JPH03177755A - Refrigerating cycle - Google Patents

Refrigerating cycle

Info

Publication number
JPH03177755A
JPH03177755A JP31522089A JP31522089A JPH03177755A JP H03177755 A JPH03177755 A JP H03177755A JP 31522089 A JP31522089 A JP 31522089A JP 31522089 A JP31522089 A JP 31522089A JP H03177755 A JPH03177755 A JP H03177755A
Authority
JP
Japan
Prior art keywords
heat exchanger
heat
indoor heat
exchanger
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31522089A
Other languages
Japanese (ja)
Inventor
Akio Sakazume
坂爪 秋郎
Junichi Hasegawa
淳一 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31522089A priority Critical patent/JPH03177755A/en
Publication of JPH03177755A publication Critical patent/JPH03177755A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To perform dry operation with a small sized inexpensive room air conditioner by dividing an indoor heat exchanger, and providing a dehumidifying diaphragm and a check valve in parallel between the two divided in-door heat-exchangers. CONSTITUTION:An indoor heat-exchanger 21 is divided into an up-stream side machine 21a and a lower stream side machine 21b respectively, and a dehumidifying diaphragm 22 and check valve 23 are provided between the two divided indoor heat-exchangers in parallel. In the dehumidifying operation, the coolant being discharged from a com pressor 14 enters into an outdoor heat-exchanger through a discharge pipe 15, and a four-way valve 17. At this time, when the blast amount to be supplied to the heat- exchanger 18 is lowered, the heat exchanged amount is limited, the coolant in saturated state rich in gas component is sent to the indoor heat-exchanger 21b through the check valve 20, dissipate heat to the surrounding atmosphere, overheating it, while the coolant itself is subjected to condensation, reduced in pressure by the dehumidifica tion diaphragm 22 and flows into the indoor heat-exchanger 21a. Here, the coolant robs heat of the atmosphere and evaporator, atmospheric air is cooled and dehumidi fied. The evaporated coolant is returned to the compressor 14 passing through the four-way valve 17 and an intake pipe 16.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ルームエアコンに係り、特に、温度はあまり
下げずに、湿度を下げるのに好適な冷凍サイクルに関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a room air conditioner, and particularly to a refrigeration cycle suitable for lowering humidity without significantly lowering the temperature.

〔従来の技術〕[Conventional technology]

従来の温度をあまり下げずに湿度を下げるルームエアコ
ンとして、一般に「ドライタイプ」といわれるルームエ
アコンが知られている。
BACKGROUND ART A room air conditioner called a "dry type" is generally known as a room air conditioner that lowers humidity without significantly lowering the temperature.

この種類のルームエアコンの一例である実公昭55−4
9483号公報の冷凍サイクルを第5図に示す。
An example of this type of room air conditioner, Jikko 55-4
The refrigeration cycle of Publication No. 9483 is shown in FIG.

第5図により従来技術について簡単に述べる。The prior art will be briefly described with reference to FIG.

1は圧扁機、2は吐出パイプ、3は吸込パイプ、4は四
方弁、5は室外熱交換器、6は暖房用絞り、7は逆止弁
、8a 、3bは冷房用絞り、9は除湿用絞り、10a
、10bは室内熱交換器、11は三方弁を示し、12及
び13はこれらの部品よりなる室外機。
1 is a compression machine, 2 is a discharge pipe, 3 is a suction pipe, 4 is a four-way valve, 5 is an outdoor heat exchanger, 6 is a heating throttle, 7 is a check valve, 8a and 3b are cooling throttles, 9 is a Dehumidification aperture, 10a
, 10b is an indoor heat exchanger, 11 is a three-way valve, and 12 and 13 are outdoor units made up of these parts.

室内機である。It is an indoor unit.

