混入した溶融ガラスを固化容器に注入し、溶融ガラスを固化させることにより、ガラス固化体を形成している。
【0004】
図2は従来のガラス溶融炉の一例を示す縦断正面図、図3は図2の縦断側面図であり、図2、図3において2は溶融炉本体で、該溶融炉本体2は、内部に溶融空間1を形成するように耐蝕性の耐火レンガ2aにより構成されている。
【0005】
溶融炉本体2の上下中間部左右側には、主電極3が対向して設けられていてその内端が溶融空間1に突出しており、又溶融空間1下部の狭くなっている炉底部4には、底部電極5が設けられてその内端が溶融空間1に突出している。図2、図3において6は溶融炉本体2の上部に設けられて原料ガラス、高放射性廃液等を供給するための原料供給口、7は廃ガス取出管、8は廃ガス処理装置、9は補助電極、10は炉底部4に形成されて溶融されたガラスを取り出すためのガラス取出口、11はガラス取出口10を加熱するためのヒータ、Gは溶融ガラスである。
【0006】
上記ガラス溶融炉に供給される高放射性廃液には、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)等の白金族元素が微量に混入していることが知られている。白金族元素は、ウランの核分裂生成物として原子炉の燃焼度、使用済燃料の冷却年数に応じて生成する。従って、使用済み燃料棒を剪断・溶解し、ウラン、プルトニウムを製品として取り除いた後の高放射性廃液には白金族元素が混入している。
【0007】
【発明が解決しようとする課題】
溶融炉本体2内のガラスを溶融させるには、対向している主電極3,3間に通電することによりジュール熱によって溶融する。ところが高放射性廃液が溶融炉本体2の内部でガラスと混合して溶融する際に、高放射性廃液に含まれている白金族元素は溶融ガラスGに取り込まれず溶融炉本体2内を沈降し、炉底部4付近で堆積する傾向がある。
【0008】
一方、溶融されたガラスをガラス取出口10から流下させるためには、主電極3と底部電極5との間に通電して炉底部4のガラス温度を所定の温度以上に加熱するようにしているが、炉底部に白金族元素が堆積すると、白金族元素は導電性を有するため、主電極3からの電流が白金族元素に流れて発熱しなくなり、炉底部4のガラス温度が所定の温度まで上昇しなくなり、よってガラス取出口10からの溶融ガラスGの取出しに支障を生ずるようになる問題があった。
【0009】
本発明は、このような問題を解決し、白金族元素の影響を受けることなく、炉底部の溶融ガラスを所定温度に加熱することができるようにしたガラス溶融炉の白金族堆積防止方法を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
上記目的を発生するため、本発明は、高放射性廃液とガラス原料とをガラス溶融炉で溶融する際に、前記ガラス原料に酸化鉛を混ぜて、高放射性溶液中に存在しているセレンにより酸化鉛を金属鉛に還元し、高放射性廃液に含まれる白金族元素を鉛に取り込ませたうえ、溶融されたガラスと共に白金族元素を取り込んだ鉛をガラス溶融炉から流下させることを特徴とするガラス溶融炉の白金族堆積防止方法を提供するものである。
【0011】
上記のガラス溶融炉の白金族堆積防止方法では、ガラス原料に混ぜた鉛が白金族元素を取り込んでボタン状金属を生成するため、白金族元素は堆積せず溶融ガラスと共にガラス溶融炉の外に抜き出される。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて説明する。
【0013】
図1は、本発明の方法の実施の形態の一例を示す縦断正面図であって、図2、図3と同一部分には同一符号を付してある。
【0014】
本発明の方法は、高放射性廃液を溶融炉本体2の内部でガラスと混合して溶融する際に、ガラス原料と共に酸化鉛等の鉛(Pb)を同時に添加して混ぜる。
【0015】
現状のガラス溶融システムを稼働させた場合の最高温度は1523Kであるのに対し、Pb2Oの融点は900K、PbO2の融点は865K、Pbの融点は601Kであって、いずれも溶融炉本体2の内部温度よりも低い融点であるためガラス原料の溶融には影響を及ぼすことはなく、また鉛酸化物の抵抗率は比較的高いので溶融炉本体2内の通電加熱にも支障はない。鉛酸化物は還元剤がなくても高放射性廃液中に存在するセレン(Se)等の金属と相互反応し、次に示す化学式のように金属鉛に還元する。
【0016】
【化1】
2PbO+PbSe=3Pb+SeO2
3PbO+PbSe=3Pb+PbSeO3
4PbO+PbSe=4Pb+PbSeO4
【0017】
還元された金属鉛は、高放射性廃液に含まれているルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)等の白金族元素12を図1中矢印で示すように取り込んでボタン状金属を生成し、このように白金族元素を取り込んだ金属鉛からなるボタン状金属は、溶融されたガラスと共にガラス取出口10から流下する。このように、溶融ガラスG内の白金族元素12は、金属鉛(Pb)によって洗浄されることになり、よって、白金族元素が炉底部4付近で堆積する現象は生じなくなる。
【0018】
【発明の効果】
本発明の方法は、高放射性廃液とガラス原料とをガラス溶融炉で溶融する際にガラス原料に鉛を混ぜるため、鉛が放射性廃液に混入している白金族元素を取り込み、白金族元素を取り込んだ鉛が溶融ガラスと共にガラス溶融炉から排出されるので、白金族元素がガラス溶融炉の炉底部付近に堆積することがなくなり、ガラス溶融炉からの溶融ガラスの取出しに支障を生じない効果がある。
【図面の簡単な説明】
【図1】本発明の方法の実施の形態の一例を示す縦断正面図である。
【図2】従来のガラス溶融炉の一例を示す縦断正面図である。
【図3】図2の縦断側面図である。
【符号の説明】
2 溶融炉本体
12 白金族元素
G 溶融ガラス
Pb 鉛
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a platinum group deposition preventing method for a glass melting furnace that prevents platinum group elements from being deposited on the bottom of the glass melting furnace when the radioactive liquid waste and the glass raw material are melted in the glass melting furnace. Is.
[0002]
[Prior art]
The high radioactive waste liquid generated in the nuclear facility is melted by the glass melting furnace of the high radioactive waste liquid glass solidification facility, treated as a glass solid, and then stored in the radioactive waste storage facility.
[0003]
In the above-mentioned glass solidification facility, when the raw glass is melted inside the glass melting furnace, the high radioactive waste liquid is mixed, and the molten glass mixed with this high radioactive waste liquid is injected into the solidification container to solidify the molten glass. Thus, a vitrified body is formed.
[0004]
2 is a longitudinal front view showing an example of a conventional glass melting furnace, FIG. 3 is a longitudinal side view of FIG. 2, and in FIGS. 2 and 3, 2 is a melting furnace body, and the melting furnace body 2 is disposed inside. It is comprised with the corrosion-resistant firebrick 2a so that the fusion | melting space 1 may be formed.
[0005]
On the left and right sides of the upper and lower middle part of the melting furnace body 2, a main electrode 3 is provided to face the inner end of the melting furnace body 2, and its inner end protrudes into the melting space 1. The bottom electrode 5 is provided, and its inner end protrudes into the melting space 1. 2 and 3, 6 is a raw material supply port provided at the upper part of the melting furnace body 2 for supplying raw glass, highly radioactive waste liquid, etc., 7 is a waste gas take-out pipe, 8 is a waste gas treatment device, 9 is The auxiliary electrode 10 is a glass outlet for taking out the glass formed on the furnace bottom 4, 11 is a heater for heating the glass outlet 10, and G is molten glass.
[0006]
It is known that a high amount of radioactive waste liquid supplied to the glass melting furnace contains a trace amount of platinum group elements such as ruthenium (Ru), rhodium (Rh), palladium (Pd). Platinum group elements are produced as fission products of uranium according to the burnup of the reactor and the cooling years of spent fuel. Accordingly, platinum group elements are mixed in the highly radioactive waste liquid after the spent fuel rod is sheared and dissolved to remove uranium and plutonium as products.
[0007]
[Problems to be solved by the invention]
