JPH0668627B2 - Electrophotographic photoreceptor - Google Patents

Electrophotographic photoreceptor

Info

Publication number
JPH0668627B2
JPH0668627B2 JP59064780A JP6478084A JPH0668627B2 JP H0668627 B2 JPH0668627 B2 JP H0668627B2 JP 59064780 A JP59064780 A JP 59064780A JP 6478084 A JP6478084 A JP 6478084A JP H0668627 B2 JPH0668627 B2 JP H0668627B2
Authority
JP
Japan
Prior art keywords
layer
charge
switching element
element layer
photoconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59064780A
Other languages
Japanese (ja)
Other versions
JPS60208757A (en
Inventor
正明 横山
Original Assignee
三田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三田工業株式会社 filed Critical 三田工業株式会社
Priority to JP59064780A priority Critical patent/JPH0668627B2/en
Publication of JPS60208757A publication Critical patent/JPS60208757A/en
Publication of JPH0668627B2 publication Critical patent/JPH0668627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/07Polymeric photoconductive materials
    • G03G5/071Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G5/072Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups
    • G03G5/073Polymeric photoconductive materials obtained by reactions only involving carbon-to-carbon unsaturated bonds comprising pending monoamine groups comprising pending carbazole groups
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/047Photoconductive layers characterised by having two or more layers or characterised by their composite structure characterised by the charge-generation layers or charge transport layers

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Description

【発明の詳細な説明】 技術分野 本発明は、電子写真感光体に関するもので、より詳細に
は感光体のメモリー効果を利用して静電像の反復形成を
行うための電子写真感光体に関する。
TECHNICAL FIELD The present invention relates to an electrophotographic photosensitive member, and more particularly to an electrophotographic photosensitive member for repeatedly forming an electrostatic image by utilizing a memory effect of the photosensitive member.

従来技術 従来、原稿の多数枚複製には、印刷技術の他に、操作の
手軽さ等の見地から、電子写真法による多数枚複写技術
が採用されるに至っている。
2. Description of the Related Art Conventionally, in order to reproduce a large number of originals, in addition to the printing technique, the technique of copying a large number of sheets by electrophotography has been adopted from the viewpoint of ease of operation.

この多数枚複写電子写真法の代表的なものとして、光メ
モリー効果を有する光導電性感光層を画像露光した後、
帯電、現像、転写及びクリーニングの諸工程を反復する
所謂リテンション型静電印刷法が知られている。この方
法は、感光層の露光部では光メモリー効果により導電性
となり、この部分に電荷がのりにくくなるという原理を
使用するものであるが、公知の感光体は、所望の光メモ
リー効果を与えるための感度が低く、感光体を大出力の
光源を用いて画像露光しなければならないという不便さ
がある。
As a typical example of this multi-copy electrophotography, after image-exposing a photoconductive photosensitive layer having an optical memory effect,
There is known a so-called retention type electrostatic printing method in which various steps of charging, developing, transferring and cleaning are repeated. This method uses the principle that the exposed portion of the photosensitive layer becomes conductive due to the optical memory effect, and it becomes difficult for electric charges to be transferred to this portion. However, the known photosensitive member provides a desired optical memory effect. The sensitivity is low, and there is an inconvenience that the photoconductor must be image-exposed using a high-power light source.

最近に至って、光メモリー効果を利用する感光体の開発
も行われており、例えば井上教授等によってポリ−N−
ビニルカルバゾール、2、4、7−トリニトロフルオレ
ノン(TNF)及びロイコ色素の混合溶液をアルミニウム
電極上に塗布した感光体、或いは上記混合溶液塗布層の
上に、PVKとTNFとの組成物の層を設けた複層感光体を使
用し、これを一回画像露光することにより、感光体上に
メモリー像(露光部の電荷受容性の低下)を形成し、帯
電−現像−転写のプロセスを繰り返すことで、多数枚の
複写物を得る研究が行われている(日本写真学会誌第44
巻2号第104乃至117頁(1981)参照)。これらの感光体
におけるメモリー形成は、TNFとロイコ色素の作る電荷
移動錯体の光吸枚後の化学反応に起因するものと言われ
ている。
Recently, a photoconductor utilizing the optical memory effect has also been developed. For example, Professor Inoue et al.
A photoconductor obtained by coating a mixed solution of vinylcarbazole, 2,4,7-trinitrofluorenone (TNF) and a leuco dye on an aluminum electrode, or a layer of a composition of PVK and TNF on the mixed solution coating layer. By using a multi-layered photoconductor provided with a single imagewise exposure, a memory image (reduction in charge acceptability of the exposed part) is formed on the photoconductor, and the process of charging-developing-transfer is repeated. Therefore, many studies have been conducted to obtain many copies (Journal of the Photographic Society of Japan, No. 44).
Vol. 2, pp. 104-117 (1981)). The memory formation in these photoconductors is said to be due to the chemical reaction of the charge transfer complex formed by TNF and the leuco dye after light absorption.

