JPH0317654A - Photosensitive body having memory - Google Patents

Photosensitive body having memory

Info

Publication number
JPH0317654A
JPH0317654A JP15322789A JP15322789A JPH0317654A JP H0317654 A JPH0317654 A JP H0317654A JP 15322789 A JP15322789 A JP 15322789A JP 15322789 A JP15322789 A JP 15322789A JP H0317654 A JPH0317654 A JP H0317654A
Authority
JP
Japan
Prior art keywords
layer
charge
photoreceptor
switching
memory
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15322789A
Other languages
Japanese (ja)
Inventor
Tadayuki Shimada
忠之 島田
Atsushi Nakano
淳 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP15322789A priority Critical patent/JPH0317654A/en
Publication of JPH0317654A publication Critical patent/JPH0317654A/en
Pending legal-status Critical Current

Links

Landscapes

  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To obtain a photosensitive body having memory in an infrared region and high sensitivity by using a substance having absorption in the infrared region for an electric charge generating layer and an electron transfer type substance for a charge transfer layer. CONSTITUTION:The charge generating layer 14 is obtained by forming a switching layer 12 made of a polycarbonate type resin having a Cu.TCNQ complex dispersed into it on a conductive substrate 10 made of Cu, and vapor depositing an about 500Angstrom thick phthalocyanine film having absorption in the infrared region on the layer 12. The charge transfer layer 16 is obtained by coating the layer 14 with the electron transfer type substance in a thickness of 10 - 20mum, and acceptance potential can be enhanced by laminating a charge transfer complex layer 13 made of PVK.TeNF in a thickness of 0.1 - 5mum on the layer 12, and a potential acceptance is enhanced and the contrast of a print can be further enhanced.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は電子写真用の感光体として使用することのでき
るメモリー性感光体、特にレーザープリンタ用の感光体
として使用することができるメモリー性感光体に関する
ものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a memory photoreceptor that can be used as a photoreceptor for electrophotography, particularly a memory photoreceptor that can be used as a photoreceptor for laser printers. It's about the body.

[従来の技術] 第5図は特開昭60−208771号公報に開示された
従来のメモリー性感光体の断面構造を示す説明図であり
、同図において、導電性基質1の上にはスイッチング層
2が設けられ,このスイッチング層2の上に更に電荷発
生輸送層乃至は電荷受容層3が設けられている. ここで、スイッチング層2としては、高電場で高電導状
態となり且つこの高電導状態が維持されるCu−TCN
Q錯体のボリマー分散膜が用いられ、電荷発生輸送層乃
至は電荷受容層3としては、PVK−TeNFが用いら
れている。
[Prior Art] FIG. 5 is an explanatory diagram showing the cross-sectional structure of a conventional memory photoreceptor disclosed in Japanese Patent Application Laid-Open No. 60-208771. A layer 2 is provided on which a charge generation/transport layer or a charge acceptance layer 3 is further provided. Here, the switching layer 2 is made of Cu-TCN which becomes a highly conductive state in a high electric field and maintains this high conductive state.
A polymer dispersed film of Q complex is used, and PVK-TeNF is used as the charge generation transport layer or the charge acceptance layer 3.

第6図はCu−TCNQli体のボリマー分敗膜からな
るスイッチング層2についての印加電圧と電流との関係
を示したものであり、曲線1は未処理のスイッチング層
2についての電圧と電流との関係、曲線2は高電圧印加
後のスイッチング層2について同様の関係を示している
FIG. 6 shows the relationship between applied voltage and current for the switching layer 2 made of a polymeric decomposed film of Cu-TCNQli, and curve 1 shows the relationship between the voltage and current for the untreated switching layer 2. Relationship, curve 2 shows a similar relationship for switching layer 2 after application of high voltage.