In order to melt the glass in the melting furnace main body 2, the glass is melted by Joule heat by energizing between the opposing main electrodes 3 and 3. However, when the high radioactive waste liquid is melted by mixing with the glass inside the melting furnace main body 2, the platinum group element contained in the high radioactive waste liquid is not taken into the molten glass G but settles in the melting furnace main body 2, There is a tendency to deposit near the bottom 4.
[0008]
On the other hand, in order to allow the molten glass to flow down from the glass outlet 10, current is passed between the main electrode 3 and the bottom electrode 5 to heat the glass temperature of the furnace bottom 4 to a predetermined temperature or higher. However, when the platinum group element is deposited on the bottom of the furnace, the platinum group element has conductivity, so that the current from the main electrode 3 flows to the platinum group element and does not generate heat, and the glass temperature of the furnace bottom 4 reaches the predetermined temperature. As a result, there is a problem that the rise of the molten glass G from the glass outlet 10 is hindered.
[0009]
The present invention provides a platinum group deposition prevention method for a glass melting furnace that can solve such problems and can heat the molten glass at the bottom of the furnace to a predetermined temperature without being affected by platinum group elements. It is intended to do.
[0010]
[Means for Solving the Problems]
In order to generate the above-described object, the present invention, when melting a high radioactive waste liquid and a glass raw material in a glass melting furnace, is mixed with lead oxide in the glass raw material and oxidized by selenium present in the high radioactive solution. A glass characterized in that lead is reduced to metallic lead, platinum group elements contained in highly radioactive liquid waste are incorporated into lead, and lead into which platinum group elements are incorporated flows down from the glass melting furnace together with molten glass. A platinum group deposition preventing method for a melting furnace is provided.
[0011]
In the platinum group deposition prevention method of the glass melting furnace described above, the lead mixed with the glass raw material takes in the platinum group element to produce a button-shaped metal, so the platinum group element does not accumulate and is put together with the molten glass outside the glass melting furnace. Extracted.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0013]
FIG. 1 is a longitudinal front view showing an example of an embodiment of the method of the present invention, and the same parts as those in FIGS. 2 and 3 are given the same reference numerals.
[0014]
In the method of the present invention, when the high radioactive waste liquid is mixed with glass inside the melting furnace body 2 and melted, lead (Pb) such as lead oxide is simultaneously added and mixed together with the glass raw material.
[0015]
The maximum temperature when the current glass melting system is operated is 1523K, whereas the melting point of Pb 2 O is 900K, the melting point of PbO 2 is 865K, and the melting point of Pb is 601K. Since the melting point is lower than the internal temperature of 2, the melting of the glass raw material is not affected, and the resistivity of the lead oxide is relatively high, so there is no hindrance to the electric heating in the melting furnace body 2. Even if there is no reducing agent, lead oxide interacts with a metal such as selenium (Se) present in the highly radioactive waste liquid, and is reduced to lead metal as shown in the following chemical formula.
[0016]
[Chemical 1]
2PbO + PbSe = 3Pb + SeO 2
3PbO + PbSe = 3Pb + PbSeO 3
4PbO + PbSe = 4Pb + PbSeO 4
[0017]
The reduced metallic lead takes in the platinum group element 12 such as ruthenium (Ru), rhodium (Rh), palladium (Pd), etc. contained in the high radioactive waste liquid as indicated by the arrow in FIG. The button-like metal that is produced and thus made of metallic lead incorporating the platinum group element flows down from the glass outlet 10 together with the molten glass. As described above, the platinum group element 12 in the molten glass G is cleaned by the metal lead (Pb), and thus the phenomenon that the platinum group element is deposited near the furnace bottom portion 4 does not occur.
[0018]
【The invention's effect】
In the method of the present invention, lead is mixed into the glass raw material when the high radioactive waste liquid and the glass raw material are melted in a glass melting furnace, so that lead incorporates the platinum group element mixed in the radioactive waste liquid, and incorporates the platinum group element. Since lead is discharged from the glass melting furnace together with the molten glass, platinum group elements are not deposited near the bottom of the glass melting furnace, and there is an effect that does not hinder the removal of the molten glass from the glass melting furnace. .
[Brief description of the drawings]
FIG. 1 is a longitudinal front view showing an example of an embodiment of a method of the present invention.
FIG. 2 is a longitudinal front view showing an example of a conventional glass melting furnace.
FIG. 3 is a longitudinal side view of FIG. 2;
[Explanation of symbols]
2 Melting furnace body 12 Platinum group element G Molten glass Pb Lead

