JPH03177767A - Ice making device - Google Patents

Ice making device

Info

Publication number
JPH03177767A
JPH03177767A JP1318255A JP31825589A JPH03177767A JP H03177767 A JPH03177767 A JP H03177767A JP 1318255 A JP1318255 A JP 1318255A JP 31825589 A JP31825589 A JP 31825589A JP H03177767 A JPH03177767 A JP H03177767A
Authority
JP
Japan
Prior art keywords
ice
inner tube
solution
making
circumferential surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1318255A
Other languages
Japanese (ja)
Other versions
JP2863226B2 (en
Inventor
Yoshinori Inoue
良則 井上
Takeo Ueno
武夫 植野
Yuzo Sakon
佐近 勇三
Hiroo Fukuyama
福山 博雄
Rikiya Fujiwara
藤原 力弥
Yoshiaki Hirata
平田 義彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Original Assignee
Daikin Industries Ltd
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, Takenaka Komuten Co Ltd filed Critical Daikin Industries Ltd
Priority to JP1318255A priority Critical patent/JP2863226B2/en
Publication of JPH03177767A publication Critical patent/JPH03177767A/en
Application granted granted Critical
Publication of JP2863226B2 publication Critical patent/JP2863226B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent ice formed in an inner tube from being attached thereto and rotate blades smoothly to make a continuous ice-making operation possible by forming the inner circumferential surface of the inner tube into a roughened surface provided with mulitiple recesses and protrusions having fine gaps. CONSTITUTION:The inner circumferential surface of an inner tube 1 is formed into a roughened surface provided with multiple recesses and protrusions 1b having fine gaps 1a. Accordingly, the area of heat transfer is increased, and the tips of blades 3 adapted to rotate in the inner tube 1 impinge against the roughened surface thereof, so that the impingement makes it possible to form ice easily. Moreover, a solution for making ice is stirred, and the heat conductivity of a boundary membrane on the roughened surface is improved, whereby an ice making ability can be enhanced. In addition, the ice making solution entered the gaps 1 is not frozen because an icing temperature can be lowered with the effect of the gaps than a cooling temperature by a refrigerant. Furthermore, since ice formed on the supercooling layer of the inside of the roughened surface is immediately scraped by the blades 3, the concentration of the ice making solution entered the gaps 1a becomes high to drop the freezing point temperature of the solution, whereby icing on the inner circumferential surface of the inner tube 1 is further hardly caused.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主に冷房機の冷熱源として使用されるスラリ
ー状の氷を製造するための製氷装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an ice making device for producing ice in the form of slurry, which is mainly used as a cold source for an air conditioner.

(従来の技術) 従来、この種製氷装置は、製氷用溶液を流通させる内管
と、前記溶液を冷却する冷媒を流通させる外管と、前記
内管に内装され、該内管の内周面と接触するブレードを
もった回転体とを備え、この回転体を駆動源で回転駆動
することにより、前記内管の内周面に生成されたスラリ
ー状の氷を、前記回転体に追従するブレードで掻取って
、外部に取出すようにしている。
(Prior Art) Conventionally, this type of ice-making device has an inner tube through which an ice-making solution flows, an outer tube through which a refrigerant for cooling the solution flows, and an inner tube that is installed inside the inner tube, and has an inner circumferential surface of the inner tube. a rotating body having a blade in contact with the rotating body, and by rotating this rotating body with a drive source, a blade that follows the rotating body to remove the slurry-like ice generated on the inner peripheral surface of the inner tube. I scrape it off and take it outside.

しかして、以上のような製氷装置に使用される内管は、
通常、特開昭83−271074号公報に記載されてい
るごとく、その内周面が鏡面状とされている。
However, the inner tube used in the above ice making device is
Usually, as described in Japanese Patent Application Laid-Open No. 83-271074, the inner circumferential surface thereof is mirror-like.

(発明が解決しよろとする課題) 所で、以上の如く構成する製氷装置における最大の難点
は、前記内管の内面、換言すると外管内に流通する冷媒
により製氷用溶液の氷点温度より低い温度に冷却される
内管の内面に氷結して付着し、これが成長して、前記内
管内に設けるブレードの駆動用モータに負荷を与え、該
モータの電流が上昇して保護装置が働らき、前記モータ
を停止しなければならないことである。この場合、前記
モータの停止により該モータの保護ができるとしても、
モータの発停が繰返されると共に、−時的に、つまり付
着して成長する氷が融解するまでの間、運転を停止しな
ければならないため、運転の継続性に問題が生ずるので
ある。
(Problem to be Solved by the Invention) However, the biggest problem with the ice-making device configured as described above is that the inner surface of the inner tube, in other words, the refrigerant flowing in the outer tube causes a temperature lower than the freezing point temperature of the ice-making solution. It freezes and adheres to the inner surface of the inner tube, which is cooled by water, and grows, applying a load to the motor for driving the blades installed in the inner tube, increasing the current of the motor and activating the protection device. The motor must be stopped. In this case, even if the motor can be protected by stopping the motor,
Problems arise in the continuity of operation because the motor is repeatedly turned on and off and must be stopped from time to time, ie, until the ice that has grown on it melts.

しかして、従来においては、前記内管の内面に氷結して
付着するのを防ぐために、前記内管内面を積極的に鏡面
としたのであるが、氷結した氷が付着し、成長する問題
が生じているのが現状である。そこで、結氷のメカニズ
ムを研究したところ、水の分子運動を妨げるとその氷点
が下がり、氷結しにく\なること、つまり、2枚のガラ
ス板を水中で合わせた状態で水の氷点温度より低い温度
に冷却する場合、前記ガラス板の対向間隔が、第3図に
示したようにl四以上の場合には水の氷点温度で、前記
対向間隔内の水が氷結するのに対し、111より狭くす
るとその氷点温度は低下し、例えば100μにすれば氷
点温度は20℃も降下することになり、水の氷点温度で
は氷結しないことに着目し、本発明を完成したのである
Conventionally, the inner surface of the inner tube was made to have a mirror surface in order to prevent ice from forming and adhering to the inner surface of the inner tube. The current situation is that So, when we researched the mechanism of freezing, we found that if we prevent the movement of water's molecules, its freezing point will drop, making it difficult for it to freeze.In other words, when two glass plates are put together in water, the temperature will be lower than the freezing point of water. When the glass plates are cooled to a temperature of 111, when the distance between the glass plates is 14 or more as shown in FIG. 3, the water within the distance freezes at the freezing point of water. When the diameter is narrowed, the freezing point temperature decreases; for example, when the diameter is 100 μ, the freezing point temperature decreases by 20° C., and the inventors completed the present invention by noting that water does not freeze at the freezing point temperature.