発明の構成 本発明によれば、光化学反応とは全く異なる原理でメモ
リー像の形成が行われ、しかもメモリー像及びその後の
帯電による電荷像の形成が効率良く行われる電子写真感
光体が提供される。
According to the present invention, there is provided an electrophotographic photosensitive member on which a memory image is formed on the principle completely different from a photochemical reaction, and moreover, a memory image and a charge image by charging thereafter are efficiently formed. .

本発明によれば更に、新規な複層構成を有する電子写真
複層感光体が提供される。
The present invention further provides an electrophotographic multilayer photoreceptor having a novel multilayer structure.

即ち、本発明は、導電性基質、該導電性基質上に形成さ
れた銅−テトラシアノキノジメタン錯体を含むスイッチ
ング素子層及びポリビニルカルバゾール系重合体とテト
ラニトロフルオレノンとの電荷移動錯体を含む表面層か
ら成ることを特徴とする電子写真感光体に関する。
That is, the present invention provides a conductive substrate, a switching element layer containing a copper-tetracyanoquinodimethane complex formed on the conductive substrate, and a surface containing a charge transfer complex of a polyvinylcarbazole-based polymer and tetranitrofluorenone. The present invention relates to an electrophotographic photosensitive member characterized by comprising layers.

本発明を添付図面を参照しつつ以下に詳細に説明する。The present invention will be described in detail below with reference to the accompanying drawings.

この感光体の断面構造を示す第1図において、導電性基
質1の上にはスイッチング素子層2が設けられ、この層
2の上に更に電荷発生輸送層乃至は電荷受容層3が設け
られる。図示していないが、導電性基質1とスイッチン
グ素子層2との間には、所望に応じ電荷注入バリヤー層
或いは接着力を増強させるためのアンダー層等が設けら
れていてもよい。
In FIG. 1 showing the sectional structure of this photoreceptor, a switching element layer 2 is provided on a conductive substrate 1, and a charge generation / transport layer or a charge receiving layer 3 is further provided on this layer 2. Although not shown, a charge injection barrier layer or an under layer for enhancing the adhesive force may be provided between the conductive substrate 1 and the switching element layer 2 as desired.

本発明によれば、このスイッチング素子層2として、銅
−テトラシアノキノジメタン錯体を含有するものを使用
する。この銅−テトラシアノキノジメタン錯体(Cu・TC
NQ)は、高電場で高電導状態となり且つこの高電導状態
が維持されるスイッチング機能を備えている。更に、本
発明によれば、電荷発生輸送層乃至は電荷受容層3とし
て、ポリビニルカルバゾール(PVK)、又はその同族体
とテトラニトロフルオレノン(TeNF)との電荷移動錯体
を使用する。
According to the present invention, as the switching element layer 2, one containing a copper-tetracyanoquinodimethane complex is used. This copper-tetracyanoquinodimethane complex (Cu ・ TC
NQ) has a switching function in which it is in a high conductivity state in a high electric field and this high conductivity state is maintained. Further, according to the present invention, as the charge generating / transporting layer or the charge accepting layer 3, a charge transfer complex of polyvinylcarbazole (PVK) or its homolog and tetranitrofluorenone (TeNF) is used.

本発明の感光体のメモリー像の形成原理及び静電像の形
成原理を第2−A乃至2−D図に基づき以下に説明す
る。
The principle of forming a memory image and the principle of forming an electrostatic image on the photoconductor of the present invention will be described below with reference to FIGS. 2-A to 2-D.

まず、第2−A図の帯電画像露光工程において、感光体
4の表面を、コロナチャージャ5により一定極性の電荷
に帯電させ、次いで光源6によりこの表面を画像露光さ
せる。図の具体例では、電荷受容層3の表面は正電荷に
帯電され、導電性基質1には負電荷が誘起される。
First, in the charged image exposure step of FIG. 2-A, the surface of the photoconductor 4 is charged with a charge of a constant polarity by the corona charger 5, and then the surface is imagewise exposed by the light source 6. In the specific example shown in the figure, the surface of the charge receiving layer 3 is positively charged, and the conductive substrate 1 is negatively charged.

