JPH03176913A - Manufacture of thin transparent conductive semiconductor film - Google Patents

Manufacture of thin transparent conductive semiconductor film

Info

Publication number
JPH03176913A
JPH03176913A JP31494789A JP31494789A JPH03176913A JP H03176913 A JPH03176913 A JP H03176913A JP 31494789 A JP31494789 A JP 31494789A JP 31494789 A JP31494789 A JP 31494789A JP H03176913 A JPH03176913 A JP H03176913A
Authority
JP
Japan
Prior art keywords
transparent conductive
target
conductive semiconductor
semiconductor film
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31494789A
Other languages
Japanese (ja)
Inventor
Takashi Ito
孝 伊東
Masafumi Yamazaki
雅史 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKU KIKAI KOGYO KK
Original Assignee
SHINKU KIKAI KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKU KIKAI KOGYO KK filed Critical SHINKU KIKAI KOGYO KK
Priority to JP31494789A priority Critical patent/JPH03176913A/en
Publication of JPH03176913A publication Critical patent/JPH03176913A/en
Pending legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To improve conductivity of a thin transparent semiconductor film by specifying the magnetic field strength on the surface of a target at the time of manufacturing the thin transparent conductive semiconductor film with sputtering method. CONSTITUTION:At the time of sputtering a thin transparent conductive semiconductor film, a desirable strength of a magnetic field on the surface of a target 25 is larger than 500 gauss and preferably larger than 800 gauss, and more preferably larger than 1000 gauss. Strength of the magnetic field on the surface can be increased by selecting a magnet 23 to be used and adjusting a distance between the magnet 23 and the target 25. Conductivity of the thin transparent conductive semiconductor film to be obtained can be thereby improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、IT○薄膜などの透明導電性半導体薄膜をス
パッタリング法により形成する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for forming a transparent conductive semiconductor thin film such as an IT○ thin film by a sputtering method.

災末例挟権 透明導電膜は、マトリックス型の液晶表示素子やタッチ
、センサーなど広範な用途に使用されている。
Transparent conductive films are used in a wide range of applications, including matrix-type liquid crystal display elements, touch panels, and sensors.

透明導電膜としては、金などの金属薄膜と、ITOに代
表される半導体薄膜があるが、透明性、導電性、ガラス
との密着性、耐候性、ニス1−等の1〜−タル的な性能
から、主として後者が用いられている。
Transparent conductive films include metal thin films such as gold and semiconductor thin films typified by ITO. The latter is mainly used due to its performance.

透明導電膜としての半導体薄膜は、真空蒸着法、スパッ
タリング法などの方法で形成されているが、膜特性の点
でスパッタリング法が優れており、特に、プラスチック
製基板が用いられることから、低温条件下に高導電度の
透明導電膜を形成する方法の開発が望まれている。
Semiconductor thin films as transparent conductive films are formed by methods such as vacuum evaporation and sputtering, but the sputtering method is superior in terms of film properties, and is especially suitable for low-temperature conditions because it uses a plastic substrate. It is desired to develop a method for forming a highly conductive transparent conductive film underneath.

透明導電膜の高導電度化が実現されれば、低電圧駆動が
可能となり、また、同じ電圧駆動をするのであれば、そ
れだけ導電膜の形成膜厚を薄くすることができ、透明化
あるいは成膜コストの低減が可能となる。
If a transparent conductive film can be made highly conductive, it will be possible to drive it at a lower voltage, and if the same voltage drive is used, the thickness of the conductive film can be made that much thinner, making it transparent or forming a transparent conductive film. It is possible to reduce membrane costs.

しかしながら、従来のスパッタリング法によるITO透
明導電膜の形成においては、その成膜温度、成膜後のア
ニーリング処理の有無あるいは温度、さらには膜厚等に
もよるが、導電度が未だ十分なものではなく、よりいっ
そうの改善が待たれていた。
However, when forming an ITO transparent conductive film using the conventional sputtering method, the conductivity is still not sufficient, although it depends on the film formation temperature, the presence or absence of an annealing treatment after film formation, the temperature, and the film thickness. However, further improvements were awaited.

明が  しようとする課題 本発明は、透明導電性半導体薄膜の導電性を向上するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to improve the conductivity of a transparent conductive semiconductor thin film.