これらの曲線から明らかなように、このスイッチング層
2は傾斜のゆるやかな高抵抗状態Aと、傾斜の極めて大
きい低抵抗状態Bとを有し(曲線l)、一旦高電導状態
(ON  STATE)になると高抵抗状態Aを殆ど消
失させてしまう(曲線2)もの、すなわち、このスイッ
チング層2はifflji依存性を持ち、一方の電界方
向によると、ある電界強度においてスイッチングを起こ
してしまうものである. 第7図はCu−TCNQをスイッチング層2、及びPV
K−TN.llI体を電荷発生輸送層乃至電荷受容層3
とした感光体の表面電位と時間との関係を示す線図であ
って、曲線(1)は未処理感光体の表面帯電電位、曲線
(2)は露光開始後の表面帯電電位、曲線(2゜)はス
イッチング操作が行われない限度内で前帯電一前一様露
光を行った後、主帯電及び露光を行った際の表面帯電電
位(ただし、主帯電後の感光体の表面電位が同じになる
ように印加電圧を調整してある) 曲線(3)は帯電露
光によりスイッチング層が高電導状態となった感光体を
再帯電した際の表面帯電電位を示す。
As is clear from these curves, this switching layer 2 has a high resistance state A with a gentle slope and a low resistance state B with an extremely large slope (curve l), and once in a high conductivity state (ON STATE). Then, the high resistance state A almost disappears (curve 2), that is, this switching layer 2 has ifflji dependence, and according to one electric field direction, switching occurs at a certain electric field strength. Figure 7 shows Cu-TCNQ in switching layer 2 and PV
K-TN. The llI body is added to the charge generation transport layer or the charge acceptance layer 3.
2 is a diagram showing the relationship between the surface potential of a photoconductor and time, in which curve (1) is the surface charge potential of an untreated photoconductor, curve (2) is the surface charge potential after the start of exposure, and curve (2) is the surface charge potential of the untreated photoconductor;゜) is the surface charging potential when the main charging and exposure are performed after pre-charging and uniform exposure within the limit where no switching operation is performed (however, the surface potential of the photoreceptor after main charging is the same) (The applied voltage was adjusted so that the photoreceptor had a high conductivity due to charging exposure.) Curve (3) shows the surface charging potential when the photoreceptor whose switching layer has become highly conductive due to charging exposure is recharged.

第4図中、V.は高抵抗状態(OFF  STATE)
でのスイッチング層2を備えた感光体の初期飽和帯電電
位であり.■,は高電導状態(ONSTATE)でのス
イッチング層2を備えた感光体の飽和帯電電位であり、
メモリー効果(F)は下記式で表わされる. 次に、このメモリー性感光体のメモリー像の形成原理及
び静電像の形成原理を第8−A乃至8−F図に基づき以
下に説明する。
In FIG. 4, V. is high resistance state (OFF STATE)
is the initial saturation charging potential of the photoconductor equipped with the switching layer 2 at . ■, is the saturation charging potential of the photoreceptor equipped with the switching layer 2 in a high conductivity state (ONSTATE),
The memory effect (F) is expressed by the following formula. Next, the principle of forming a memory image and the principle of forming an electrostatic image of this memory photoreceptor will be explained below with reference to Figures 8-A to 8-F.

先ず、第8−A図に示すように、感光体4の表面を、コ
ロナチャージャ5により一定極性の電荷に帯電させる(
前帯電)。同図の例では,電荷受容層3の表面は正電荷
に帯電され、導電性基質1には負電荷が誘起されている
First, as shown in Figure 8-A, the surface of the photoreceptor 4 is charged with a constant polarity by the corona charger 5 (
pre-charged). In the example shown in the figure, the surface of the charge receiving layer 3 is positively charged, and the conductive substrate 1 is negatively charged.

次に、このように帯電された感光体4の表面を、第8−
B図に示すように、光源6で一様に露光する(前一様露
光).この前一様露光により、電荷受容層3中に電荷(
キャリャ)が発生し、生じたホール(+)が積層界面、
即ちスイッチング層2との界面迄移動して、そこに蓄積
される。
Next, the surface of the photoconductor 4 charged in this way is
As shown in Figure B, uniform exposure is performed using the light source 6 (pre-uniform exposure). By uniformly exposing the charge receiving layer 3, charges (
carriers) are generated, and the resulting holes (+) are at the stacking interface,
That is, it moves to the interface with the switching layer 2 and is accumulated there.

この前帯電と前一様露光は、スイッチング層2に高電場
が印加されない限度において行う.かくして、電荷受容
層3とスイッチングH2との界面には、或る程度の正電
荷が蓄積されてはいるが、スイッチング層2は未だ高抵
抗状態(OFF  STATE)に維持されている.次
に、前帯電及び前一様露光が行われた感光体4の表面を
、第8−C図に示すように、コロナチャージャ5゜によ
り一定極性の電荷に帯電させ、次いで光源6゜により画
像露光させる(主帯電及び画像露光). この主帯電及び画像露光により、第8−D図に示すよう
に、暗部Dでは表面電荷はそのままであるが、明部Lで
は第8−B図に示したのと同様に電荷受容層3中に電荷
(キャリャ)の発生と、ホール(+)のスイッチング層
2との界面への移動とを生じ、電荷の蓄積が前述した限
度を越え、スイッチング層2には高電場が印加されるに
至る。
This pre-charging and pre-uniform exposure are performed as long as a high electric field is not applied to the switching layer 2. Thus, although a certain amount of positive charge is accumulated at the interface between the charge receiving layer 3 and the switching layer H2, the switching layer 2 is still maintained in a high resistance state (OFF STATE). Next, the surface of the photoreceptor 4, which has been pre-charged and pre-uniformly exposed, is charged to a constant polarity with a corona charger 5°, as shown in FIG. Expose to light (main charging and image exposure). Due to this main charging and image exposure, as shown in Figure 8-D, the surface charge remains as it is in the dark area D, but in the bright area L, the charge receiving layer 3 remains the same as shown in Figure 8-B. generation of charges (carriers) and movement of holes (+) to the interface with the switching layer 2, the accumulation of charges exceeds the above-mentioned limit, and a high electric field is applied to the switching layer 2. .