次に、各運転モードにおける冷媒の流れについて述べる
。まず、冷房運転時には、三方弁11を第5図の破線の
ように接続しておく。すると冷媒は、圧縮機lから吐出
パイプ2.四方弁4.室外熱交換器5.逆止弁7を経て
、一部は絞り8a、室内熱交換器10a、三方弁11を
経て、残りの一部は絞りBb、室内熱交換器10 bを
経て四方弁4から吸込パイプ3を経て圧縮機1へ戻る。
Next, the flow of refrigerant in each operation mode will be described. First, during cooling operation, the three-way valve 11 is connected as shown by the broken line in FIG. Then, the refrigerant flows from the compressor 1 to the discharge pipe 2. Four-way valve 4. Outdoor heat exchanger5. After passing through the check valve 7, a portion passes through the throttle 8a, the indoor heat exchanger 10a, and the three-way valve 11, and the remaining part passes through the throttle Bb, the indoor heat exchanger 10b, and then from the four-way valve 4 through the suction pipe 3. Return to compressor 1.

暖房時には、四方弁4を切換えることにより冷媒はこの
逆に流れ、逆止弁7の代りに絞り6を経て圧縮機lへ戻
る。
During heating, the refrigerant flows in the opposite direction by switching the four-way valve 4, passing through the throttle 6 instead of the check valve 7 and returning to the compressor l.

そして、ドライ運転時には、四方弁4を冷房時と同じよ
うに設定し、三方弁11を実線のように設定する。そし
て、室外熱交換器5への送風を停止あるいは減速するこ
とにより、完全に凝縮していない冷媒を三方弁11から
室外熱交換器10a、絞り9を経て室外熱交換器10b
、四方弁4.吸込パイプ3から圧縮機lへ戻す。
During dry operation, the four-way valve 4 is set in the same manner as during cooling, and the three-way valve 11 is set as shown by the solid line. By stopping or slowing down the air blowing to the outdoor heat exchanger 5, the refrigerant that has not been completely condensed is transferred from the three-way valve 11 to the outdoor heat exchanger 10a, through the throttle 9, and then to the outdoor heat exchanger 10b.
, four-way valve 4. Return from suction pipe 3 to compressor l.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記の従来の技術は、冷凍サイクルの構成上、三方弁1
1及び絞りF3a 、3b等が必要となり、冷凍サイク
ルが複雑となり、室内機13の小形化の点で好ましくな
い点があった。
In the above conventional technology, due to the configuration of the refrigeration cycle, the three-way valve 1
1 and throttles F3a, 3b, etc. are required, which complicates the refrigeration cycle, which is undesirable in terms of miniaturization of the indoor unit 13.

また、性能上三方弁11の冷媒の流通抵抗を小さくする
必要があるため、コスト面で不オリになる欠点があった
Furthermore, since it is necessary to reduce the flow resistance of the refrigerant through the three-way valve 11 in terms of performance, there is a drawback in terms of cost.

本発明の目的は、より簡単な冷凍サイクル構成にするこ
とにより、小形で低コストでドライ運転をできるルーム
エアコンを提供することにある。
An object of the present invention is to provide a room air conditioner that is compact and capable of dry operation at low cost by having a simpler refrigeration cycle configuration.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明は室外熱交換器を少
なくとも二分割し、その間に除湿用絞りと逆止弁を並列
に接続する。そして、このような室内熱交換器の一端を
四方弁に、他端を暖房用絞りを介して室外熱交換器に接
続し、この暖房用絞りと並列に逆止弁を接続し、室外熱
交換器の他端を四方弁に接続し、四方弁と圧縮機を接続
する。
In order to achieve the above object, the present invention divides an outdoor heat exchanger into at least two parts, and connects a dehumidifying throttle and a check valve in parallel between the parts. Then, one end of such an indoor heat exchanger is connected to a four-way valve, the other end is connected to an outdoor heat exchanger via a heating throttle, and a check valve is connected in parallel with this heating throttle, and the outdoor heat exchanger is connected to the outdoor heat exchanger. Connect the other end of the vessel to a four-way valve, and connect the four-way valve to the compressor.