発明の構成 本発明の透明導電性半導体薄膜の製造方法は、スパッタ
リング法により透明導電性薄膜を製造するに際し、ター
ゲットの表面磁場を500ガウス以上とすることを特徴
とする。
Structure of the Invention The method for manufacturing a transparent conductive semiconductor thin film of the present invention is characterized in that the surface magnetic field of the target is set to 500 Gauss or more when manufacturing the transparent conductive thin film by sputtering.

以下、本発明について添付図面に沿ってさらに詳細に説
明する。
Hereinafter, the present invention will be described in more detail with reference to the accompanying drawings.

第1図は本発明を実施するための装置および方法の一例
を示すための説明図であり、典型的な高速マグネトロン
スパッタリング装置を示している。
FIG. 1 is an explanatory diagram showing an example of an apparatus and method for carrying out the present invention, and shows a typical high-speed magnetron sputtering apparatus.

真空槽11には、スパッタ電極21が配設されており、
この上にターゲット25が載置されている。
A sputter electrode 21 is arranged in the vacuum chamber 11,
A target 25 is placed on top of this.

また、ターゲット25と対向して、薄膜を形成すべき基
板31が配置されている。一方、ターゲット25の裏面
には磁石装置23が配設されている。
Further, a substrate 31 on which a thin film is to be formed is arranged facing the target 25. On the other hand, a magnet device 23 is arranged on the back surface of the target 25.

磁石装置23は、S極をターゲット25に向けるS磁石
と、このS磁石を離間して同心温状に囲繞しN極をター
ゲット25面に向けるN磁石とから構成されている。N
極からの磁力線27は、ターゲット25面を通過したの
ち再びターゲラ1へ25面を経てS極に入り、磁力線2
7とターゲット25とにより閉ループが形成される。
The magnet device 23 is composed of an S magnet with its S pole directed toward the target 25, and an N magnet that surrounds the S magnet in a concentrically spaced manner and directs its north pole toward the surface of the target 25. N
The magnetic field line 27 from the pole passes through the target 25 surface, then enters the target layer 1 again through the 25 surface, enters the S pole, and becomes the magnetic field line 2.
7 and the target 25 form a closed loop.

スパッタリングに際しては、真空槽11内に基板31を
セットしたのち、排気系13により真空槽11内を高真
空に排気し、ガスボンベ15からアルゴンガスあるいは
アルゴンと酸素の混合ガスをバリアプルバルブ17を介
して真空槽】1内に導入してスパッタリング条件を設定
する。また、必要に応して基板31をヒータ(図示せず
)等により加熱する。
During sputtering, after setting the substrate 31 in the vacuum chamber 11, the vacuum chamber 11 is evacuated to a high vacuum by the exhaust system 13, and argon gas or a mixed gas of argon and oxygen is supplied from the gas cylinder 15 through the barrier pull valve 17. 1 and set the sputtering conditions. Further, the substrate 31 is heated by a heater (not shown) or the like, if necessary.

スパッタリング条件を設定したのち、スパッタ電源19
によりスパッタ電極21に電圧を印加する。このとき、
電場の方向と、磁石装置23による磁場の方向とが直交
し、マグネトロン型放電により、電子が前述の閉ループ
内に閉じ込められて運動し、ターゲット25をたたいて
スパッタし、基板31上に薄膜が形成される。
After setting the sputtering conditions, turn on the sputtering power supply 19.
A voltage is applied to the sputter electrode 21 by. At this time,
The direction of the electric field and the direction of the magnetic field from the magnet device 23 are perpendicular to each other, and due to the magnetron discharge, the electrons are confined in the aforementioned closed loop and move, hitting the target 25 and sputtering, forming a thin film on the substrate 31. It is formed.

このように、従来からマクネトロンスパッタリングにお
いて、ターゲット25に対して磁場が印加されていたが
、その目的は電子の封し込めにあった。そこで、その目
的にかなう磁場強度が採用さ九ており、一般にターゲッ
トの表面磁場は300〜350ガウス程度であった。
As described above, a magnetic field has conventionally been applied to the target 25 in Macnetron sputtering, but its purpose has been to confine electrons. Therefore, a magnetic field strength suitable for the purpose was adopted, and the surface magnetic field of the target was generally about 300 to 350 Gauss.

本発明者らは、ITOなどの透明導電性半導体薄膜の電
導性を改善すべく鋭意検討した結果、磁場強度を積極的
に大きくすることにより、この目的が達成されることを
見い出した。すなわち本発明では、透明導電性半導体薄
膜をスパッタリングするに際し、ターゲットの表面磁場
を500ガウス以上、好ましくは800ガウス以上、さ
らに好ましくは1000ガウス以上とすることにより、
得られる薄膜の導電性を改善したものである。表面磁場
の強さは、使用する磁石の選定や、磁石−ターゲット間
の距離の調整により行なうことができる。
The inventors of the present invention have conducted extensive studies to improve the conductivity of transparent conductive semiconductor thin films such as ITO, and have found that this objective can be achieved by actively increasing the magnetic field strength. That is, in the present invention, when sputtering a transparent conductive semiconductor thin film, by setting the surface magnetic field of the target to 500 Gauss or more, preferably 800 Gauss or more, and more preferably 1000 Gauss or more,
This improves the conductivity of the resulting thin film. The strength of the surface magnetic field can be controlled by selecting the magnet to be used and adjusting the distance between the magnet and the target.

また、本発明が適用される半導体薄膜とじて− は、酸化インジウム、酸化スズ、酸化亜鉛、スズ酸カド
ミニウム(CT O: Cadomium Tin0x
ide)等の酸化物に、1〜3種の元素をドープしたも
のなどがあり、代表的にはITO(Indlum Ti
n 0xide :スズをドープした酸化インジウム)
である。この場合、ITO等の酸化物ターゲットを用い
てもよいし、金属(In−8n等)を用い、酸素ガスを
真空槽内に導入して反応性スパッタリングを行ない、透
明導電性薄膜を形成してもよい。
The semiconductor thin film to which the present invention is applied includes indium oxide, tin oxide, zinc oxide, and cadmium stannate (CTO: Cadmium Tin0x).
There are oxides such as ITO (Indlum Ti) doped with one to three elements.
n 0xide: indium oxide doped with tin)
It is. In this case, an oxide target such as ITO may be used, or a metal (In-8n, etc.) may be used and reactive sputtering may be performed by introducing oxygen gas into a vacuum chamber to form a transparent conductive thin film. Good too.

発明の効果 本発明によれば、ターゲットの表面磁場を500ガウス
以上としてスパッタリングを行なうことにより、得られ
る透明導電性半導体薄膜の電導塵を向上させることがで
きる。
Effects of the Invention According to the present invention, by performing sputtering with a target surface magnetic field of 500 Gauss or more, it is possible to improve conductive dust in the obtained transparent conductive semiconductor thin film.

実施例 第1図に示した装置において、磁石装置23を上下に移
動可能とし、ターゲット25との距離を調整可能とした
Embodiment In the apparatus shown in FIG. 1, the magnet device 23 was made vertically movable, and the distance to the target 25 was adjustable.

ターゲット25としてITOを、また、基板315− 6 としてガラス板をセットし、ターゲット25と基板31
との距離を90mmに設定した。
ITO is set as the target 25 and a glass plate is set as the substrate 315-6, and the target 25 and the substrate 31
The distance was set to 90 mm.

ついで、真空槽11内を排気系13により] X IF
5rorrまて排気した後、酸素を1.3%含むアルゴ
ンガスをバリアプルバルブ17から真空槽11内に供給
し、スパッタ圧力2 X 10−”Torr、スパッタ
電力1.5kt+、基板温度200°Cの条件でスパッ
タし、膜厚2000人のITO薄膜を形成した。
Then, the inside of the vacuum chamber 11 is exhausted by the exhaust system 13]
After evacuating for 500 m, argon gas containing 1.3% oxygen was supplied into the vacuum chamber 11 from the barrier pull valve 17, sputtering pressure was 2 x 10-'' Torr, sputtering power was 1.5 kt+, and substrate temperature was 200°C. Sputtering was performed under the following conditions to form an ITO thin film with a thickness of 2000 nm.

このとき、ターゲット25と磁石装置23との距離を調
整して、ターゲット25の表面磁場の強さを種々変更し
てスパッタし、その結果を第2図に示した。
At this time, the distance between the target 25 and the magnet device 23 was adjusted, and the strength of the surface magnetic field of the target 25 was variously changed for sputtering, and the results are shown in FIG.