その結果、第8−E図に示すように、スイッチング層2
の明部Lは、印加される高電場により高電導状態(ON
  STATE) 、即ち低抵抗状態に誘起され、スイ
ッチング層2の暗部Dは,高抵抗状!!J (OFF 
 STATE)のまま残り、明部Lでは導電性基質lか
らの電子(一)の注入が容易な状態となる。
As a result, as shown in FIG. 8-E, the switching layer 2
The bright part L of is in a highly conductive state (ON) due to the applied high electric field.
STATE), that is, is induced into a low resistance state, and the dark part D of the switching layer 2 is in a high resistance state! ! J (OFF
STATE) remains, and in the bright area L, electrons (1) from the conductive substrate l are easily injected.

この状態で感光体4に導電性基質lから電子(−)を注
入すると、第8−F図に示すように、すでに露光が行わ
れた明部Lで、電子(−)が高電導状態のスイッチング
層2を介して電荷発生輸送乃至電荷受容層3に注入され
、該層3を通って感光体4の表面に到達し、表面の正電
荷(+)が消去され、電荷像の形成が行われる(静電像
形成・工程)。
When electrons (-) are injected into the photoreceptor 4 from the conductive substrate l in this state, the electrons (-) are in a highly conductive state in the bright area L that has already been exposed, as shown in Figure 8-F. The charge is injected into the charge generation/transport/charge acceptance layer 3 via the switching layer 2, reaches the surface of the photoreceptor 4 through the layer 3, erases the positive charges (+) on the surface, and forms a charge image. (electrostatic image formation/process).

図示していないが、この電荷像を、それ自体公知の方法
により、トナーで現像し、形成されるトナー像を紙等に
転写することにより、複写物乃至印刷物を得ることがで
きる。かくして、第8−A乃至8−E図に示す1回のメ
モリー像形成の後に、第8−F図に示す所望回数の帯電
工程を行うことにより、所望枚数の複写が可能となる。
Although not shown, a copy or printed matter can be obtained by developing this charge image with toner by a method known per se and transferring the formed toner image onto paper or the like. Thus, by performing the charging process a desired number of times as shown in FIG. 8-F after forming the memory image once shown in FIGS. 8-A to 8-E, it is possible to make a desired number of copies.

[発明が解決しようとする課題] しかし、上述した従来のメモリー性感光体はメモリー性
が可視領域に限られており、赤外領域にはメモリー性を
有していないので,現在最も多く使用されている半導体
レーザー( 7 8 0 n m ,830nm)を露
光光源として使用できないという問題点があった(問題
点1)。
[Problems to be Solved by the Invention] However, the conventional memory photoreceptors described above have memory properties limited to the visible region and do not have memory properties in the infrared region. There was a problem in that a semiconductor laser (780 nm, 830 nm), which had a wavelength of 100 nm, could not be used as an exposure light source (problem 1).

また、上述した従来のメモリー性感光体は感光層の受容
電位が低いので、印刷のコントラストが悪く、またメモ
リー性が悪いので、一回の露光で印刷できる枚数が少な
いという問題点があった(問題点2)。
In addition, the above-mentioned conventional memory photoreceptor has a low receptive potential of the photosensitive layer, resulting in poor printing contrast and poor memory performance, resulting in the problem that the number of sheets that can be printed with one exposure is small ( Problem 2).

本発明はこれらの問題点を解決するためになされたもの
で、赤外領域にメモリー性を有する高感度のメモリー性
感光体を得ること、及び受容電位を高めてコントラスト
を良好ならしめ、またメモリー性を向上させて印刷枚数
の増加を図ることができるようにしたメモリー性感光体
を得ることを目的とするものである。
The present invention has been made in order to solve these problems, and it is possible to obtain a highly sensitive memory photoreceptor having memory properties in the infrared region, improve the contrast by increasing the receptive potential, and improve the memory property. The object of the present invention is to obtain a memory photoreceptor that can increase the number of prints by improving the properties of the photoreceptor.

[課題を解決するための手段と作用] 請求項l記載のメモリー性感光体は、導電性基質の上に
高抵抗状態から低抵抗状熊へスイッチングを起こすスイ
ッチング層を積層し、このスイッチング層の上に赤外領
域に吸収を持つ電荷発生層を積層し、この電荷発生層の
上にエレクトロン移動型の物質からなる電荷輸送層を積
層して上記間題点lを解決したものである。
[Means and effects for solving the problem] The memory photoreceptor according to claim 1 has a switching layer that causes switching from a high resistance state to a low resistance state being laminated on a conductive substrate, and a switching layer that causes switching from a high resistance state to a low resistance state. A charge generation layer having absorption in the infrared region is laminated thereon, and a charge transport layer made of an electron transfer type substance is laminated on the charge generation layer, thereby solving the above problem (1).