メモリー像形成の第1段階を示す第2−B図において、
暗部Dでは表面電荷はそのままであるが、明部Lでは電
荷受容層3中に電荷(キヤリヤ)が発生し、生じたホー
ル(+)が積層界面、即ちスイッチング素子層2との界
面迄移動してそこに蓄積され、その結果として明部Lで
は、スイッチング素子層2に高電場が印加されることに
なる。
In Figure 2-B showing the first step of memory image formation,
In the dark portion D, the surface charge remains unchanged, but in the light portion L, charge (carrier) is generated in the charge receiving layer 3, and the generated hole (+) moves to the stacking interface, that is, the interface with the switching element layer 2. In the bright part L, a high electric field is applied to the switching element layer 2 as a result.

メモリー像形成の第2段階を示す第2−C図において、
スイッチング素子層2の明部Lでは、印加される高電場
により高電導状態(ON STATE)、即ち低抵抗状態に誘
起される。スイッチング素子層2の暗部Dでは、高抵抗
状態(OFF STATE)のまま残り、スイッチング素子層2
には、上述した状態が継続して維持され、その結果とし
て、明部Lでは導電性基質1からの電子の注入が容易な
状態となる。
In Figure 2-C showing the second stage of memory image formation,
In the bright portion L of the switching element layer 2, the high electric field applied induces a high electric conduction state (ON STATE), that is, a low resistance state. In the dark portion D of the switching element layer 2, the high resistance state (OFF STATE) remains and the switching element layer 2
In the above, the above-mentioned state is continuously maintained, and as a result, in the bright portion L, electrons can be easily injected from the conductive substrate 1.

静電像形成工程を示す第2−D図において、一度露光が
行われた部分Lでは、その後の正帯電に対して注入が容
易となった電子(−)が高導電状態のスイッチング層2
を介して電荷受容層3に注入され、該層3を通って表面
に到達し、表面の正電荷(+)を消去することにより、
電荷像の形成が行われる。図示していないが、この電荷
像を、それ自体公知の方法により、トナーで現像し、形
成されるトナー像を紙等に転写することにより、複写物
乃至印刷物を得ることができる。かくして、第2−A乃
至2−C図に示す1回のメモリー像形成の後に、第2−
D図に示す所望回数の帯電工程を行うことにより、所望
枚数の複写が可能となる。
In FIG. 2-D showing the electrostatic image forming step, in the portion L which has been exposed once, the electron (−), which has become easy to be injected with respect to the subsequent positive charging, is in the high conductivity state of the switching layer 2.
By being injected into the charge-receiving layer 3 through the layer, reaching the surface through the layer 3, and erasing the positive charge (+) on the surface,
A charge image is formed. Although not shown, the charge image is developed with a toner by a method known per se, and the formed toner image is transferred to paper or the like, whereby a copy or a printed matter can be obtained. Thus, after one memory image formation shown in FIGS. 2-A to 2-C,
By carrying out the desired number of charging steps shown in FIG. D, the desired number of copies can be made.

本発明では、上述した説明から明らかな通り、光は電荷
発生輸送層乃至は電荷受容層3の電荷発生、換言すれ
ば、スイッチング素子層2への高電場印加の目的にのみ
使用されるという特徴がある。即ち、従来の複層感光体
では、電荷輸送層或いは電荷受容層を介してメモリー形
成層をも露光し、該メモリー形成層中に光化学変化を起
こさせる必要があったのに対して、本発明では、電荷発
生輸送層乃至は電荷受容層中に電荷(キヤリア)を発生
させることのみが要求されるものであるから、従来法に
比して著しく少ない露光量でメモリー像の形成が可能と
なるという利点が達成されるものである。
In the present invention, as is apparent from the above description, light is used only for the purpose of generating charges in the charge generating / transporting layer or the charge receiving layer 3, in other words, for applying a high electric field to the switching element layer 2. There is. That is, in the conventional multilayer photoreceptor, it is necessary to expose the memory forming layer through the charge transport layer or the charge receiving layer to cause photochemical change in the memory forming layer. In this case, since it is only required to generate charges (carriers) in the charge generating / transporting layer or the charge receiving layer, it is possible to form a memory image with a significantly smaller exposure amount than in the conventional method. The advantage is achieved.