即ち、本発明は、ガラス板の隙間を小さくすることによ
り、対向するガラス面間に水の分子が強く引きつけられ
、その結果、水の分子運動が妨げられて遅(なってガラ
ス面間の氷点温度が降下する現象があることに着目し、
氷結した氷が付着して成長する前記内管の内周面に微細
な隙間をもつ多数の凹凸を備えた粗面とした方が氷結し
た氷が付着し成長しないことを見出して本発明を完成し
たもので、目的は、前記内管内で氷結した氷の付着を起
こしたりすることなく、前記ブレードの回転をスムーズ
に行い得て、連続した製氷運転を行うことができる製氷
装置を提供することにある。
That is, in the present invention, by reducing the gap between the glass plates, water molecules are strongly attracted between the opposing glass surfaces, and as a result, the movement of water molecules is hindered and slowed down (the freezing point between the glass surfaces is reduced). Focusing on the phenomenon of temperature drop,
The present invention was completed by discovering that if the inner circumferential surface of the inner tube, on which frozen ice adheres and grows, has a rough surface with many irregularities with minute gaps, frozen ice will not adhere and grow. The purpose is to provide an ice making device that can smoothly rotate the blades without causing frozen ice to adhere in the inner tube, and can perform continuous ice making operation. be.

(課題を解決するための手段) 上記目的を達成するために、請求項1記載の本発明では
、製氷用溶液を流通させる内管(1)と、前記製氷用溶
液を冷却する冷媒を流通させる外管(2)と、前記内管
(1)内に内装され、該内管(1)の内周面と接触する
ブレード(3)をもつ回転体(4)とを備え、この回転
体(4)を駆動源(5)により駆動回転するごとくした
製氷装置において、前記内管(1)の内周面を、微細な
隙間(1a)をもつ多数の凹凸(1b)を備えた粗面と
したことを特徴とするものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention according to claim 1 includes an inner tube (1) through which an ice-making solution flows, and a refrigerant through which a refrigerant cools the ice-making solution. The rotating body (4) is equipped with an outer tube (2), and a rotating body (4) having a blade (3) which is housed inside the inner tube (1) and comes into contact with the inner circumferential surface of the inner tube (1). 4) is driven and rotated by a drive source (5), the inner peripheral surface of the inner tube (1) is a rough surface having a large number of irregularities (1b) with minute gaps (1a). It is characterized by the fact that

請求項2記載の本発明では、前記内管(1)の内周面に
設ける多数の凹凸(1b)の隙間(1a)は、製氷用溶
液が流入可能で、流入した製氷用溶液を保持でき、かつ
、保持する製氷用溶液の氷点を前記外管(2)を流れる
冷媒による冷却温度より低くする寸法となすのである。
In the present invention as set forth in claim 2, the gaps (1a) between the many irregularities (1b) provided on the inner circumferential surface of the inner tube (1) are capable of allowing the ice-making solution to flow in and retaining the ice-making solution that has flowed therein. And, the dimensions are such that the freezing point of the ice-making solution held is lower than the cooling temperature by the refrigerant flowing through the outer tube (2).

請求項3記載の本発明では、内管(1)の内周面に設け
た多数の凹凸(1b)からなる粗面ば、表面粗さが十点
平均粗さ(Rz)で3〜500μであり、隙間(1a)
の寸法の平均値が10〜500μである。
In the present invention according to claim 3, the rough surface consisting of a large number of irregularities (1b) provided on the inner circumferential surface of the inner tube (1) has a surface roughness of 3 to 500 μ in ten-point average roughness (Rz). Yes, gap (1a)
The average value of the dimensions is 10 to 500μ.

請求項4記載の本発明では、内管(1)の内周面に設け
た多数の凹凸(1b)からなる粗面は、表面粗さが十点
平均粗さ(Rz)で5〜20μであり、隙間(1a)の
寸法の平均値が10〜100μである。
In the present invention as set forth in claim 4, the rough surface consisting of a large number of unevenness (1b) provided on the inner circumferential surface of the inner tube (1) has a surface roughness of 5 to 20μ in terms of ten-point average roughness (Rz). The average value of the dimensions of the gap (1a) is 10 to 100μ.

(作用) 請求項1記載の本発明においては、前記内管(1)の内
周面には、微細な隙間(1a)をもつ多数の凹凸(1b
)を備えた粗面が形成されていることわら、伝熱面積が
増大されるだけではなく、前記内管(1)内をブレード
(3)が回転するとき、該ブレード(3)の先端が前記
粗面に衝突して、その衝撃で氷がより積極的に生成され
易くなり、しかも、製氷用溶液が掻き乱され、前記粗面
の境膜熱伝導性が良好となって能力を向上できるのであ
り、その上前記粗面には微細な隙間(1a)が形成され
、この隙間(La)に入り込んだ製氷用溶液は、第3図
に示した隙間効果で氷結温度を冷媒による冷却温度より
低くできることから隙間(1a)に入り込んだ前記溶液
は氷結しないことになり、その上、前記粗面内側の過冷
却層において生成された氷は前記ブレード(3)で速や
かに掻取られるために、前記隙間(la)内に入り込ん
だ製氷用溶液の濃度が高くなるのであって、濃度が高く
なることによっても、前記溶液の氷点温度を低下できる
から、前記内管(1)の内周面での氷結が一層起こりに
く\なり、前記ブレード(3)が長時間にわたりスムー
ズに同転させられ、それだけ氷結した氷が付着したり、
成長したりするのを少なくでき、この結果、連続した製
氷運転が行われる。
(Function) In the present invention according to claim 1, the inner peripheral surface of the inner tube (1) is provided with a large number of irregularities (1b) having minute gaps (1a).
), the heat transfer area is not only increased, but also when the blade (3) rotates inside the inner tube (1), the tip of the blade (3) It collides with the rough surface, and the impact makes it easier for ice to be generated more actively. Moreover, the ice-making solution is disturbed, and the thermal conductivity of the film on the rough surface is improved, which improves the performance. Moreover, minute gaps (1a) are formed in the rough surface, and the ice-making solution that has entered these gaps (La) has a freezing temperature lower than the cooling temperature by the refrigerant due to the gap effect shown in Figure 3. Since the temperature can be lowered, the solution that has entered the gap (1a) will not freeze, and in addition, the ice generated in the supercooled layer inside the rough surface will be quickly scraped off by the blade (3). The concentration of the ice-making solution that has entered the gap (la) increases, and the freezing point temperature of the solution can be lowered by increasing the concentration. It becomes even more difficult for ice to form, and the blades (3) are rotated smoothly for a long period of time, so that the frozen ice is less likely to stick to the blade (3).
As a result, continuous ice making operation is possible.