ここで、導電性基質としては、銅、アルミニウム、ブリ
キ等の導電性金属基質や、導電処理した紙、或いはネサ
(NESA)ガラス等が使用され、これらはシート或は
ドラムの形で用いられる。
Here, as the conductive substrate, conductive metal substrates such as copper, aluminum, tinplate, etc., conductive treated paper, NESA glass, etc. are used, and these are used in the form of sheets or drums.

スイッチング層は、高抵抗状態(OFFSTATE)の
電気抵抗(R,)が10”乃至1014Ω一c m .
特にlO9乃至1011Ω−cmの範囲にあることが電
荷保持性の点で望ましく、一方R と低抵抗状態(ON S TA T E )の電気抵抗(RL :Ω−cm)
との比(R./RL )は、IXIO’乃至IXIO’
の範囲内にあることが、コントラストの面で望ましい。
The switching layer has an electrical resistance (R,) in a high resistance state (OFFSTATE) of 10" to 1014 Ω1cm.
In particular, it is desirable to be in the range of lO9 to 1011 Ω-cm from the viewpoint of charge retention, while R and the electrical resistance in the low resistance state (ON S TATE) (RL: Ω-cm)
The ratio (R./RL) is from IXIO' to IXIO'
From the viewpoint of contrast, it is desirable that the value be within the range of .

前述した特性を有するスイッチング層として、テトラシ
アノエチレン(TCNE),テトラシアノキノジメタン
(TCNQ) 、テトラシアノナフトキノジメタン(T
NAP).2.3.5.6−テトラフルオロ−7.7.
8.8−テトラシアノキノジメタン(TCNQF.)等
のシアノ基含有電子受容性物質と、銅又は銀との錯体が
好適に使用されるが、同様の特性を有する他のスイッチ
ング層をも用いることができる。
As a switching layer having the above-mentioned characteristics, tetracyanoethylene (TCNE), tetracyanoquinodimethane (TCNQ), tetracyanonaphthoquinodimethane (T
NAP). 2.3.5.6-tetrafluoro-7.7.
8. Complexes of cyano group-containing electron-accepting substances such as 8-tetracyanoquinodimethane (TCNQF.) with copper or silver are preferably used, but other switching layers with similar properties can also be used. be able to.

これらの錯体は、蒸着等の手段で導電性基質上に結晶薄
膜の形で直接形或されることもできるし、或いは微結晶
のものを樹脂バインダー中に分敗させて導電性基質上に
設けることもできる。
These complexes can be formed directly on the conductive substrate in the form of a thin crystalline film by means such as vapor deposition, or they can be formed as microcrystals in a resin binder and then provided on the conductive substrate. You can also do that.

樹脂バインダーとしては、電気絶縁性の樹脂、例えばポ
リエステル樹脂、アクリル樹脂、スチレン樹脂、ポリカ
ーボネート樹脂、塩化ビニルー酢酸ビニル共重合体、フ
エノキシ樹脂、エボキシ樹脂、シリコーン樹脂、アルキ
ド樹脂等が使用される。
As the resin binder, electrically insulating resins such as polyester resins, acrylic resins, styrene resins, polycarbonate resins, vinyl chloride-vinyl acetate copolymers, phenoxy resins, epoxy resins, silicone resins, and alkyd resins are used.

微結晶錯体と樹脂バインダーとは、1:4乃至4:1の
重量比で使用される。これらの樹脂バインダーを、テト
ラヒドロフラン,クロロホルム、ジオキサン、ジメチル
アセトアミド、ジメチルホルムアミド、ジメチルスルホ
キシド等の溶媒に溶解し、微結晶錯体を分敗させ、導電
性基質上に塗市し、乾燥してスイッチング層を形成させ
る。
The microcrystalline complex and resin binder are used in a weight ratio of 1:4 to 4:1. These resin binders are dissolved in a solvent such as tetrahydrofuran, chloroform, dioxane, dimethylacetamide, dimethylformamide, dimethyl sulfoxide, etc. to decompose the microcrystalline complex, coated on a conductive substrate, and dried to form a switching layer. Let it form.