〔作用〕[Effect]

運転パターンは、除湿運転と暖房運転にわけられる。最
初に除湿運転、次に暖房運転について述べる。
The operation pattern is divided into dehumidification operation and heating operation. First, we will discuss dehumidification operation and then heating operation.

除湿運転時には、圧縮機から吐出された冷媒は四方弁、
室外熱交換器を経た後、順方向の逆止弁を経て空気の下
流側の室内熱交換器へ高圧のまま流入する。なお、この
際、室外熱交換器の送風量を減少させることにより、室
外熱交換器からの放熱量が減り、過熱域、あるいは、飽
和域の冷媒のまま室内熱交換器へ入り、そこで放熱し、
除湿用絞りで減圧され、空気の上流側の室内熱交換器へ
流入し、周囲の空気から熱を奪い冷媒は蒸発するこのと
き周囲の空気は冷却減湿され、先程の空気の下流側熱交
換器を通過するときに再熱され、温度はそれ程低下せず
、湿度のみ低くなった空気として室内機から吹出される
。そして、空気の上流圧縮機へ戻る。
During dehumidification operation, the refrigerant discharged from the compressor is passed through a four-way valve,
After passing through the outdoor heat exchanger, the air flows into the indoor heat exchanger on the downstream side through a forward check valve while maintaining high pressure. At this time, by reducing the amount of air blown from the outdoor heat exchanger, the amount of heat released from the outdoor heat exchanger is reduced, and the refrigerant enters the indoor heat exchanger as it is in the superheated or saturated range, where it radiates heat. ,
The air is depressurized by the dehumidifying throttle, flows into the indoor heat exchanger on the upstream side, takes heat from the surrounding air, and the refrigerant evaporates.At this time, the surrounding air is cooled and dehumidified, and the downstream heat exchange of the air is completed. As the air passes through the container, it is reheated, and the temperature does not drop that much, and the air is blown out from the indoor unit as air with a lower humidity. The air then returns to the upstream compressor.

暖房運転時には、圧縮機から吐出された冷媒は、四方弁
を経て室内熱交換器に入り、そこで周囲の空気へ放熱し
た後、順方向の逆止弁を経て、空気の下anの熱交換器
へ入り、そこで再び、空気へ放熱した後、暖房用の絞り
を経て減圧され、室外熱交換器へ流入して室外空気から
吸熱して蒸発し、四方弁を経て圧縮機へ戻る。
During heating operation, the refrigerant discharged from the compressor enters the indoor heat exchanger through the four-way valve, where it radiates heat to the surrounding air, and then passes through the forward check valve and enters the indoor heat exchanger under the air. After radiating heat to the air again, the air is depressurized through a heating throttle, flows into an outdoor heat exchanger, absorbs heat from the outdoor air, evaporates, and returns to the compressor via a four-way valve.

以上のような動作により、温度をあまりかえずに湿度を
下げる除湿運転、及び、暖房運転を行うことができる。
By the above-described operations, it is possible to perform a dehumidifying operation and a heating operation that lower the humidity without changing the temperature much.

なお、除湿運転の際に、室外熱交換器の送風量を調節す
ることにより、室内熱交換器から吹出されてくる空気の
温度を高め、あるいは、低めに調節することができる。
Note that during dehumidification operation, by adjusting the air flow rate of the outdoor heat exchanger, the temperature of the air blown out from the indoor heat exchanger can be adjusted to be higher or lower.