請求項2記載の即ち本発明においては、前記内管(1)
の内周面に設ける凹凸(1b)の隙間(1a)は、製氷
用溶液が流入可能で、流入した製氷用溶液を保持でき、
かつ、保持する製氷用溶液の氷点温度を前記外管(2)
を流れる冷媒による冷却温度より低くする寸法となし、
具体的には請求項3記載の本発明においては、表面粗さ
が十点平均粗さ(Rz)で3〜500μであり、隙間(
1a)の寸法の平均値が10〜500μであり、請求項
4記載の本発明においては表面粗さが十分平均粗さ(R
z)で5〜20μであり、隙間(1a)の寸法の平均値
が十点平均粗さ(Rz)で5〜20μであり、隙間(1
a)の寸法の平均値がi0〜100μであるのであって
、前記したガラス板の隙間理論から、前記隙間(1a)
に入り込んだ製氷用溶液の氷点温度を低下できるとと\
、前記隙間(1a)に入り込んだ製氷用溶液は、前記内
管(1)の内周面の過冷却層での氷の生成により、その
濃度が高くなり、濃度上昇により、その氷点温度が低く
なること\により、前記内管(1)の内周面での氷の付
着は抑制でき、このため。
According to the second aspect of the present invention, the inner tube (1)
The gap (1a) between the unevenness (1b) provided on the inner peripheral surface of the ice-making solution allows the ice-making solution to flow in, and can hold the ice-making solution that has flowed in.
And the freezing point temperature of the ice-making solution to be held is set to the outer tube (2).
with dimensions that lower the cooling temperature by the flowing refrigerant,
Specifically, in the present invention according to claim 3, the surface roughness is 3 to 500μ in ten-point average roughness (Rz), and the gap (
The average value of the dimensions 1a) is 10 to 500μ, and in the present invention according to claim 4, the surface roughness is sufficient to have an average roughness (R
The average value of the dimensions of the gap (1a) is 5 to 20μ in ten-point average roughness (Rz), and the gap (1a) is 5 to 20μ
Since the average value of the dimensions of a) is i0 to 100μ, from the above-mentioned glass plate gap theory, the gap (1a)
It is possible to lower the freezing point temperature of the ice-making solution that has entered the water.
The ice-making solution that has entered the gap (1a) has a higher concentration due to the formation of ice in the supercooled layer on the inner peripheral surface of the inner tube (1), and the increased concentration lowers its freezing point temperature. By doing so, the adhesion of ice on the inner circumferential surface of the inner tube (1) can be suppressed.

ブレード(3)による掻取りが円滑にでき、付着した氷
の成長により短時間でモータ電流が上昇することの問題
は解消できるのである。
Scraping by the blade (3) can be done smoothly, and the problem of the motor current increasing in a short time due to the growth of attached ice can be solved.

前記過冷却層について更に説明すると、冷媒として例え
ばフロンR−22を用い、また、製氷用溶液として、エ
チレングリコールを添加し、濃度5%としたものを用い
た場合、その蒸発温度を−9,4℃とすれば、前記内管
(1)の外周面の温度はは窄−7,2℃となり、内周面
の温度は−4,1℃となる。そして、第4図のように前
記内管(1)の内周面に対し、その半径方向に向かい遠
ざかるにつれて温度上昇があり、前記内周面から半径方
向に向かって約300μ隔たった位置で、前記溶液の濃
度5%の氷点温度(−1,75℃)になるのであって、
前記内周面から、前記溶液の氷点温度になる領域が過冷
却層となり、この領域において前記溶液は前記ブレード
(3)の回転による衝撃力の付加により氷結するのであ
る。
To further explain the supercooled layer, if, for example, Freon R-22 is used as the refrigerant and ethylene glycol is added as the ice-making solution to a concentration of 5%, the evaporation temperature is -9, If the temperature is 4°C, the temperature of the outer peripheral surface of the inner tube (1) will be -7.2°C, and the temperature of the inner peripheral surface will be -4.1°C. As shown in FIG. 4, the temperature increases as the distance from the inner circumferential surface of the inner tube (1) increases in the radial direction, and at a position approximately 300μ away from the inner circumferential surface in the radial direction, The concentration of the solution is 5% and the freezing point temperature (-1.75°C) is reached,
The region from the inner circumferential surface where the freezing point temperature of the solution is reached becomes a supercooled layer, and the solution freezes in this region due to the application of impact force due to the rotation of the blade (3).

そして、氷結した氷は、前記内管(1)の内周面におい
て付着しなければ、前記ブレード(3)の回転により円
滑に、つまりモータ電流を大幅に上昇させることなく掻
取ることができるのであり、また、前記溶液の前記過冷
却層における氷結により前記隙間(1a)内に入り込ん
だ前記溶液の濃度を上昇できるのである。
If the frozen ice does not adhere to the inner peripheral surface of the inner tube (1), it can be scraped off smoothly by the rotation of the blade (3), that is, without significantly increasing the motor current. Moreover, the concentration of the solution that has entered the gap (1a) can be increased by freezing of the solution in the supercooled layer.

因みに、エチレングリコールを添加した5%濃度の製氷
用溶液について調べてみたところ、前記隙間(la)に
入り込んだ前記溶液の濃度は、前記過冷却層が冷却し、
ブレード(3)で掻取った状態で、5.08%になって
いた。従って、前記溶液の濃度に対応する氷点温度は、
第5図から明らかな通り、−1,75℃から−1,78
℃に変化し、より一層氷結しないことになるのである。
Incidentally, when we investigated a 5% concentration ice-making solution to which ethylene glycol was added, we found that the concentration of the solution that entered the gap (la) was due to cooling by the supercooled layer.
When scraped with the blade (3), it was 5.08%. Therefore, the freezing point temperature corresponding to the concentration of the solution is:
As is clear from Figure 5, from -1,75℃ to -1,78℃
℃, making it even more difficult to freeze.