電荷発生層に使用できる物質の例としては、フタロシア
ニン、スクアリリウム、アズレニウム塩、ナフタロシア
ニン、4,4゜−ビス[2−ヒドロキシ−3− (2.
4−ジメチルフェニル)カルバモイルーl−ナフチラゾ
]−1.4−ジスチリルベンゼン、クロロジアネブルー
 τタイプ一メタルーフリーフタロシアミン、l−(p
−ジメチルアミノシナミリデン)−5−イソプロビル−
3.8−ジメチルアズレニウム塩、2.7−ビス〔2−
ヒドロキシー3−(2−クロロフエニルカーバモイル)
−1−ナフチラゾ]−9−フルオレノン、ロダミンB、
インジゴ、チオインジゴ、ビスフェノールーA−ポリカ
ーボネート、アリール置換シアビリリウムダイ、クロロ
ディアネブルー、N,N’ −ジメチルペリリミドなど
を挙げることができる. なお、電荷発生層は、すでに赤外領域に吸収を持つこれ
らの物質を蒸着させるか、または基板に蒸着させたこれ
らの物質を基板ごと有機溶媒中に浸漬させ赤外領域に吸
収を持つようにシフトさせてもよい. エレクトロン移動型の物質としては、例えば2−ニトロ
ー9−フルオレノン、2.7−ジニトロ−9−フルオレ
ノン、2,4.7−トリニトロー9−フルオレノン、2
,4,5.7−テトラニトロ−9−フルオレノン、2−
ニトロベンゾチオフエン、2,4.8−トリニト口チオ
キサントン、ジニトロアントラセン、ジニトロアクリジ
ン、ジニトロアントラキノン、テトラシアノキノジメタ
ンなどを使用することができる.電荷輸送層は、上記の
エレクトロン移動型の物質と樹脂バインダーよりなり、
例えばバーコート法、ディップコート法、ブレードコー
ト法などの塗布法によって積層する。
Examples of materials that can be used in the charge generation layer include phthalocyanine, squarylium, azulenium salts, naphthalocyanine, 4,4°-bis[2-hydroxy-3-(2.
4-dimethylphenyl)carbamoyl l-naphthylazo]-1,4-distyrylbenzene, chlorodiane blue τ type 1 metal roof talocyamine, l-(p
-dimethylaminocinamilidene)-5-isopropyl-
3.8-dimethylazulenium salt, 2.7-bis[2-
Hydroxy-3-(2-chlorophenylcarbamoyl)
-1-naphthilazo]-9-fluorenone, Rhodamine B,
Examples include indigo, thioindigo, bisphenol-A-polycarbonate, aryl-substituted siabyllium dye, chlorodiane blue, and N,N'-dimethylperilimide. Note that the charge generation layer can be formed by depositing these substances that have absorption in the infrared region, or by immersing these materials deposited on the substrate in an organic solvent so that they have absorption in the infrared region. You can also shift it. Examples of electron transfer type substances include 2-nitro-9-fluorenone, 2,7-dinitro-9-fluorenone, 2,4,7-trinitro-9-fluorenone, and 2-nitro-9-fluorenone.
, 4,5.7-tetranitro-9-fluorenone, 2-
Nitrobenzothiophene, 2,4,8-trinitothioxanthone, dinitroanthracene, dinitroacridine, dinitroanthraquinone, tetracyanoquinodimethane, and the like can be used. The charge transport layer is made of the above-mentioned electron transfer type substance and a resin binder,
For example, the layers are laminated by a coating method such as a bar coating method, a dip coating method, or a blade coating method.

ここで樹脂バインダーとしては、電気絶縁性の樹脂、例
えばポリエステル樹脂、アクリル樹脂、スチレン樹脂,
ポリカーボネート樹脂、塩化ビニルー酢酸ビニル共重合
体、フエノキシ樹脂、エボキシ樹脂、シリコーン樹脂、
アルキド樹脂等が使用される。
Here, as the resin binder, electrically insulating resin such as polyester resin, acrylic resin, styrene resin,
Polycarbonate resin, vinyl chloride-vinyl acetate copolymer, phenoxy resin, epoxy resin, silicone resin,
Alkyd resin etc. are used.

電荷輸送層の厚さは10〜20μmが好ましい。電荷輸
送層が10μmより薄いとキャリアの発生効率が小さく
なって感度が落ちてしまい、電荷輸送層が2OLLmよ
り厚くなると、帯電時の受容電位が小さくなってしまう
からである。
The thickness of the charge transport layer is preferably 10 to 20 μm. This is because if the charge transport layer is thinner than 10 μm, carrier generation efficiency becomes low and the sensitivity is lowered, and if the charge transport layer is thicker than 2 OLLm, the acceptance potential during charging becomes small.

請求項2記載のメモリー性感光体は、導電性基質の上に
高抵抗状態から低抵抗状態へスイッチングを起こすスイ
ッチング層を積層し、このスイッチング層の上にPVK
−TeNFからなる電荷移動錯体層を0.1〜5μmの
厚さで積層し、この電荷移動錯体層の上に電荷の発生、
輸送及び受容性をもつ感光体層を積層して上記問題点2
を解決したものである。
In the memory photoreceptor according to the second aspect, a switching layer that causes switching from a high resistance state to a low resistance state is laminated on a conductive substrate, and a PVK layer is formed on this switching layer.
-A charge transfer complex layer made of TeNF is laminated to a thickness of 0.1 to 5 μm, and charges are generated on this charge transfer complex layer.
The above problem 2 can be solved by laminating photoreceptor layers with transport and receptor properties.
This is the solution.