第2図より、ターゲット表面磁場が300ガウスて比抵
抗5X10−Ω・cm前後のものが得られるのに対し、
500ガウスで3.3 X 10−’Ω・cmまで低下
し、さらに800ガウスで3 X 10−’Ω・cmま
で、1200ガウスで2.6 X 10−’Ω・cmま
で低下することが判る。
From Figure 2, a target surface magnetic field of 300 Gauss yields a resistivity of around 5 x 10-Ωcm, whereas
It can be seen that it decreases to 3.3 X 10-' Ω・cm at 500 Gauss, further decreases to 3 X 10-' Ω・cm at 800 Gauss, and 2.6 X 10-' Ω・cm at 1200 Gauss. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法を実施するための装置を示す説明
図である。 第2図は、ターゲット表面磁場と得られるITO薄膜の
比抵抗の関係を示すグラフである。 11  真空槽 23・磁石装置 31・・・基板 2トスバッタ電極 25・・・ターゲット −
FIG. 1 is an explanatory diagram showing an apparatus for carrying out the method of the present invention. FIG. 2 is a graph showing the relationship between the target surface magnetic field and the specific resistance of the obtained ITO thin film. 11 Vacuum chamber 23・Magnet device 31...Substrate 2 Toss batter electrode 25...Target-

Claims (1)

【特許請求の範囲】[Claims] 1.スパッタリング法により透明導電性の半導体薄膜を
製造するに際し、ターゲットの表面磁場を500ガウス
以上とすることを特徴とする透明導電性半導体薄膜の製
造方法。
1. 1. A method for manufacturing a transparent conductive semiconductor thin film, which comprises using a target surface magnetic field of 500 Gauss or more when manufacturing the transparent conductive semiconductor thin film by a sputtering method.
JP31494789A 1989-12-04 1989-12-04 Manufacture of thin transparent conductive semiconductor film Pending JPH03176913A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31494789A JPH03176913A (en) 1989-12-04 1989-12-04 Manufacture of thin transparent conductive semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31494789A JPH03176913A (en) 1989-12-04 1989-12-04 Manufacture of thin transparent conductive semiconductor film

Publications (1)

Publication Number Publication Date
JPH03176913A true JPH03176913A (en) 1991-07-31

Family

ID=18059575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31494789A Pending JPH03176913A (en) 1989-12-04 1989-12-04 Manufacture of thin transparent conductive semiconductor film

Country Status (1)

Country Link
JP (1) JPH03176913A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097588A1 (en) * 2013-12-27 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015097588A1 (en) * 2013-12-27 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor
JP2015143396A (en) * 2013-12-27 2015-08-06 株式会社半導体エネルギー研究所 Manufacturing method of oxide semiconductor
US10388520B2 (en) 2013-12-27 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of oxide semiconductor

Similar Documents

Publication Publication Date Title
Maniv et al. Transparent conducting zinc oxide and indium–tin oxide films prepared by modified reactive planar magnetron sputtering
JP2936276B2 (en) Method and apparatus for manufacturing transparent conductive film
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
JPWO2004065656A1 (en) ITO thin film, film forming method thereof, transparent conductive film, and touch panel
JPH02232358A (en) Production of transparent conductive film and apparatus for producing such film
JPH02101160A (en) Ion plating method
JPH03176913A (en) Manufacture of thin transparent conductive semiconductor film
JP3615647B2 (en) Method for producing transparent conductive film and transparent conductive film
JPH0756131A (en) Production of transparent conductive film
JP2628591B2 (en) Method for forming transparent conductive film
JP2633340B2 (en) Method for forming transparent conductive film
JPH0273963A (en) Formation of thin film on low-temperature substrate
JP4079457B2 (en) Method for increasing resistance of indium-tin oxide film
JPS6389656A (en) Electrically conductive transparent film and its formation
JP3355610B2 (en) Method for increasing resistance of tin-doped indium oxide film
JPH03123845A (en) Gas sensor
JPH07224374A (en) Method for making tin doped indium oxide film high resistant
JPS61292817A (en) Formation of transparent conducting metal oxide film
JPH11279756A (en) Formation of transparent conductive film
JPH07211164A (en) Manufacture of transparent conductive film
JP2005181670A (en) Manufacturing method of ultra-thin ito film
JPH0336703A (en) Film resistor and its manufacture
JPH07211163A (en) Manufacture of transparent conductive film
JPH02240250A (en) Conductive color filter substrate and coating method