(実施例) 第8図及び第7図に示した製氷装置は、横長状とされた
内管(1)と、該内管(1)の外周部に同心状に被嵌さ
れた外管(2)とを備え、この外管(2)に2つの冷媒
取入口(21)と1つの取出口(22)とを設けると共
に、前記内管(1)の長さ方向両側に製氷用溶液の流入
口(11)と流出口(12)とを設ける一方、前記内管
(1)内に、その内周面に常時接触される複数のブレー
ド(3)をもった回転体(4)を回転自由に支持させて
いる。
(Example) The ice making device shown in FIGS. 8 and 7 includes an inner tube (1) that is oblong in shape, and an outer tube (1) that is fitted concentrically around the outer circumference of the inner tube (1). 2), the outer tube (2) is provided with two refrigerant inlets (21) and one outlet (22), and ice-making solution is provided on both lengthwise sides of the inner tube (1). An inlet (11) and an outlet (12) are provided, and a rotating body (4) having a plurality of blades (3) that are constantly in contact with the inner circumferential surface of the inner tube (1) is rotated. freely supported.

また、前記回転体(4)の長さ方向−側には、駆動プー
リ(41)を取付け、該プーリ(41)を伝動ベルト(
42)を介しモータから成る駆動源(5)に連動連結さ
せて、この駆動源(5)の駆動で前記回転体(4)を回
転させるようにしている。
Further, a drive pulley (41) is attached to the - side of the rotating body (4) in the length direction, and the pulley (41) is connected to the transmission belt (
42), the rotating body (4) is rotated by the drive of the drive source (5).

そして、前記内管(1)内に導入された製氷用溶液を、
該内管(1)と外管(2)との間に導入された冷媒で冷
却して、前記内管(1)の過冷却層において氷を生成さ
せ、この氷を前記回転体(4)のブレード(3)で掻取
り、前記流出口(22)からスラリー状の氷として外部
に取出すのである。
Then, the ice-making solution introduced into the inner tube (1) is
Cooling is performed with a refrigerant introduced between the inner tube (1) and the outer tube (2) to generate ice in the supercooled layer of the inner tube (1), and this ice is transferred to the rotating body (4). The ice is scraped off with the blade (3) and taken out as slurry ice from the outlet (22).

しかして、以上のような製氷装置に使用される前記内管
(1)の内周面を、第1図で詳しく示したごとく、微細
な隙間(1a)をもつ多数の凹凸(1b)から成る粗面
としたのである。尚、この第■図は、表面粗さ測定器で
内面の所定箇所を測定し、その凹凸を拡大記録したもの
を示す図面である。
As shown in detail in Fig. 1, the inner circumferential surface of the inner tube (1) used in the above-described ice making apparatus is made up of a large number of irregularities (1b) with minute gaps (1a). The surface was made rough. In addition, this FIG.

具体的には、前記内管(1)を鋼管や鉄管又はステンレ
ス管などで形成して、斯かる内管(1)の内周面に砥石
などを用いたホーニング加工を施してはく真円とするこ
とができると共に、粗面とするのであって、このホーニ
ング加工を用いる場合には、砥石又は前記内管(1)を
往復動させることにより、第2図に模式的に示したごと
く、前記内管(1)の内周面に、クロスハツチの線のご
とき斜めに交差する方向に微細な隙間(1a)をもつ多
数の凹凸(1b)を形成するのであり、斯くするときに
は、これら各凹凸(1b)で伝熱面積が増大されるだけ
ではなく、該各凹凸(1b)に対する前記ブレード(3
)の衝突で効果的な衝撃が得られ、氷の生成が促進され
るのである。
Specifically, the inner tube (1) is formed of a steel pipe, an iron tube, a stainless steel tube, etc., and the inner circumferential surface of the inner tube (1) is honed using a grindstone or the like to obtain a perfect circle. When using this honing process, as schematically shown in FIG. 2, by reciprocating the grindstone or the inner tube (1), On the inner circumferential surface of the inner tube (1), a large number of irregularities (1b) having fine gaps (1a) in diagonally intersecting directions, such as lines of a crosshatch, are formed. (1b) not only increases the heat transfer area, but also the blade (3) for each unevenness (1b).
) collision provides an effective shock that promotes ice formation.

前記隙間(1a)の寸法は、こ\では互いに交差する溝
の交差部を中心としてその回りに形成される4つの四角
錐の各頂点(ax )  (bり  (az)(bz)
を結んでできる菱形(点線で示す)の2つの長短対角線
のうち短い方の対角線すなわち頂点(at)(a2)を
結んだ長さをいうものとする。
The dimensions of the gap (1a) are the vertices (ax) (b (az) (bz)) of four square pyramids formed around the intersection of the grooves that intersect with each other.
It is the length connecting the shorter diagonal of the two long and short diagonals of the rhombus (indicated by the dotted line), that is, the apex (at) (a2).

尚、ブレードは実線矢印方向に回転移動する。Note that the blade rotates in the direction of the solid arrow.

前記凹凸(1b)は、前記ホーニング加工以外に、例え
ばパフ加工やサンドペーパー加工などで形成することも
でき、また、前記内管(1)の内周面にメツキ層を設け
、このメツキ層にホーニング加工などを施すことにより
、前記凹凸(Lb)を形成するようにしてもよい。
In addition to the honing process, the unevenness (1b) can also be formed by, for example, puffing or sandpapering.Alternatively, a plating layer is provided on the inner peripheral surface of the inner tube (1), and the plating layer is The unevenness (Lb) may be formed by honing or the like.

また、前記凹凸(1b)の隙間(1a)は、製氷用溶液
が流入可能で、流入した製氷用溶液を保持でき、かつ、
保持する製氷用溶液の氷点を前記外管(2)を流れる冷
媒による冷却温度より低くできる寸法となすのである。
Further, the gap (1a) between the unevenness (1b) allows the ice-making solution to flow in, and can hold the ice-making solution that has flowed in, and
The dimensions are such that the freezing point of the ice-making solution held can be lower than the cooling temperature by the refrigerant flowing through the outer tube (2).

即ち、前記回転体(4)の回転数を、50 Hz時に4
00回転(ブレード周速3.2m /5ec)、60H
z時には480回転(ブレード周速3.7■/sec 
)となし、また、冷媒の蒸発温度を−9゜4℃で内管(
1)の内周面の温度が−4,1℃となし、更に、製氷用
溶液の濃度をエチレングリコール5%としたとき、前記
隙間(1a)の寸法の平均値、すなわち、成る基準長さ
の範囲において平均線の方向に測った山頂の間隔の平均
値を意味する山頂(こ\で山頂とは、JISのBOGO
I−1982で定められている「断面曲線の山における
最も高い標高の所」をいう)の平均間隔は−の例として
例えば10〜500μ、好ましくは10〜100μとな
し、かつ、その深さを十点平均粗さ(Rz)で3〜50
0μとするのであって、通常は、十点平均粗さ(Rz)
を5〜20μとなすのである。
That is, the rotation speed of the rotating body (4) is set to 4 at 50 Hz.
00 rotations (blade peripheral speed 3.2m/5ec), 60H
480 rotations at Z time (blade peripheral speed 3.7■/sec
), and the inner tube (
When the temperature of the inner peripheral surface of 1) is -4.1°C and the concentration of the ice-making solution is 5% ethylene glycol, the average value of the dimensions of the gap (1a), that is, the standard length Mountain peaks mean the average distance between mountain peaks measured in the direction of the average line within the range (here, mountain peaks are JIS BOGO
I-1982, the average spacing between the "highest elevation points on the mountain of the cross-sectional curve" is, for example, 10 to 500μ, preferably 10 to 100μ, and the depth is Ten point average roughness (Rz) 3-50
It is set to 0μ, and usually the ten-point average roughness (Rz)
The thickness is 5 to 20μ.

その理由は、前記隙間(1a)の寸法の平均値を10μ
より小さくするときには、この隙間(1a)に製氷用溶
液が流入し難くなり、一方、100μでは、氷点温度が
約−20℃であり、前記蒸発温度より約10℃低(なる
ので、内周面が氷結することなく、氷を確実に生成する
ことができるのであり、また、500μ程度でも、第3
図から明らかなように、−10℃程度の充分な氷点降下
が得られ、必要以上に前記寸法を大とする必要がないの
であり、また、前記隙間(1a)の深さを3μより小さ
くするときには、前記製氷用溶液を充分保持できない虞
れがあり、従って、好ましくは5μ以上とし、一方、深
さを500μより大きくする場合には、前記隙間(1a
)を構成する凸部がへたったり、この凸部に接触される
ブレード(3)が高密度ポリエチレンなどで形成されて
いるため、該ブレード(3)の摩耗を招くからであるが
、この深さは、前記隙間(1a)の寸法の管理はど重要
なものでない。
The reason is that the average value of the dimensions of the gap (1a) is 10 μm.
When the gap (1a) is made smaller, it becomes difficult for the ice-making solution to flow into the gap (1a).On the other hand, when the gap (1a) is made smaller, the freezing point temperature is about -20℃, which is about 10℃ lower than the evaporation temperature (so the inner peripheral surface It is possible to reliably generate ice without freezing, and even with a thickness of about 500μ, the third
As is clear from the figure, a sufficient freezing point drop of about -10°C can be obtained, so there is no need to increase the above dimensions more than necessary, and the depth of the gap (1a) is made smaller than 3μ. In some cases, there is a risk that the ice-making solution cannot be held sufficiently. Therefore, the depth is preferably 5μ or more. On the other hand, when the depth is greater than 500μ, the gap (1a
) may wear out, or the blade (3) that comes into contact with this protrusion may wear out because it is made of high-density polyethylene or the like. However, the control of the dimensions of the gap (1a) is not important.

因みに、ホーニング加工により粗面とし、前記隙間(1
a)の寸法の平均値を10〜100μのものとし、ブレ
ードの周速を3 、7 m/seaとし、エチレングリ
コール添加の5%濃度の製氷用溶液を用い、冷媒の蒸発
温度を−8,4℃としてテストシ、前記モータの電流が
保護装置の作動する手前の6Aになるまでの通算時間を
調べてみたところ、鏡面仕上げしていた従来の場合には
10分〜1時間であったのに対し、24時間を経過して
も前記モータの電流は5Aを越えることがなかった。
Incidentally, the rough surface was made by honing, and the gap (1
The average value of the dimensions of a) is 10 to 100μ, the circumferential speed of the blade is 3.7 m/sea, a 5% concentration ice-making solution containing ethylene glycol is used, and the evaporation temperature of the refrigerant is -8. When I tested the motor at 4°C and looked at the total time it took for the motor's current to reach 6A before the protective device activated, it was 10 minutes to 1 hour in the case of a conventional mirror-finished motor. On the other hand, the current of the motor did not exceed 5A even after 24 hours had passed.

この理由は、先にも説明した通り、前記隙間(1a)に
入り込んだ製氷用溶液の氷点温度が低下すると共に、前
記溶液の濃度が上がって濃度上昇による氷点温度が低下
することによるもので、前記内管(1)の内周面におい
て、氷結しないことからブレード(3)の衝撃で過冷却
層の前記溶液が氷結しても、前記ブレード(3)の動作
で容易に掻取られて前記内周面において氷が付着しない
し、また、付着しないから成長もせずにブレード(3)
の動作で常時掻取られることによるものである。
The reason for this is, as explained earlier, that the freezing point temperature of the ice-making solution that has entered the gap (1a) decreases, and the concentration of the solution increases, resulting in a decrease in the freezing point temperature due to the increase in concentration. Since no freezing occurs on the inner peripheral surface of the inner tube (1), even if the solution in the supercooled layer freezes due to the impact of the blade (3), it is easily scraped off by the action of the blade (3). Ice does not adhere to the inner circumferential surface, and since it does not adhere, it does not grow and the blade (3)
This is because it is constantly scraped off by the action of