ここで、電荷移動錯体層.を0.1〜5μmとしたのは
、O.lμm未満では効果が少なく、5μmを超えると
第2回目の帯電による受容電位が第1回目の受容電位よ
りも増加し、メモリー効果が認められなくなるからであ
る. また、導電性基質及びスイッチング層は上記請求項1記
載のメモリー性感光体と同様であり、また、感光体層は
上記請求項l記載のメモリー性感光体と同様の電荷発生
層と電荷輸送層とから構成することができる. この場合、電荷輸送層の厚さはlO〜20μmが好まし
い.電荷輸送層が−lOμm未満では電荷受容性が低く
、20μmを超える′と電荷受容性は良いが、光押射し
ても低下しない、すなわち光感度が低くなるからである
Here, the charge transfer complex layer. The reason why O. This is because if it is less than 1 μm, the effect will be small, and if it exceeds 5 μm, the accepted potential due to the second charging will be higher than the accepted potential due to the first charging, and no memory effect will be observed. Further, the conductive substrate and the switching layer are the same as in the memory photoreceptor according to claim 1, and the photoreceptor layer is the same charge generation layer and charge transport layer as in the memory photoreceptor according to claim 1. It can be constructed from. In this case, the thickness of the charge transport layer is preferably 10 to 20 μm. If the charge transport layer has a thickness of less than -10 .mu.m, the charge receptivity is low, and if it exceeds 20 .mu.m, the charge receptivity is good, but does not decrease even when exposed to light, that is, the photosensitivity becomes low.

[実施例1 実施例1 敷光』聾九賢孟 第1図に示すように、Cu基板からなる導電性基質10
の上にCu−TCNQ錯体のポリカーボネート系樹脂に
よる分散膜からなるスイッチング層l2を設け、この上
に赤外部に吸収を持つフタロシアニンを約500人の厚
きで蒸着させて電荷発生層14を形成し、さらに、この
上にエレクトロン移動型の物質を10〜20μmの厚み
で塗布して電荷輸送層16を形成した。
[Example 1 Example 1 Laying Light] Deaf Jiu Xianmeng As shown in FIG. 1, a conductive substrate 10 made of a Cu substrate
A switching layer 12 made of a dispersed film of a polycarbonate resin containing a Cu-TCNQ complex is provided thereon, and a charge generation layer 14 is formed by vapor-depositing phthalocyanine that absorbs in the infrared region to a thickness of about 500 nm. Further, an electron transfer material was applied thereon to a thickness of 10 to 20 μm to form a charge transport layer 16.

艷i二五又旦( 上述のようにして製造した感光体を用いて次のような帯
電一露光試験を行った。
The following charging and exposure test was conducted using the photoreceptor manufactured as described above.

すなわち、第2図に示すように、まずこの感光体に+6
kVで第1回目のコロナ帯電をさせ,この状態の感光体
に波長780nmの単色光(l OmW/cm” )を
照射した(第8−C図に示す工程に相当)。そして、次
にこの感光体に+6kVで第2回目のコロナ帯電をさせ
た(第8−F図に示す工程に相当)。
That is, as shown in FIG.
kV for the first time, and the photoreceptor in this state was irradiated with monochromatic light (l OmW/cm") with a wavelength of 780 nm (corresponding to the process shown in Figure 8-C). The photoreceptor was subjected to a second corona charge at +6 kV (corresponding to the step shown in Figure 8-F).

この感光体は、第1回目のコロナ帯電では受容電位■。This photoreceptor has an acceptance potential of ■ during the first corona charging.

が+650Vとなったが、波長780nmの光を照射し
た後の第2回目のコロナ帯電では受容電圧Vlが+40
0Vまでしかならなかった。すなわち、この感光体は、
波長780nmすなわち赤外領域においてメモリー効果
(■。一V.)/V。を有することが観察された. この受容電位■1は時間とともに大きくなるが、50%
回復するのに約3時間を要した。すなわち、初めの(■
。−V,)/V。を100とすると、3時間後に(vo
−v.)/V.が50となった.このことから、このメ
モリー性はかなり長時間にわたって保持され、かなり多
数枚の複写が可能になることがわかった。
was +650V, but in the second corona charging after irradiation with light with a wavelength of 780nm, the accepted voltage Vl was +40V.
It only reached 0V. That is, this photoreceptor is
Memory effect (■.1 V.)/V at a wavelength of 780 nm, that is, in the infrared region. It was observed that the This acceptance potential ■1 increases with time, but by 50%
It took about three hours to recover. That is, the first (■
. −V, )/V. is 100, after 3 hours (vo
-v. )/V. became 50. From this, it was found that this memory property can be maintained for a considerably long time, and a considerably large number of copies can be made.

実施例2 Δ上Jリ先毀1 第3図に示すように、Cu基板からなる導電性基質10
上にCu−TCNQ錯体のボリカーボネート系樹脂によ
る分散膜からなるスイッチング層.12を設け、この上
にPVK−”1”eNFFを0.1〜5μmの厚さで塗
布してPVK・TeNF層l3を形成し、この上にフタ
ロシアニンを約500人の厚さで蒸着させて電荷発生層
14を形成し、さらに、この上にエレクトロン移動型の
材料を10〜20amの厚みで設けて電荷輸送層16を
形成した。
Example 2 ΔUpper J-tip 1 As shown in FIG. 3, a conductive substrate 10 made of a Cu substrate
On top is a switching layer consisting of a polycarbonate-based resin dispersed film containing a Cu-TCNQ complex. 12 was provided, and PVK-"1" eNFF was applied thereon to a thickness of 0.1 to 5 μm to form a PVK-TeNF layer 13. On top of this, phthalocyanine was vapor-deposited to a thickness of approximately 500 μm. A charge generation layer 14 was formed, and an electron transfer material was further provided thereon to a thickness of 10 to 20 am to form a charge transport layer 16.

五里二五五ぶ( 上述のようにして製造した感光体を用いて次のような帯
電一露光試験を行った。
The following charging-exposure test was conducted using the photoreceptor manufactured as described above.

すなわち、第4図に示すように、まずこの感光体に+6
kVで第1回目のコロナ帯電をさせ、次に、この状態の
感光体に波長780nmの単色光(1 0mW/cm”
 )を岡肘し,+6kVで第2回目のコロナ帯電をさせ
た. この感光体は、第l回目のコロナ帯電では受容電位V。
That is, as shown in FIG.
kV for the first time, and then the photoreceptor in this state is exposed to monochromatic light with a wavelength of 780 nm (10 mW/cm").
) was used for a second corona charge at +6kV. This photoreceptor has an acceptance potential of V at the first corona charging.

が+soovとなったが、波長780nmの光を照射し
た後の第2回目のコロナ帯電では受容電位vIが+38
0■までしかならなず、また、メモリー効果は50%回
復するのに約5時間を要した。すなわち、この実験によ
って受容電位とメモリー性が向上することが判明した. [発明の効果] 請求項l記載の発明は、以上説明したように感光層を電
荷発生層と電荷輸送層の2層とし,電荷発生層として赤
外領域に吸収を持つ物質を使用し、電荷輸送層としてエ
レクトロン移動型の物質を使用したので、赤外領域にお
いてメモリー性を持たせることができ、従って現在最も
多く使用されている半導体レーザーを露光光源として使
用することができるという効果がある。
became +soov, but in the second corona charging after irradiation with light with a wavelength of 780 nm, the acceptance potential vI became +38
It took about 5 hours for the memory effect to recover by 50%. In other words, this experiment revealed that the receptive potential and memory ability were improved. [Effects of the Invention] As explained above, the invention described in claim 1 has a photosensitive layer consisting of two layers, a charge generation layer and a charge transport layer, and a substance having absorption in the infrared region as the charge generation layer. Since an electron transfer type material is used as the transport layer, it is possible to provide memory properties in the infrared region, and therefore, a semiconductor laser, which is currently most commonly used, can be used as an exposure light source.

また、請求項l記截の発明はメモリー性が長時間にわた
って維持されるので多数枚の印刷をすることができると
いう効果がある.更に、請求項l記載の発明は感光層の
受容電位が大きくなったので印刷のコントラストを向上
させることができるという効果がある. 請求項2記載の発明は、以上説明したようにスイッチン
グ層の上にPVK−TeNFからなる電荷移動錯体層を
0.1〜5μmの厚さで積層したので,受容電位を向上
させることができ、従って印刷のコントラストを更に向
上させることができるという効果がある. また,請求項2記載の発明はメモリー性が長時間にわた
って維持されるので多数枚の印刷をすることができると
いう効果がある。
Further, the invention as recited in claim 1 has the effect that the memory property is maintained for a long time, so that it is possible to print a large number of sheets. Furthermore, the invention described in claim 1 has the effect that the contrast of printing can be improved because the acceptance potential of the photosensitive layer is increased. In the invention according to claim 2, as described above, a charge transfer complex layer made of PVK-TeNF is laminated with a thickness of 0.1 to 5 μm on the switching layer, so that the acceptance potential can be improved. Therefore, it has the effect of further improving the contrast of printing. Further, the invention as claimed in claim 2 has the advantage that the memory property is maintained for a long time, so that it is possible to print a large number of sheets.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は請求項l記載の発明の一実施例を示す断面図、
第2図は第1図の感光体を帯電一露光させた時の受容電
位の変化を示したグラフ、第3図は請求項2記載の発明
の一実施例を示す断面図、第4図は第3図の感光体を帯
電一露光させた時の受容電位の変化を示したグラフ、第
5図は従来の感光体の断面図、第6図は従来の感光体の
スイッチング層について印加電圧と電流との関係を示し
たグラフ、第7図は従来の感光体の表面電位と時間との
関係を示したグラフである。 1 0・・・導電性基質、 l 2・・・スイ ッチング層、 l 3 ・・・ PVK ・TeNF層、 1 4・・・電荷発生層、 1 6・・・電荷輸送層。
FIG. 1 is a sectional view showing an embodiment of the invention as claimed in claim 1,
FIG. 2 is a graph showing changes in acceptance potential when the photoreceptor shown in FIG. 1 is charged and exposed to light; FIG. Figure 3 is a graph showing changes in acceptance potential when a photoreceptor is charged and exposed to light, Figure 5 is a cross-sectional view of a conventional photoreceptor, and Figure 6 is a graph showing changes in applied voltage and switching layer of a conventional photoreceptor. FIG. 7 is a graph showing the relationship between the surface potential of a conventional photoreceptor and time. 10... Conductive substrate, l2... Switching layer, l3... PVK/TeNF layer, 14... Charge generation layer, 16... Charge transport layer.

Claims (2)

【特許請求の範囲】[Claims] (1)導電性基質の上に高抵抗状態から低抵抗状態へス
イッチングを起こすスイッチング層を積層し、このスイ
ッチング層の上に赤外領域に吸収を持つ電荷発生層を積
層し、この電荷発生層の上にエレクトロン移動型の物質
からなる電荷輸送層を積層したことを特徴とするメモリ
ー性感光体。
(1) A switching layer that causes switching from a high resistance state to a low resistance state is laminated on a conductive substrate, a charge generation layer that absorbs in the infrared region is laminated on this switching layer, and this charge generation layer A memory photoreceptor characterized by having a charge transport layer made of an electron transfer type material laminated thereon.
(2)導電性基質の上に高抵抗状態から低抵抗状態へス
イッチングを起こすスイッチング層を積層し、このスイ
ッチング層の上にPVK・ TeNFからなる電荷移動錯体層を0.1〜5μmの厚
さで積層し、この電荷移動錯体層の上に電荷の発生、輸
送及び受容性をもつ感光体層を積層したことを特徴とす
るメモリー性感光体。
(2) A switching layer that causes switching from a high resistance state to a low resistance state is laminated on a conductive substrate, and a charge transfer complex layer made of PVK/TeNF is placed on top of this switching layer to a thickness of 0.1 to 5 μm. 1. A photoreceptor with memory properties, characterized in that a photoreceptor layer having charge generation, transport and reception properties is laminated on the charge transfer complex layer.
JP15322789A 1989-06-15 1989-06-15 Photosensitive body having memory Pending JPH0317654A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15322789A JPH0317654A (en) 1989-06-15 1989-06-15 Photosensitive body having memory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15322789A JPH0317654A (en) 1989-06-15 1989-06-15 Photosensitive body having memory

Publications (1)

Publication Number Publication Date
JPH0317654A true JPH0317654A (en) 1991-01-25

Family

ID=15557837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15322789A Pending JPH0317654A (en) 1989-06-15 1989-06-15 Photosensitive body having memory

Country Status (1)

Country Link
JP (1) JPH0317654A (en)

Similar Documents

Publication Publication Date Title
US5238607A (en) Photoconductive polymer compositions and their use
EP0759579B1 (en) Electrophotographic elements having charge transport layers containing high mobility polyester binders
JP3483976B2 (en) Electrophotographic imaging member
JPH07150101A (en) Cross-linked polyvinyl butyral binder for organic photoconductor
JPH0317654A (en) Photosensitive body having memory
JPH07199487A (en) Electrophotographic photoreceptor
US4055420A (en) Single phase organic photoconductive composition
JPH10115941A (en) Electrophotographic photoreceptor
JPH0550740B2 (en)
JPH0727263B2 (en) Multilayer photoconductor
JP2000214607A (en) Electrophotographic image forming member and its production
JP2625724B2 (en) Image forming method
JP2541283B2 (en) Electrophotographic photoreceptor
Weigl et al. Phthalocyanine-binder photoreceptors for xerography
JPH0668627B2 (en) Electrophotographic photoreceptor
JPH0550741B2 (en)
JP3781362B2 (en) Electrophotographic photoreceptor
JPH0954450A (en) Electrophotographic photoreceptor and electrophotographic device
SU463275A3 (en) Electrophotographic element
JP3458255B2 (en) Electrophotographic process by latent image transfer method
JPS60198548A (en) Electrophotographic sensitive body
JPS5952831B2 (en) Electrophotographic latent image formation method
JPH0690519B2 (en) Electrostatic printing plate
JPH0554672B2 (en)
JPS6320344B2 (en)