Claims (1)

高放射性廃液とガラス原料とをガラス溶融炉で溶融する際に、前記ガラス原料に酸化鉛を混ぜて、高放射性溶液中に存在しているセレンにより酸化鉛を金属鉛に還元し、高放射性廃液に含まれる白金族元素を鉛に取り込ませたうえ、溶融されたガラスと共に白金族元素を取り込んだ鉛をガラス溶融炉から流下させることを特徴とするガラス溶融炉の白金族堆積防止方法。When melting high radioactive waste liquid and glass raw material in a glass melting furnace, lead oxide is mixed into the glass raw material, and lead oxide is reduced to metallic lead by selenium present in the high radioactive solution. A platinum group deposition prevention method for a glass melting furnace, wherein the platinum group element contained in is taken into lead, and the lead into which the platinum group element is taken together with the molten glass is caused to flow down from the glass melting furnace.
JP2001134383A 2001-05-01 2001-05-01 Method for preventing platinum group deposition in glass melting furnace Expired - Fee Related JP4491990B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001134383A JP4491990B2 (en) 2001-05-01 2001-05-01 Method for preventing platinum group deposition in glass melting furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001134383A JP4491990B2 (en) 2001-05-01 2001-05-01 Method for preventing platinum group deposition in glass melting furnace