尚、前記内管(1)の内周面に隙間(1a)を設け、該
隙間(la)を微細隙間とすることに伴う隙間効果で氷
点が下がり、この隙間(1a)に入り込んだ製氷用溶液
が凍り難くなることは、第3図に示した関係図により説
明できるし、また、水にエチレングリコールなどを添加
して製氷用溶液を調製する場合で、その濃度を変化させ
たときの氷結温度変化グラフを示した第4図から、製氷
用溶液の濃度が高くなることに伴って、氷点温度が下が
ることも説明できるのであって、前記内管(L)内をブ
レード(3)が回転するとき、該ブレード(3)が前記
内管(1)の内周の過冷却層に衝突して、その衝撃で氷
が生成され、また、製氷用溶液が掻き乱されることから
、前記内周面近くの境膜熱伝導性が良好となって、伝熱
面積の増大と共に、能力を増大させられながら、前記内
管(1)の内周面への氷の付着をなくシ、運転の継続時
間を長くできるのである。尚、前記内周面への氷の付着
は、前記隙間に入り込んだ製氷用溶液を、前記した隙間
理論及び濃度上昇により氷点温度を低下できることが主
たる原因であるが、前記過冷却層において氷結するとき
の凝固熱を、前記内管(1)の内周面に与えることによ
っても、前記内周面での氷の付着を回避できると推察で
きる。
In addition, by providing a gap (1a) on the inner circumferential surface of the inner tube (1) and making the gap (la) into a fine gap, the freezing point is lowered due to the gap effect, and the ice-making ice that enters this gap (1a) The fact that the solution becomes difficult to freeze can be explained by the relationship diagram shown in Figure 3. Also, when an ice-making solution is prepared by adding ethylene glycol to water, freezing occurs when the concentration is changed. From FIG. 4, which shows a temperature change graph, it can be explained that as the concentration of the ice-making solution increases, the freezing point temperature decreases, and the blade (3) rotates inside the inner tube (L). When the blade (3) collides with the supercooled layer on the inner periphery of the inner tube (1), ice is generated by the impact and the ice making solution is disturbed. The film thermal conductivity near the circumferential surface is improved, increasing the heat transfer area and increasing the capacity, while also eliminating the adhesion of ice to the inner circumferential surface of the inner tube (1) and improving operation. This allows for a longer duration. Incidentally, the main cause of the adhesion of ice to the inner circumferential surface is that the freezing point temperature of the ice-making solution that has entered the gap can be lowered by the above-mentioned gap theory and concentration increase, but the ice-making solution freezes in the supercooled layer. It can be inferred that the adhesion of ice on the inner circumferential surface can also be avoided by applying the heat of solidification at the inner circumferential surface of the inner tube (1).

また、他の例としては、前記内管(1)の内周面に設け
た多数の凹凸(1b)からなる粗面は、凸部の頂部をシ
ャープエツジにすることが好ましく、サンドペーパー加
工又は砥石仕上げのま\の状態とするのがよく、そして
表面粗さが十点平均粗さ(Rz)で3〜10μであり、
凸部の数としては150個〜250個/!すのものに形
成するのが適正である。この凸部の数は、例えば200
倍に拡大した顕微鏡写真で確認することができるすべて
の凸部を数えた値である。即ち、この場合は、JISの
BOBOI−1982で定められている断面曲線の山(
断面曲線を平均線で切断したとき、それらの交差点の隣
り合う2点を結ぶ断面曲線のうち平均線に対し実体が突
出している部分)において複数の凸部がある場合には、
この複数の凸部をすべて数えるものである。そして、十
点平均粗さ(Rz)が3μよりも小さい場合は、ブレー
ド(3)の背面が負圧となり、背面に氷が堆積し、この
堆積した氷がブレード(3)の背面にくっついたま\ブ
レード(3)が回転するので、ブレード(3)を駆動す
るモータが過負荷となることがある。
In addition, as another example, it is preferable that the rough surface consisting of a large number of unevenness (1b) provided on the inner circumferential surface of the inner tube (1) has a sharp edge at the top of the protrusion, and is processed by sandpaper processing or It is best to leave it in the state of being finished with a whetstone, and the surface roughness is 3 to 10μ in ten-point average roughness (Rz),
The number of protrusions is 150 to 250/! It is appropriate to form it in the same way. The number of these convex parts is, for example, 200.
This value is calculated by counting all the convex parts that can be confirmed in a micrograph magnified twice. That is, in this case, the peak of the cross-sectional curve defined in JIS BOBOI-1982 (
When a cross-sectional curve is cut along the average line, if there are multiple convex parts in the cross-sectional curve connecting two adjacent points of their intersections, the part of the cross-sectional curve that protrudes from the average line,
All of the plurality of convex portions are counted. If the ten-point average roughness (Rz) is smaller than 3 μ, the back of the blade (3) becomes negative pressure, ice accumulates on the back, and the accumulated ice sticks to the back of the blade (3). \As the blade (3) rotates, the motor driving the blade (3) may become overloaded.

さらに、長時間運転時に凸部の頂部が滑らかとなり耐久
性に問題がある。十点平均粗さ(Rz)が10μより大
きい場合は内周面より氷が成長した場合にブレード(3
)の先端に氷が当たり、これにより前記モータが過負荷
となることがある。
Furthermore, during long-term operation, the tops of the convex portions become smooth, which poses a problem in durability. If the ten-point average roughness (Rz) is larger than 10 μ, the blade (3
), which can cause ice to hit the tip and overload the motor.

また、内管(1)の内周面の凹凸(1b)を、第2図の
ように格子状に形成し、凸部の数を150個゛〜250
個/ミリとし、凸部の先端をシャープエツジとすること
により、小さい過冷却度で氷が発生する′こと\なり、
この場合、過冷却度が小さいことから、溶液温度が高く
、このため生成した氷の粒の回りに存在するブラインを
含んだ水膜の厚さが過冷却度が小さいほど弱くなるので
、氷結しにくい利点がある。
In addition, the unevenness (1b) on the inner peripheral surface of the inner tube (1) is formed in a lattice shape as shown in Fig. 2, and the number of protrusions is 150 to 250.
By making the tip of the convex part a sharp edge, ice can be generated with a small degree of supercooling.
In this case, since the degree of supercooling is small, the solution temperature is high, and as a result, the thickness of the water film containing brine that exists around the generated ice particles becomes weaker as the degree of supercooling decreases, so that freezing does not occur. It has some advantages.

また、格子状とすることにより、ブレード(3)が内周
面に平均的に当たるため、内周面及びブレード(3)が
局部的に摩耗することがなく、従って、耐久性が向上す
る。
Further, by forming the blade in a lattice shape, the blades (3) hit the inner circumferential surface evenly, so that the inner circumferential surface and the blade (3) are not locally worn, and therefore, durability is improved.

そして、両実施例においては、内周面に多数の凹凸(1
b)を設けていることにより、内周面に接した付近での
溶液の流れが凹凸(1b)によって乱されて小さな渦を
伴う状態となる。従って、この乱れにより、内周面から
氷が成長しない利点がある。また、かりに氷が内周面に
付着したとしても、鏡面の場合には氷が面接触状態で付
着するので接触面積が大きく付着力が大きいのに対し、
粗面とすると氷が複数の凸部の上端部に点接触状態(氷
が凸部の先端のみ接触する)で付着するので、接触面積
が小さく付着力は小さい。従って、点接触状態で付着し
た場合には、ブレード(3)で容易に掻取りができると
と\なり、ブレード(3)を駆動するモータが過負荷と
なることもないのである。
In both embodiments, the inner circumferential surface has many irregularities (1
By providing b), the flow of the solution in the vicinity of contact with the inner circumferential surface is disturbed by the unevenness (1b), resulting in a state accompanied by small vortices. Therefore, this turbulence has the advantage that ice does not grow from the inner peripheral surface. In addition, even if ice adheres to the inner peripheral surface, in the case of a mirror surface, the ice adheres in surface contact, so the contact area is large and the adhesion force is large.
When the surface is rough, ice adheres to the upper ends of the plurality of convex portions in a point contact state (ice contacts only the tips of the convex portions), so the contact area is small and the adhesion force is small. Therefore, if the particles adhere in a point-contact state, they can be easily scraped off with the blade (3), and the motor that drives the blade (3) will not be overloaded.