〔実施例〕 以下、本発明の一実施例を第1図ないし第4図により説
明する。
[Embodiment] An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

まず、第1図により第一の実施例について述べグ、17
は四方弁、18は室外熱交換器、19は暖房用絞り、2
0は暖房用絞り19に並列に設けた逆止弁、21a1及
び、21 bは空気の上流側及び下流側の室内熱交換器
、22は室内熱交換器21 a及び21 bの間に設け
た除湿用絞り、詔は除湿用絞り22に並列に設けた逆止
弁、24は室外機、25は室内機を示す。
First, the first embodiment will be described with reference to FIG.
is a four-way valve, 18 is an outdoor heat exchanger, 19 is a heating diaphragm, 2
0 is a check valve provided in parallel with the heating throttle 19, 21a1 and 21b are indoor heat exchangers on the upstream and downstream sides of air, and 22 is provided between indoor heat exchangers 21a and 21b. A dehumidifying throttle and a check valve are provided in parallel to the dehumidifying throttle 22, 24 is an outdoor unit, and 25 is an indoor unit.

次に、冷凍サイクルの動作について述べる。まず、除湿
運転時には、圧縮機14から吐出された冷媒は、吐出パ
イプ15.四方弁17を経て室外側熱交換器18に入る
。そして、同熱交換器18への送風量を減少させておく
ことにより(送風機(図示省略)の停止を含む)、熱交
換量を制限し、過熱域、あるいは、ガス成分の多い飽和
状態のまま冷媒は、逆止弁20を経て室内熱交換器21
 bへ送られる。同熱交換器21 bで冷媒は、周囲の
空気へ放熱し、空気を加熱し、冷媒自身は凝縮し、除湿
用絞り22で減圧されて室内熱交換器21 aに流入す
る。そして、冷媒は空気から熱を奪って蒸発し、空気は
冷却減湿される。蒸発した冷媒は四方弁17.吸込パイ
プ16を経て圧縮機14へ戻る。このように動作するこ
とにより、室内空気は、空気の上流側熱交換器21aで
冷却減湿された後、下流側の熱交換器21 bで再熱さ
れ、温度変化は少なく、湿度のみ低下した空気となり、
再び、室内空間へ戻される。
Next, the operation of the refrigeration cycle will be described. First, during dehumidification operation, the refrigerant discharged from the compressor 14 is transferred to the discharge pipe 15. It enters the outdoor heat exchanger 18 via the four-way valve 17. Then, by reducing the amount of air blown to the heat exchanger 18 (including stopping the blower (not shown)), the amount of heat exchange is limited, and the amount remains in the overheating region or in the saturated state with a large amount of gas components. The refrigerant passes through the check valve 20 and enters the indoor heat exchanger 21.
sent to b. In the same heat exchanger 21b, the refrigerant radiates heat to the surrounding air, heating the air, and the refrigerant itself condenses, is depressurized by the dehumidifying throttle 22, and flows into the indoor heat exchanger 21a. The refrigerant then removes heat from the air and evaporates, cooling and dehumidifying the air. The evaporated refrigerant is removed from the four-way valve 17. It returns to the compressor 14 via the suction pipe 16. By operating in this manner, the indoor air is cooled and dehumidified in the upstream air heat exchanger 21a, and then reheated in the downstream heat exchanger 21b, resulting in little temperature change and only a decrease in humidity. It becomes air,
It is returned to the indoor space again.

なお、この場合、室外熱交換器18への送風量を少なめ
にすると、室外熱交換器18からの放熱量が減少し、室
内機25から吹出される空気の温度を高めにできる。こ
の逆に室外熱交換器18への送風量を多めにすると、室
内機25から吹出される空気の温度を低めにすることが
できる。
In this case, if the amount of air blown to the outdoor heat exchanger 18 is reduced, the amount of heat released from the outdoor heat exchanger 18 is reduced, and the temperature of the air blown out from the indoor unit 25 can be increased. Conversely, if the amount of air blown to the outdoor heat exchanger 18 is increased, the temperature of the air blown out from the indoor unit 25 can be lowered.

次に、暖房運転時について述べる。圧縮機14から吐出
された冷媒は°、四方弁17を経て、室内熱交換器21
a、逆止弁詔、室内熱交換器21 bへ流れ、この両熱
交換器213 、21 bで熱を室内空気へ放出し、冷
媒自身は凝縮し、暖房用絞り19で減圧され、室外熱交
換器18で蒸発し、四方弁17を経て圧縮機14へ戻る
。なお、暖房運転時に室外熱交換器18の着霜量が増え
た場合には、暖房用絞り19と室外熱よりデフロストを
行う。
Next, the heating operation will be described. The refrigerant discharged from the compressor 14 passes through the four-way valve 17 and is then transferred to the indoor heat exchanger 21.
a, through the check valve, the refrigerant flows to the indoor heat exchanger 21b, and the heat is released into the indoor air by both heat exchangers 213 and 21b, and the refrigerant itself is condensed, and the pressure is reduced by the heating throttle 19, and the outdoor heat is released. It is evaporated in the exchanger 18 and returned to the compressor 14 via the four-way valve 17. If the amount of frost on the outdoor heat exchanger 18 increases during heating operation, defrosting is performed using the heating aperture 19 and the outdoor heat.

以上のような冷凍サイクルの構成とすることにより、第
5図に示す従来例のようにコストの高い三方弁11、あ
るいは、絞り8a 、Bb等を省略した小形、低コスト
の冷凍サイクルで高令者に適した温度をあまり下げずに
湿度のみ下げる除湿運転、及び、暖房運転のできるルー
ムエアコンを提供することができる。
By configuring the refrigeration cycle as described above, a compact, low-cost refrigeration cycle without the expensive three-way valve 11 or the throttles 8a, Bb, etc. as in the conventional example shown in FIG. To provide a room air conditioner capable of dehumidifying operation that lowers only humidity without lowering temperature too much and heating operation suitable for people.

次に、第2図により本発明の第二の実施?lJについて
述べる。この実施例は、第一の実施例の絞り19及び2
2の代りに温度式膨張弁26 、27を使用したもので
ある。こうすることにより、より広い温度条件にわたっ
て効率及び信頼性の高い運転ができる。
Next, FIG. 2 shows a second implementation of the present invention? Let's talk about lJ. This embodiment is similar to the apertures 19 and 2 of the first embodiment.
2, temperature type expansion valves 26 and 27 are used. This allows efficient and reliable operation over a wider range of temperature conditions.

次に、第3図により本発明の第三の実施例について述べ
る。この実施例は、第一の実施例より除湿運転時により
高い室内空気の吹出温度を得られるようにした冷凍サイ
クルである。本実施例の冷凍サイクルの構成について第
1図と異なっている部分のみについて述べる。28は室
外熱交換器18 a及び18 bの間に設けた逆止弁、
29は室外熱交換器18 bと暖房用絞り19との間に
設けた二方弁、3oは室外熱交換器18 aと逆止弁2
8との間と絞り1つと室内熱交換器21 bとの間を結
ぶ回路に設けた逆止弁、31は室外熱交換器18 bと
二方弁29との間と低圧側である吸込パイプ16とを結
ぶ回路に設けたキャピラリチューブのような抵抗体を示
す。
Next, a third embodiment of the present invention will be described with reference to FIG. This embodiment is a refrigeration cycle that can obtain a higher indoor air blowout temperature during dehumidification operation than the first embodiment. Regarding the configuration of the refrigeration cycle of this embodiment, only the parts that are different from FIG. 1 will be described. 28 is a check valve provided between the outdoor heat exchangers 18 a and 18 b;
29 is a two-way valve provided between the outdoor heat exchanger 18b and the heating throttle 19, and 3o is the outdoor heat exchanger 18a and the check valve 2.
A check valve 31 is provided in a circuit connecting between the outdoor heat exchanger 18 b and the two-way valve 29 and a suction pipe on the low pressure side. A resistor such as a capillary tube is shown in the circuit connecting 16.

次に除湿運転の動作について述べる。二方*29及びデ
フロスト用二方弁25を閉じておく。すると圧縮機14
から吐出された冷媒は、四方*17を経て室外熱交換器
18 aを流れた後、逆止弁3Q 、p iて室内熱交
換器21 bへ流れる。そして室外熱交換器18bの部
分は、逆止弁28.二方弁25 、29により締め切ら
れ、抵抗体3■を介して吸込パイプ16に連通している
ため低圧となっているため、冷媒の流れ及び室外空気と
の熱交換はなくなる。このようにすることにより、除湿
運転時の室外熱交換器18からの放熱をその一部である
18 aのみに限定することにより、低減させることが
でき、エンタルピの高い状態の冷媒を室内熱交換器21
 bへ供給できるため、室内空気を十分に再熱でき、よ
り高い温度で低湿の空気を吹出すことが可能となる。
Next, the operation of dehumidification operation will be described. Close the two-way *29 and two-way defrost valve 25. Then compressor 14
The refrigerant discharged from the refrigerant passes through the outdoor heat exchanger 18a through four directions *17, and then flows to the indoor heat exchanger 21b through the check valves 3Q and PI. The outdoor heat exchanger 18b has a check valve 28. It is closed by the two-way valves 25 and 29 and communicated with the suction pipe 16 via the resistor 3, resulting in low pressure, so there is no flow of refrigerant and no heat exchange with outdoor air. By doing so, the heat radiation from the outdoor heat exchanger 18 during dehumidification operation can be reduced by limiting it to only a part of the outdoor heat exchanger 18a, and the refrigerant in a high enthalpy state can be transferred to the indoor heat exchanger. Vessel 21
Since indoor air can be sufficiently reheated, it becomes possible to blow out air with higher temperature and lower humidity.

また、暖房運転時には、三方弁29を開くことにより、
室内熱交換器21 bからの冷媒は、絞り29で減圧さ
れ、三方弁29を経て室外熱交換器18b、逆止弁側を
経て室外熱交換器18aへと流れ、室外熱交換器288
.28bの両方を有効に使用することができる。
Also, during heating operation, by opening the three-way valve 29,
The refrigerant from the indoor heat exchanger 21b is depressurized by the throttle 29, flows through the three-way valve 29 to the outdoor heat exchanger 18b, passes through the check valve side to the outdoor heat exchanger 18a, and then flows to the outdoor heat exchanger 18a.
.. 28b can be used effectively.

以上の実施例は、いずれも除湿運転と暖房運転のいずれ
でもできる冷凍サイクルであった。次の実施例で暖房は
不要であるが、除湿運転のみ必要であるという使用者に
対応するために示す。第4図において、32は圧縮機、
おは室外熱交換器、具a及び34bは空気の上流側及び
下流側の室内熱交換器、35は絞りを示す。
The above embodiments were all refrigeration cycles that could perform either dehumidifying operation or heating operation. The following embodiment is shown to accommodate users who do not need heating but only need dehumidifying operation. In FIG. 4, 32 is a compressor;
1 is an outdoor heat exchanger, 34b is an indoor heat exchanger on the upstream and downstream sides of air, and 35 is an aperture.

除湿運転時には、圧縮機から吐出された高温高圧の冷媒
は、熱の一部を室外熱交換器おで放熱した後、室内熱交
換器34bに流入し、周囲の空気を再熱すると共に冷媒
自身は冷却され、凝縮し、絞り35で減圧され、室内熱
交換器34 aで蒸発し、圧縮機32へ戻る。このよう
にして室内熱交換器34aで周囲の空気を冷却減湿し、
室内熱交換器34bで再熱して温度をあまり下げず、湿
度のみ下げた空気を室内に吹出すことができる。
During dehumidification operation, the high-temperature, high-pressure refrigerant discharged from the compressor radiates part of its heat in the outdoor heat exchanger, then flows into the indoor heat exchanger 34b, reheats the surrounding air, and heats the refrigerant itself. is cooled, condensed, reduced in pressure by the throttle 35, evaporated in the indoor heat exchanger 34a, and returned to the compressor 32. In this way, the indoor heat exchanger 34a cools and dehumidifies the surrounding air,
Air that is reheated by the indoor heat exchanger 34b and whose temperature is not lowered much but whose humidity is lowered can be blown into the room.

この実施例によれば、三方弁や二方弁を全く使用せず、
単純な冷凍サイクルにより、高令者等に適した除湿運転
を可能とすることができる。
According to this embodiment, no three-way valve or two-way valve is used;
A simple refrigeration cycle enables dehumidifying operation suitable for the elderly and the like.

なお、室外熱交換器おを第5図に例を示すように圧m 
砿32の周囲に設け、これを自然対流式とすることによ
り、室外熱交換器用送風機が不必安となり、低コストの
ルームエアコンを提供することができる。
Note that the pressure of the outdoor heat exchanger is set to m as shown in Figure 5.
By providing it around the rod 32 and making it a natural convection type, a blower for the outdoor heat exchanger is no longer necessary, and a low-cost room air conditioner can be provided.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、除湿運転と冷房運転のみ必要とする使
用者に対して、三方弁、複数の絞り等を使用しない冷凍
サイクルを構成できるため、より小形で低コストのルー
ムエアコンを提供することができる。
According to the present invention, a refrigeration cycle that does not use a three-way valve, multiple throttles, etc. can be configured for users who only need dehumidifying operation and cooling operation, so that a smaller and lower cost room air conditioner can be provided. I can do it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は、本発明の実施例の冷凍サイクル
の系続図、 ル系統図である。 14・・・圧縮機 18・・・室外熱交換器 20・・・逆止弁 213 、21 b ・ 22 ・絞り 26 、27・・膨張弁 29・・・二方弁 31・・抵抗体 あ・・・室外熱交換器 34a、34b・・・室内熱交換器 35・・・絞り 第6図は、 17・・・四方弁 19・・・絞り 室内熱交換器 お・・・逆止弁 あ・・・逆止弁 30・・・逆止弁 32・・・圧縮機 従来の冷凍サイ ?:8−4止丹 Za−−一二号升 50−正止丹 jり 3Z−−−/i、m機 5.5〜−一里りF熱2判閃i 34広、54b−一一隻内熱5:j要器55−一一磨2
す 〒5図 弛6図
1 to 5 are system diagrams of refrigeration cycles according to embodiments of the present invention. 14... Compressor 18... Outdoor heat exchanger 20... Check valve 213, 21 b, 22, Throttle 26, 27... Expansion valve 29... Two-way valve 31... Resistor a...・・Outdoor heat exchanger 34a, 34b・・Indoor heat exchanger 35・・throttle Figure 6 shows: 17 ・・Four-way valve 19 ・・・throttle indoor heat exchanger ・・・check valve a・...Check valve 30...Check valve 32...Compressor Conventional refrigeration rhinoceros? :8-4 Stop Za--No. 12 square 50-Seidoku Tanjri 3Z---/i, m machine 5.5~-Ichiri F heat 2 size flash i 34 wide, 54b-11 Internal heat 5:j essential equipment 55-Ichima 2
Figure 5 Figure 6

Claims (1)

【特許請求の範囲】 1、圧縮機、四方弁、室外熱交換器、室内熱交換器、絞
りを含む冷凍サイクルにおいて 前記室内熱交換器を二分割し、その間に前記絞り及び逆
止弁を並列に接続したことを特徴とする冷凍サイクル。 2、請求項1に記載の冷凍サイクルにおいて、前記室外
熱交換器と前記室内熱交換器の間に前記絞りと前記絞り
に並列に逆止弁を設けた冷凍サイクル。 3、請求項1に記載の冷凍サイクルにおいて、前記室外
熱交換器を二分割し、前記四方弁、前記室外熱交換器、
逆止弁、前記室外熱交換器二方弁、前記絞り、前記室内
熱交換器を順次接続し、前記四方弁に近い熱交換器と前
記逆止弁との間と前記絞りと前記室内熱交換器との間を
逆止弁を介して接続した冷凍サイクル。 4、請求項1において、前記室内熱交換器を二分割し、
前記圧縮機、前記室外熱交換器、前記室内熱交換器、前
記絞り、前記室内熱交換器を、順次、接続した冷凍サイ
クル。 5、請求項4に記載の冷凍サイクルにおいて、前記室外
熱交換器を自然対流式熱交換器とした冷凍サイクル。
[Claims] 1. In a refrigeration cycle including a compressor, a four-way valve, an outdoor heat exchanger, an indoor heat exchanger, and a throttle, the indoor heat exchanger is divided into two parts, and the throttle and check valve are connected in parallel between them. A refrigeration cycle characterized by being connected to. 2. The refrigeration cycle according to claim 1, wherein a check valve is provided between the outdoor heat exchanger and the indoor heat exchanger in parallel with the throttle and the throttle. 3. In the refrigeration cycle according to claim 1, the outdoor heat exchanger is divided into two, and the four-way valve, the outdoor heat exchanger,
A check valve, the outdoor heat exchanger two-way valve, the aperture, and the indoor heat exchanger are connected in sequence, and heat exchange is performed between the heat exchanger near the four-way valve and the check valve, and between the aperture and the indoor heat exchanger. A refrigeration cycle connected to the container via a check valve. 4. In claim 1, the indoor heat exchanger is divided into two,
A refrigeration cycle in which the compressor, the outdoor heat exchanger, the indoor heat exchanger, the throttle, and the indoor heat exchanger are sequentially connected. 5. The refrigeration cycle according to claim 4, wherein the outdoor heat exchanger is a natural convection heat exchanger.
JP31522089A 1989-12-06 1989-12-06 Refrigerating cycle Pending JPH03177755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31522089A JPH03177755A (en) 1989-12-06 1989-12-06 Refrigerating cycle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31522089A JPH03177755A (en) 1989-12-06 1989-12-06 Refrigerating cycle

Publications (1)

Publication Number Publication Date
JPH03177755A true JPH03177755A (en) 1991-08-01

Family

ID=18062843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31522089A Pending JPH03177755A (en) 1989-12-06 1989-12-06 Refrigerating cycle

Country Status (1)

Country Link
JP (1) JPH03177755A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305822A (en) * 1992-06-02 1994-04-26 Kabushiki Kaisha Toshiba Air conditioning apparatus having a dehumidifying operation function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5305822A (en) * 1992-06-02 1994-04-26 Kabushiki Kaisha Toshiba Air conditioning apparatus having a dehumidifying operation function

Similar Documents

Publication Publication Date Title
CN105143779B (en) Dehydrating unit
JP3042797B2 (en) Air conditioner
WO2012085965A1 (en) Air conditioner
US20070157660A1 (en) Air conditioner capable of selectively dehumidifying separate areas
WO2022116599A1 (en) Air conditioning system
JP4475740B2 (en) Air conditioner and operation method thereof
JPH03177755A (en) Refrigerating cycle
JP2536172B2 (en) Heat pump system
JP2948776B2 (en) Air conditioning system
JP3699623B2 (en) Heat pump and dehumidifier
JPH02171562A (en) Freezing cycle device
JPH08338668A (en) Multi-room type air conditioner
JPH11241836A (en) Air conditioner
JP2692856B2 (en) Multi-room air conditioner
JPH03286978A (en) Cooling and heating apparatus
JP2004012071A (en) Heat pump and dehumidifying air conditioner
KR100575225B1 (en) Air conditioner
JPS5855653A (en) Feeder for dried air
JP3874624B2 (en) Heat pump and dehumidifying air conditioner
JP2968230B2 (en) Air conditioning system
JP2002089934A (en) Air conditioner
JP4077151B2 (en) Air conditioner
JPS591138Y2 (en) Kuukichiyouwaki
JPH04222360A (en) Heat pump type air conditioner
CN115615031A (en) Air treatment equipment and control method thereof