Publications (2)

Publication Number Publication Date
JP2002328197A JP2002328197A (en) 2002-11-15
JP4491990B2 true JP4491990B2 (en) 2010-06-30

Family

ID=18982075

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001134383A Expired - Fee Related JP4491990B2 (en) 2001-05-01 2001-05-01 Method for preventing platinum group deposition in glass melting furnace

Country Status (1)

Country Link
JP (1) JP4491990B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682289B2 (en) * 2010-12-17 2015-03-11 株式会社Ihi Method for suppressing deposition in glass melting furnace
JP5776178B2 (en) * 2010-12-17 2015-09-09 株式会社Ihi Deposit removal method for glass melting furnace
JP5696561B2 (en) * 2011-03-29 2015-04-08 株式会社Ihi Deposit removal method for glass melting furnace
JP5966648B2 (en) * 2012-06-14 2016-08-10 株式会社Ihi Radioactive glass sealing method and glass sealing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179297A (en) * 1989-12-07 1991-08-05 Power Reactor & Nuclear Fuel Dev Corp Treatment of highly radioactive waste
JP2000028790A (en) * 1998-07-09 2000-01-28 Ishikawajima Harima Heavy Ind Co Ltd Glass melting furnace

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03179297A (en) * 1989-12-07 1991-08-05 Power Reactor & Nuclear Fuel Dev Corp Treatment of highly radioactive waste
JP2000028790A (en) * 1998-07-09 2000-01-28 Ishikawajima Harima Heavy Ind Co Ltd Glass melting furnace

Also Published As

Publication number Publication date
JP2002328197A (en) 2002-11-15

Similar Documents

Publication Publication Date Title
US10538448B2 (en) Process for waste confinement by vitrification in metal cans
JP4491990B2 (en) Method for preventing platinum group deposition in glass melting furnace
JPS6016599B2 (en) A melting method for encapsulating radioactive substances in glass and a furnace for carrying out the method
JP3848302B2 (en) Glass melting furnace and operating method thereof
EP0228583B1 (en) An electric melting furnace for glassifying high-radioactive waste
JPH02306200A (en) Electric melting furnace for solidifying waste matter
JP4630976B2 (en) Glass melting furnace
JPH0646237B2 (en) Electric melting furnace for vitrification of highly radioactive waste with divided melting tank
JP5696561B2 (en) Deposit removal method for glass melting furnace
JP5682289B2 (en) Method for suppressing deposition in glass melting furnace
JP5776178B2 (en) Deposit removal method for glass melting furnace
Uruga et al. Removal of platinum group metals contained in molten glass using copper
JP3872873B2 (en) Method for electrolytic reprocessing of spent salt from spent fuel
JP2007024816A (en) Vitrification processing method of radioactive waste liquid
JP4442049B2 (en) Glass melting furnace
JPH0512262Y2 (en)
JP4529302B2 (en) Bottom electrode of glass melting furnace
JP4747348B2 (en) Treatment method of radioactive liquid waste
JP2001163624A (en) Glass melting furnace
JPH054820A (en) Vitrification of metallic foreign matter generated by reaction with molybdenum electrode in molten glass
JP2015190892A (en) Method and apparatus for processing ruthenium in high radioactive liquid waste glassification facility
JP2011202985A (en) Melting furnace and method for operating the same
JPH06214092A (en) Atomic power plant and water quality control method, fuel rod, and fuel assembly for the atomic power plant.
JP2002236197A (en) Stirrer for glass fusion furnace
JPH06329420A (en) Glass melting furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100329

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees