JPH03176674A - Checker of electric leak - Google Patents

Checker of electric leak

Info

Publication number
JPH03176674A
JPH03176674A JP1315647A JP31564789A JPH03176674A JP H03176674 A JPH03176674 A JP H03176674A JP 1315647 A JP1315647 A JP 1315647A JP 31564789 A JP31564789 A JP 31564789A JP H03176674 A JPH03176674 A JP H03176674A
Authority
JP
Japan
Prior art keywords
signal
output
current
circuit
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1315647A
Other languages
Japanese (ja)
Inventor
Hiroshi Seki
関 廣
Kazunari Maeda
和成 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP1315647A priority Critical patent/JPH03176674A/en
Publication of JPH03176674A publication Critical patent/JPH03176674A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

PURPOSE:To make a device easy for handling, small in size, light in weight, and to attain a detection of electric leak from the outside of cable without contact by issuing an alarm when the output signal value of a detecting element exceeds a specified value. CONSTITUTION:When a ground fault is generated in a point P for example, a leak current Ig flows from that part and a return current I2 becomes I1-Ig accordingly, thereby a magnetic flux appeared outside becomes phi1-phi2not equal to 0. So, an output voltage 11a is generated in the detecting element 11. Since the output voltage 11a is extremely minute, the signal is amplified by a AC amplifying circuit 12. The amplified signal 12a becomes a detecting signal 13a passing through a detecting circuit 13, and after that, a comparison is made with a reference value by a comparator circuit 14 whether the detecting signal 13a is larger than the specified value or not. When the detecting signal is larger than the specified value, an output 14a is generated and made to pass through an output circuit 15, then the alarm buzzer 16 is sounded by the output signal 15a. By this arrangement, the electric leak is detected from the outside of cable without contact.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、屋内の電気配線路の漏洩電流を検出すると警
報を発するようにした新方式の漏電チエッカ−に係り、
特に漏洩電流を線路の外部より非接触で検出できるよう
にし、漏洩電流に起因する火災を未然に防ぐのに好適な
漏電チエッカ−に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a new type of earth leakage checker that issues an alarm when it detects a leakage current in an indoor electrical wiring path.
In particular, the present invention relates to an earth leakage checker that allows leakage current to be detected from outside the line without contact, and is suitable for preventing fires caused by leakage current.

〈従来の技術〉 従来、屋内の電気配線路の漏洩電流を検出し警報を発す
るようにしたものに漏電火災警報器がある。この@雑器
はメタルラス等への漏電を原因とする火災を防ぐ目的か
ら電圧600v以下の電路に設置され、変流器、受信機
、音響装置等から構成されている。
<Prior Art> Conventionally, there is an earth leakage fire alarm that detects leakage current in an indoor electrical wiring path and issues an alarm. This @ miscellaneous equipment is installed in electrical circuits with a voltage of 600V or less to prevent fires caused by leakage to metal laths, etc., and consists of a current transformer, a receiver, a sound device, etc.

この警報器に用いられているセンサは警戒電路の漏洩電
流を自動的に検出し、これを受信機に送信するもので「
変流器」が使われている。
The sensor used in this alarm automatically detects leakage current in the warning cable and sends it to the receiver.
A current transformer is used.

変流器は構造により貫通型と分割型に分類されているが
、原理的には同じである。
Current transformers are classified into through-type and split-type depending on their structure, but the principle is the same.

第3図は従来の漏電火災警報器の概略構成図である。3
0は変流器で、内部はフェライトコアやパーマロイ系コ
ア等の磁心31に検出用二次巻線32が巻かれている。
FIG. 3 is a schematic diagram of a conventional earth leakage fire alarm. 3
0 is a current transformer, inside of which a detection secondary winding 32 is wound around a magnetic core 31 such as a ferrite core or permalloy core.

33は受信機、34は音響装置である。la、1bは電
路であり変流器30内の磁心31を貫通して設置される
33 is a receiver, and 34 is an audio device. Reference numerals la and 1b are electrical circuits that are installed to penetrate the magnetic core 31 within the current transformer 30.

次に動作について説明する。電路1a、1bに流れる電
流をそれぞれI8、I2とすると、漏電がない場合には
I、=I、となり磁心31を通る磁束は打消しあって二
次巻線32の両端子m、n間には電圧が生じない。しか
し漏電が生じると、地絡点に地絡電流(図示しない)が
流れ電路1a及び1bに流れる電流■1及びI2に差が
生じることになり、それにより生じる磁束にも差が生じ
、磁心31に磁束Φが流れる。従って、変流器30の二
次巻線32の両端子m、n間には誘起電圧Eが生ずる。
Next, the operation will be explained. Assuming that the currents flowing in the electric circuits 1a and 1b are I8 and I2, respectively, when there is no leakage, I, = I, and the magnetic fluxes passing through the magnetic core 31 cancel each other out, and the current flows between both terminals m and n of the secondary winding 32. no voltage is generated. However, when an earth leakage occurs, a ground fault current (not shown) flows to the ground fault point, causing a difference between the currents 1 and I2 flowing in the electrical circuits 1a and 1b, which causes a difference in the generated magnetic flux, and the magnetic core 31 Magnetic flux Φ flows through. Therefore, an induced voltage E is generated between both terminals m and n of the secondary winding 32 of the current transformer 30.

この誘起電圧の実効値Eは次式で示される。The effective value E of this induced voltage is expressed by the following equation.

E =4.44 f NΦ(V) ここでf (Hz)は周波数、Nは二次巻線の巻回数、
Φ(姉)は磁束である。
E = 4.44 f NΦ (V) where f (Hz) is the frequency, N is the number of turns of the secondary winding,
Φ (sister) is magnetic flux.

この誘起電圧Eが受信機33に入力され、所定の値以上
になると音響装置34より警報が発せられる。
This induced voltage E is input to the receiver 33, and when it exceeds a predetermined value, an alarm is issued by the acoustic device 34.

〈発明が解決しようとする問題点〉 従来の漏電火災警報器は、以上述べたようにセンサとし
て変流器を使用しているため、電線を変流器の中央の孔
に挿入する必要があった。
<Problems to be solved by the invention> As mentioned above, the conventional earth leakage fire alarm uses a current transformer as a sensor, so it is necessary to insert the electric wire into the hole in the center of the current transformer. Ta.

従って既設配線に変流器を取付ける場合は、電線をその
ままにして変流器が二つに分割できる分割型が使用され
るが、これは貫通型(分割できないタイプ)に比し構造
が複雑で大型化した。
Therefore, when installing a current transformer on existing wiring, a split type is used, which allows the current transformer to be divided into two while leaving the wires as is, but this type has a more complex structure than a through type (type that cannot be divided). It became larger.

また変流器は内部に磁心を有しており重量も重く取扱い
が簡便でなかった。
In addition, the current transformer has a magnetic core inside and is heavy and difficult to handle.

また、漏電を検出しても、その発生個所が分からず、配
線路のチエツクに時間がかかった。
Furthermore, even if a leakage was detected, the location of the leakage could not be determined, and it took time to check the wiring path.

更に、この種の漏電火災警報器は構造上複雑で高価であ
るため漏電の簡易チエッカ−として用いられることはな
かった。
Furthermore, this type of earth leakage fire alarm has a complex structure and is expensive, so it has not been used as a simple checker for earth leakage.

本発明は上記の問題点を解決するためになされたもので
、漏電を電線の外部より非接触で検出するようにした取
扱い容易で小型軽量な漏電チエッカ−を提供するもので
ある。
The present invention has been made to solve the above-mentioned problems, and provides an easy-to-handle, small and lightweight earth leakage checker that detects electric leakage from the outside of electric wires in a non-contact manner.

く問題点を解決するための手段〉 上記問題点を解決するための漏電チエッカ−は、内部に
磁界の強さに比例して出力を発生する磁気検知素子と、
該検知素子の出力信号を増幅する回路と、検知素子の出
力信号が所定値を超えると出力を発生する回路とを設け
、前記検知素子の出力信号の値が所定値を超えると、警
報ブザーを鳴らしたり表示灯等を作動させるものである
Means for solving the above problems〉 The earth leakage checker for solving the above problems has a magnetic sensing element inside which generates an output in proportion to the strength of the magnetic field,
A circuit that amplifies the output signal of the detection element and a circuit that generates an output when the output signal of the detection element exceeds a predetermined value are provided, and when the value of the output signal of the detection element exceeds the predetermined value, an alarm buzzer is activated. It makes a sound or activates an indicator light, etc.

〈作用〉 本発明による漏電チエッカ−は、小型な検知素子と回路
で構成されたものとなっており、配線路に漏電があると
自動的に警報を発するようになるので、漏電による電気
火災を未然に防ぐことができる。
<Function> The earth leakage checker according to the present invention is composed of a small detection element and a circuit, and automatically issues an alarm when there is an earth leakage in the wiring path, thereby preventing electrical fires caused by electric leakage. It can be prevented.

〈実施例〉 以下、本発明の一実施例について図面を用いて説明する
。第工図は漏電チエッカ−の作動原理を示す概念図で、
1は受電用変圧器、2は屋内の電気器具等の負荷、10
は漏電チエッカ−である。この漏電チエッカ−10は検
知素子11と、交流増幅回路12と、検波回路13と、
比較回路14と、出力回路15と、警報ブザ−16とで
構成されている。1a及び1bはそれぞれ受電用変圧器
1の低圧側線路の屋内配線につながる電流の往路及び復
路であり、IGは受電用変圧器の接地線、Pは屋内の漏
電地点、Gはグラウンドである。また、I8は往路1a
に流れる往路電流で、この往路電流1.により磁束Φ、
が生じる。I2は復路1bに流れる復路電流で、この復
路電流I、により磁束Φ2が生じる。Tgは漏電地点P
よりグラウンドGに流れる漏洩電流である。
<Example> An example of the present invention will be described below with reference to the drawings. The second engineering drawing is a conceptual diagram showing the operating principle of the earth leakage checker.
1 is the power receiving transformer, 2 is the load of indoor electrical appliances, etc., 10
is an earth leakage checker. This earth leakage checker 10 includes a detection element 11, an AC amplifier circuit 12, a detection circuit 13,
It is composed of a comparison circuit 14, an output circuit 15, and an alarm buzzer 16. 1a and 1b are the outgoing and return paths of the current connected to the indoor wiring of the low-voltage side line of the power receiving transformer 1, respectively, IG is the grounding wire of the power receiving transformer, P is the indoor leakage point, and G is the ground. Also, I8 is the outbound route 1a
This forward current 1. Due to magnetic flux Φ,
occurs. I2 is a return current flowing in the return path 1b, and this return current I generates a magnetic flux Φ2. Tg is the leakage point P
This is a leakage current that flows more to the ground G.

次にこの動作について説明する。屋内に漏電がない場合
は往路電流1.と復路電流I2は大きさが等しくなるか
ら、それぞれの電流1.及びI2によって発生する磁束
Φ、及びφ2の大きさも等しくなる。従って、往路1a
と復路1bの外部に現われる磁束はΦ、−Φ、=0とな
って漏電チエッカ−10の検知素子11からはノイズ成
分以外の電圧信号は発生しない(但し、往路1aと復路
1bが一つのケーブル内に収められているような互いに
近接して置かれた場合)。しかし、P点で地絡が生じる
とその部分から漏洩電流Igが流れるため、復路電流I
、はI、−1gとなり、それにより外部に現われる磁束
はφ1−Φ2≠Oとなる。従って検知素子11には出力
電圧11aが発生することになる。
Next, this operation will be explained. If there is no leakage indoors, the outgoing current is 1. and return current I2 are equal in magnitude, so each current 1. The magnetic fluxes Φ and φ2 generated by I2 and I2 are also equal in magnitude. Therefore, the outward journey 1a
The magnetic flux appearing outside the return path 1b becomes Φ, -Φ, = 0, and no voltage signal other than noise components is generated from the detection element 11 of the earth leakage checker 10. (when placed in close proximity to each other, such as when housed within a However, if a ground fault occurs at point P, leakage current Ig flows from that part, so return current I
, becomes I, -1g, so that the magnetic flux appearing outside becomes φ1-φ2≠O. Therefore, an output voltage 11a is generated in the sensing element 11.

出力電圧11aは極めて微弱なため交流増幅回路12に
よりその信号を増幅する。増幅された信号12aは検波
回路13を通って検波信号13aとなり、その後比較回
路14で検波信号13aが所定値以上であるかどうかを
基準値と比較する。所定値以上であれば出力14aが発
せられ、出力回路15を通り、その出力信号15aによ
って、例えば警報ブザ−16を鳴動さす。
Since the output voltage 11a is extremely weak, the AC amplifier circuit 12 amplifies the signal. The amplified signal 12a passes through a detection circuit 13 to become a detection signal 13a, and then a comparison circuit 14 compares the detection signal 13a with a reference value to see if it is greater than a predetermined value. If the value is above a predetermined value, an output 14a is generated, which passes through an output circuit 15, and the output signal 15a causes, for example, an alarm buzzer 16 to sound.