(発明の効果) 以上説明したように、請求項1記載の本発明の製氷装置
では、内管(1)の内周面を、微細な隙間をもつ多数の
凹凸を備えた粗面としたから、前記内管(1)の過冷却
層において氷結して氷が生成されても、この氷が、前記
内管(1)の内周面に付着することがないから、ブレー
ド(3)による氷の掻取りは大きな負荷が作用すること
なく、換言すると、モータの電流値を上昇させることな
くスラリー状の氷を生成でき、連続した運転を長時間に
わたって継続させられるのである。
(Effects of the Invention) As explained above, in the ice making device of the present invention according to claim 1, the inner circumferential surface of the inner tube (1) is made into a rough surface having a large number of unevenness with minute gaps. Even if ice is formed by freezing in the supercooled layer of the inner tube (1), this ice will not adhere to the inner circumferential surface of the inner tube (1), so the blades (3) can prevent ice from forming. The scraping process does not require a large load, in other words, it is possible to generate ice in the form of slurry without increasing the current value of the motor, and continuous operation can be continued for a long period of time.

そして、請求項2記載の本発明においては、前記内管(
1)の内周面に設ける多数の凹凸(1b)における隙間
(1a)を、製氷用溶液が流入可能で、流入した製氷用
溶液を保持でき、かつ、保持する製氷用溶液の氷点を外
管(2)を流れる冷媒による冷却温度より低くする寸法
としたことにより、製氷用溶液の氷点温度の低下によっ
て、内管(1)の内周面での氷の付着をより確実に防止
できる。
In the present invention according to claim 2, the inner tube (
1) The gap (1a) between the many irregularities (1b) provided on the inner circumferential surface of (2) is dimensioned to be lower than the cooling temperature of the flowing refrigerant, and by lowering the freezing point temperature of the ice-making solution, it is possible to more reliably prevent ice from adhering to the inner circumferential surface of the inner tube (1).

そして、請求項3記載の本発明においては、具体的に表
面粗さが十点平均粗さ(Rz)で3〜500μであり、
隙間(1a)の寸法の平均値が10〜500μであるの
で、隙間(1a)への製氷用溶液の流入が確実となると
共に、氷点温度の低下も確実となり、内管(1)の内周
面の氷結防止が期待できると共にブレード(3)の摩耗
防止も期待でき、製氷装置の耐久性が向上する。
In the present invention according to claim 3, the surface roughness is specifically 3 to 500 μ in ten-point average roughness (Rz),
Since the average value of the dimensions of the gap (1a) is 10 to 500μ, it is ensured that the ice-making solution flows into the gap (1a), and the freezing point temperature is also reduced, so that the inner periphery of the inner tube (1) It is expected that the surface will be prevented from freezing and the blade (3) will be prevented from wearing out, and the durability of the ice making device will be improved.

そして、請求項4記載の本発明においては、表面粗さが
十点平均粗さ(Rz)で6〜20μであり、隙間(1a
)の寸法の平均値が10〜100μであるので、前記の
ように氷結防止の他に、ブレード(3)の摩耗防止も一
層確実に期待でき、製氷装置の耐久性向上を更に図るこ
とができる。
In the present invention according to claim 4, the surface roughness is 6 to 20μ in terms of ten-point average roughness (Rz), and the gap (1a
) is 10 to 100μ, so in addition to preventing icing as described above, it is also possible to more reliably prevent wear of the blade (3), thereby further improving the durability of the ice making device. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明にかかる製氷装置の要部である内管の内
周面の凹凸を拡大記録した図、第2図は内管をホーニン
グ加工した状態を示す模式図、第3図は隙間と氷点との
関係を示すグラフ、第4図は過冷却層と製氷用溶液温度
との関係を示すグラフ、第5図は製氷用溶液の濃度変化
による氷結温度変化を示すグラフ、第6図は同製氷装置
の全体構造を示す縦断正面図、第7図は同製氷装置の側
断面図である。 (1)・・・・・内管 (1a)・・・・隙間 (1b)・・・・凹凸 (2)・・・・・外管 (3)・・◆・・ブレード (4)・・・・・回転体 (5)・・・・・駆動軸源
Fig. 1 is an enlarged view of the irregularities on the inner circumferential surface of the inner tube, which is the main part of the ice-making device according to the present invention, Fig. 2 is a schematic diagram showing the honed state of the inner pipe, and Fig. 3 is the gap between the inner tube and the inner tube. Figure 4 is a graph showing the relationship between supercooled layer and ice-making solution temperature, Figure 5 is a graph showing changes in freezing temperature due to changes in ice-making solution concentration, and Figure 6 is a graph showing the relationship between ice-making solution temperature and freezing point. FIG. 7 is a longitudinal sectional front view showing the overall structure of the ice making apparatus, and FIG. 7 is a side sectional view of the ice making apparatus. (1)...Inner tube (1a)...Gap (1b)...Irregularities (2)...Outer tube (3)...◆...Blade (4)... ... Rotating body (5) ... Drive shaft source

Claims (1)

【特許請求の範囲】 1)製氷用溶液を流通させる内管(1)と、前記溶液を
冷却する冷媒を流通させる外管(2)と、前記内管(1
)内に内装され、該内管(1)の内周面と接触するブレ
ード(3)をもつ回転体(4)とを備え、この回転体(
4)を駆動源(5)により駆動回転するごとくした製氷
装置であって、前記内管(1)の内周面を、微細な隙間
(1a)をもつ多数の凹凸(1b)を備えた粗面として
いることを特徴とする製氷装置。 2)内管(1)の内周面に設ける多数の凹凸(1b)に
おける隙間(1a)を、製氷用溶液が流入可能で、流入
した製氷用溶液を保持でき、かつ、保持する製氷用溶液
の氷点を外管(2)を流れる冷媒による冷却温度より低
くする寸法とした特許請求の範囲1記載の製氷装置。 3)内管(1)の内周面に設けた多数の凹凸(1b)か
らなる粗面は、表面粗さが十点平均粗さ(Rz)で3〜
500μであり、隙間(1a)の寸法の平均値が10〜
500μである特許請求の範囲1又は2記載の製装置。 4)内管(1)の内周面に設けた多数の凹凸(1b)か
らなる粗面は、表面粗さが十点平均粗さ(Rz)で5〜
20μであり、隙間(1a)の寸法の平均値が10〜1
00μである特許請求の範囲1又は2記載の製氷装置。
[Scope of Claims] 1) An inner tube (1) through which an ice-making solution flows, an outer tube (2) through which a refrigerant for cooling the solution flows, and an inner tube (1) through which a refrigerant cools the solution.
), and a rotary body (4) having a blade (3) that is in contact with the inner circumferential surface of the inner tube (1);
4) is driven and rotated by a drive source (5), the inner peripheral surface of the inner tube (1) is roughened with a large number of irregularities (1b) having fine gaps (1a). An ice making device characterized by a surface. 2) An ice-making solution that allows the ice-making solution to flow into the gaps (1a) among the many irregularities (1b) provided on the inner circumferential surface of the inner tube (1), and that can and retains the ice-making solution that has flowed in. 2. The ice making device according to claim 1, which is dimensioned so that the freezing point of the outer tube (2) is lower than the cooling temperature of the refrigerant flowing through the outer tube (2). 3) The rough surface consisting of a large number of irregularities (1b) provided on the inner peripheral surface of the inner tube (1) has a surface roughness of 3 to 3 on the ten-point average roughness (Rz).
500μ, and the average value of the dimensions of the gap (1a) is 10~
The manufacturing apparatus according to claim 1 or 2, which has a diameter of 500μ. 4) The rough surface consisting of a large number of unevenness (1b) provided on the inner circumferential surface of the inner tube (1) has a surface roughness of 5 to 5 in ten-point average roughness (Rz).
20μ, and the average value of the dimensions of the gap (1a) is 10 to 1
3. The ice making device according to claim 1 or 2, wherein the ice making device has a diameter of 00μ.
JP1318255A 1989-12-07 1989-12-07 Ice making equipment Expired - Lifetime JP2863226B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1318255A JP2863226B2 (en) 1989-12-07 1989-12-07 Ice making equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1318255A JP2863226B2 (en) 1989-12-07 1989-12-07 Ice making equipment

Publications (2)

Publication Number Publication Date
JPH03177767A true JPH03177767A (en) 1991-08-01
JP2863226B2 JP2863226B2 (en) 1999-03-03

Family

ID=18097166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1318255A Expired - Lifetime JP2863226B2 (en) 1989-12-07 1989-12-07 Ice making equipment

Country Status (1)

Country Link
JP (1) JP2863226B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474772C1 (en) * 2011-12-07 2013-02-10 Сергей Викторович Коровкин Method of ice generation
JP2017096548A (en) * 2015-11-24 2017-06-01 ホシザキ株式会社 Ice-making machine
WO2019139146A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system and control method of evaporation temperature used therein
WO2019138765A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system
US20220057130A1 (en) * 2018-12-27 2022-02-24 Daikin Industries, Ltd. Method for controlling operation of ice-making machine

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1235046B1 (en) * 1999-11-26 2011-10-05 JFE Engineering Corporation Thermal storage material using hydrate and thermal storage device therefor, and production method of the thermal storage material
EP1510763B1 (en) 2002-05-31 2012-02-01 JFE Engineering Corporation Apparatus for producing hydrate slurry

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2474772C1 (en) * 2011-12-07 2013-02-10 Сергей Викторович Коровкин Method of ice generation
JP2017096548A (en) * 2015-11-24 2017-06-01 ホシザキ株式会社 Ice-making machine
WO2019139146A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system and control method of evaporation temperature used therein
WO2019138765A1 (en) * 2018-01-15 2019-07-18 ダイキン工業株式会社 Ice making system
JP2019124447A (en) * 2018-01-15 2019-07-25 ダイキン工業株式会社 Ice making system
EP3742085A4 (en) * 2018-01-15 2021-03-10 Daikin Industries, Ltd. Ice making system and control method of evaporation temperature used therein
US11118825B2 (en) 2018-01-15 2021-09-14 Daikin Industries, Ltd. Ice making system
US20220057130A1 (en) * 2018-12-27 2022-02-24 Daikin Industries, Ltd. Method for controlling operation of ice-making machine

Also Published As

Publication number Publication date
JP2863226B2 (en) 1999-03-03

Similar Documents

Publication Publication Date Title
JP4730844B2 (en) Method for simultaneously polishing both surfaces of a plurality of semiconductor wafers and semiconductor wafer
JPH03177767A (en) Ice making device
US20050118939A1 (en) Abrasive bead coated sheet and island articles
EP0703850A1 (en) Super abrasive grinding wheels
KR101558196B1 (en) Ingot cutting apparatus and cutting method
JP4667263B2 (en) Silicon wafer manufacturing method
JP2017208530A (en) Debris-removal groove for cmp polishing pad
JP3765477B2 (en) Surface pit formation method and member having surface pit
JP2012082989A (en) Heat exchanger
US7273409B2 (en) Process for forming spherical components
JP2021142563A (en) Apparatus and method for producing strip using rapid solidification technology, and metallic strip
TWI564116B (en) Sapphire polishing pad dresser with multiple trimmed pellets
JP2008511459A (en) System and method for generating work surfaces and work surfaces
KR20180057487A (en) Heat exchanger
Lee et al. Kinematical modeling of pad profile variation during conditioning in chemical mechanical polishing
CN113272080B (en) Apparatus for mechanical cleaning of wire for producing drawn wire
Li et al. Scraping force characteristics of frost formed on vertical cooling surfaces having different structures and wettability
JP2011062762A (en) Abrasive grain holding sheet for embedding in flexible polishing surface plate, and method for manufacturing abrasive grain embedded flexible polishing surface plate using the same
JP2006029609A (en) Ice maker
EP2293901B1 (en) Abrasive article
Danaraj Mechanical polishing of fan blade by a prototype random-orbital tool
GB2324596A (en) Making snow
JP2000262915A (en) Device and production of particles for washing
JP2003211442A (en) Pelletizer, and knife and die plate used therein
JP2001179601A (en) Polishing device for semiconductor wafer

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071211

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081211

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091211

Year of fee payment: 11

EXPY Cancellation because of completion of term