第2図は第1図で示した検知素子11の構造図の一例で
ある。ここでは検知素子として半導体ホール素子を一例
として説明する。ホール素子は磁気検知素子の代表的な
ものであって、半導体板20においてその長さの方向に
制御線21のaよりbに制g1電流Icを流し、これと
直角に23なる磁界Bを印加すると、IcとBに直角な
方向の出力線22の両端c、d間に起電力(ホール電圧
)が生ずるという、いわゆるホール効果を利用したもの
である。この場合発生する起電力VはV=に−Ic−B
で表わされる。(ここでkは感度定数)。磁界Bと制御
電流Icが直角を基準として角度θをもつとき発生する
起電力は■・cosθとなる。この半導体板20として
は一般にはGaAs(ガリウム砒素)やInSb (イ
ンジウム・アンチモン)が用いられている。この検知素
子11は第1図に示したように電流の往路1a及び復路
1bの近くに非接触の状態に置けばよく、既設線路を何
ら変更することなく取扱いが極めて簡便である。漏電が
発生すると、第1図の往路電流11と復路電流■2はI
、−I!40となるので、線路の外部に現われる磁束は
前述したようにΦ、−Φ2≠Oとなって、検知素子11
で漏電が検出できることになる。
FIG. 2 is an example of a structural diagram of the sensing element 11 shown in FIG. Here, a semiconductor Hall element will be explained as an example of the sensing element. The Hall element is a typical magnetic sensing element, and a control g1 current Ic is passed from a to b of the control line 21 in the length direction of the semiconductor board 20, and a magnetic field B of 23 is applied at right angles thereto. This utilizes the so-called Hall effect in which an electromotive force (Hall voltage) is generated between both ends c and d of the output line 22 in the direction perpendicular to Ic and B. In this case, the electromotive force V generated is V=-Ic-B
It is expressed as (Here k is a sensitivity constant). When the magnetic field B and the control current Ic have an angle θ with respect to the right angle, the electromotive force generated is .cos θ. As this semiconductor board 20, GaAs (gallium arsenide) or InSb (indium antimony) is generally used. This sensing element 11 can be placed in a non-contact state near the outgoing current path 1a and the incoming current path 1b, as shown in FIG. 1, and is extremely easy to handle without making any changes to the existing line. When a leakage occurs, the outgoing current 11 and the returning current ■2 in Fig. 1 become I.
,-I! 40, the magnetic flux appearing outside the line becomes Φ, -Φ2≠O as described above, and the sensing element 11
This means that electrical leakage can be detected.

以上の例において検知素子11としてホール素子を用い
たが、これに限られたものではなく、磁界に反応するも
のであれば何でもよく、例えば磁界によってその抵抗値
が変化する磁気抵抗素子を用いてもよい。
In the above example, a Hall element was used as the sensing element 11, but it is not limited to this, and any element that responds to a magnetic field may be used. For example, a magnetoresistive element whose resistance value changes depending on the magnetic field may be used. Good too.

〈発明の効果〉 以上述べたように、本発明によれば超小型な磁気検知素
子と増幅回路、比較回路、ブザー等で構成された小型、
軽量な漏電チエッカ−であるため、安価かつ簡便な方法
で使用でき漏電個所の探査も一人で可能である。更に漏
電があると警報音が発せられるので、漏電に起因する電
気火災を未然に防止できるという効果を有する。
<Effects of the Invention> As described above, according to the present invention, a small magnetic sensing element, an amplifier circuit, a comparison circuit, a buzzer, etc.
Since it is a lightweight earth leakage checker, it can be used in an inexpensive and simple manner, and the location of earth leakage can be detected by one person. Furthermore, since an alarm is emitted when there is a current leakage, it has the effect of preventing electrical fires caused by a current leakage.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例にかかる漏電チエッカ−の作動
原理を示す概念図、第2図は検知素子の構造図の一例、
第3図は従来の漏電火災警報器の概略構成図である。 l・・・受電用変圧器、  2・・・負荷、10・・・
漏電チエッカ−11・・・検知素子、12・・・交流増
幅回路、 ■3・・・検波回路、14・・・比較回路、
 15・・・出力回路、16・・・警報ブザ−20・・
・半導体板、30・・・変流器、 33・・・受信機、
 34・・・音響装置、第1図 第2図 第3図
FIG. 1 is a conceptual diagram showing the operating principle of an earth leakage checker according to an embodiment of the present invention, and FIG. 2 is an example of a structural diagram of a detection element.
FIG. 3 is a schematic diagram of a conventional earth leakage fire alarm. l...Power receiving transformer, 2...Load, 10...
Earth leakage checker 11...detection element, 12...AC amplifier circuit, ■3...detection circuit, 14...comparison circuit,
15...Output circuit, 16...Alarm buzzer-20...
・Semiconductor board, 30... Current transformer, 33... Receiver,
34...Sound equipment, Figure 1, Figure 2, Figure 3

Claims (1)

【特許請求の範囲】[Claims] 電流により発生する磁界、該磁界に応動する検知素子、
該検知素子の出力信号を増幅する回路、前記検知素子の
出力信号が所定値を超えると出力を発生する回路とを備
え、前記検知素子の出力信号の値が所定値を超えたとき
警報ブザーや表示灯等を動作させるようにしたことを特
徴とする漏電チェッカー。
a magnetic field generated by an electric current, a sensing element that responds to the magnetic field,
It includes a circuit that amplifies the output signal of the detection element, and a circuit that generates an output when the output signal of the detection element exceeds a predetermined value. An earth leakage checker characterized by operating an indicator light, etc.
JP1315647A 1989-12-05 1989-12-05 Checker of electric leak Pending JPH03176674A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1315647A JPH03176674A (en) 1989-12-05 1989-12-05 Checker of electric leak

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1315647A JPH03176674A (en) 1989-12-05 1989-12-05 Checker of electric leak

Publications (1)

Publication Number Publication Date
JPH03176674A true JPH03176674A (en) 1991-07-31

Family

ID=18067887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1315647A Pending JPH03176674A (en) 1989-12-05 1989-12-05 Checker of electric leak

Country Status (1)

Country Link
JP (1) JPH03176674A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146913A (en) * 1978-05-10 1979-11-16 Hitachi Ltd In-phase current detector circuit
JPS5631258A (en) * 1979-08-24 1981-03-30 Hitachi Ltd Line test system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54146913A (en) * 1978-05-10 1979-11-16 Hitachi Ltd In-phase current detector circuit
JPS5631258A (en) * 1979-08-24 1981-03-30 Hitachi Ltd Line test system

Similar Documents

Publication Publication Date Title
US5075628A (en) Insulation monitoring system of a direct current power supply system
CN111771250B (en) Current transformer
US5986444A (en) Device having a shaped, magnetic toroidal member and a magnetoresistive sensor for detecting low magnitude electrical currents
US20100118449A1 (en) Nulling current transformer
US5055771A (en) Faulted current indicators with improved signal to noise ratios
US5923514A (en) Electronic trip circuit breaker with CMR current sensor
CN111289792A (en) Combined low and high frequency current sensor
CN113917215A (en) Current sensor
US6710587B1 (en) Low magnitude current sensor using unbalanced flux line detection
US3671809A (en) Ground fault detector including magnetic amplifier bridge means
JPH03176674A (en) Checker of electric leak
JPH11237411A (en) Dc current sensor and dc current measurement system
US5097202A (en) Faulted current indicators with improved signal to noise ratios
JP2978637B2 (en) Quench detection device for superconducting winding
JPH07312823A (en) Dc leak detection and protective device
KR100315206B1 (en) A dectctor of short circuit for electric line
US11799279B2 (en) Multifunction single core sensor for ground fault application
JP2017207311A (en) Electric power measurement system
JPH0325908A (en) Transformer with built-in alarm circuit
JPH09127158A (en) Direct current sensor
JPH01307677A (en) Coil fault detecting device
JP3022532B1 (en) DC ground fault current detector
RU17749U1 (en) DIFFERENTIAL CURRENT TRANSFORMER
JPH0313867A (en) Current detector of overhead electric wire
JPS63243765A (en) Current detector