第3図は、本発明に使用するスイッチング素子層(Cu・
TCNQ)について、印加電圧と電流との関係を示したもの
であり、曲線1は未処理のスイッチング素子層について
の電圧と電流との関係、曲線2は高電圧印加後のスイッ
チング素子層について同様の関係を調べたものである。
曲線1から、このスイッチング素子層は傾斜のゆるやか
な高抵抗状態Aと傾斜の極めて大きい低抵抗状態Bとが
存在すること、及び曲線2から一旦高電導状態(ON ST
ATE)となったスイッチング素子層では、高抵抗状態A
が殆ど消失していることが明らかである。
FIG. 3 shows the switching element layer (Cu.
TCNQ) shows the relationship between the applied voltage and the current, curve 1 shows the relationship between the voltage and the current for the untreated switching element layer, and curve 2 shows the same for the switching element layer after the high voltage application. It is a study of relationships.
From curve 1, this switching element layer has a high resistance state A with a gradual slope and a low resistance state B with an extremely large slope, and from curve 2 a high conductivity state (ON ST).
ATE) switching element layer, high resistance state A
Is almost disappeared.

テトラシアノキノジメタン(TCNQ)は、下記構造式 を有する、化合物であり、その銅錯塩が高抵抗状態と高
導電状態のスイッチング機能を示すのは、下記式 〔Cu+(TCNQ-・)〕nCuo x+(TCNQo+〔Cu+(TCNQ
-・)〕n-x で表されるように、左辺の低電導性のシンプル塩が、閾
値以上の電圧印加で部分的に中性分子を生成し、所謂高
電導性のコンプレックス塩ができるための導電度変化に
起因すると理解されている。
Tetracyanoquinodimethane (TCNQ) has the following structural formula Having a compound, its copper complex that shows the switching function of the high-resistance state and high conductivity state, the following formula [Cu + (TCNQ - ·)] n Cu o x + (TCNQ o ) x + [Cu + (TCNQ
-・)] As represented by nx , the low-conductivity simple salt on the left-hand side partially generates neutral molecules when a voltage higher than the threshold is applied, so that a so-called high-conductivity complex salt is formed. It is understood that it is due to the degree change.

本発明に用いるCu・TCNQ錯体は、同種の他の錯体に比し
て、本発明の目的にとて幾つかの利点を有している。例
えばCu・TCNQ錯体は銀塩に比して安定性と再現性に優れ
ている。更に、このCu・TCNQ錯体は、スイッチング機能
とメモリー機能(保持性)との両方を兼ね備えていると
いう点でも、他の錯体に比して優れている。
The Cu.TCNQ complex used in the present invention has several advantages for the purposes of the present invention over other complexes of the same type. For example, Cu-TCNQ complex is superior in stability and reproducibility to silver salt. Furthermore, this Cu / TCNQ complex is superior to other complexes in that it has both a switching function and a memory function (retention).

Cu・TCNQ錯体は、蒸着等の手段で導電性基質上に結晶薄
膜の形で直接形成させることもできるし、或いは微結晶
のものを樹脂バインダー中に分散させて導電性基質上に
設けることもできる。製造の容易さの点では、微結晶錯
体を樹脂バインダー中に分散させて用いるのがよい。
The Cu-TCNQ complex can be formed directly on the conductive substrate in the form of a crystalline thin film by means such as vapor deposition, or microcrystals can be dispersed in a resin binder and provided on the conductive substrate. it can. In terms of easiness of production, it is preferable to disperse the microcrystalline complex in a resin binder before use.

樹脂バインダーとしては、電気絶縁性の樹脂、例えばポ
リエステル樹脂、アクリル樹脂、スチレン樹脂、ポリカ
ーボネート樹脂、塩化ビニル−酢酸ビニル共重合体、フ
エノキシ樹脂、アルキド樹脂等が使用される。微結晶錯
体と樹脂バインダーとは、1:4乃至4:1の重量比、特に2:
3乃至3:2の重量比で用いるのがよい。
As the resin binder, an electrically insulating resin such as polyester resin, acrylic resin, styrene resin, polycarbonate resin, vinyl chloride-vinyl acetate copolymer, phenoxy resin or alkyd resin is used. The microcrystalline complex and the resin binder are in a weight ratio of 1: 4 to 4: 1, especially 2: 2.
It is preferred to use it in a weight ratio of 3 to 3: 2.

第4図は、スイッチング素子層における錯体含有量を変
化させた場合における、スイッチング機能の電場閾値
(V/cm)並びに高抵抗状態及び高電導状態におけるスイ
ッチング素子層の体積抵抗を示す。これらの結果から、
上記範囲では安定な機能が達成されることが理解されよ
う。
FIG. 4 shows the electric field threshold value (V / cm) of the switching function and the volume resistance of the switching element layer in the high resistance state and the high conductivity state when the complex content in the switching element layer was changed. From these results,
It will be understood that stable functions are achieved in the above range.

前述したバインダーを、適当な溶媒、例えばテトラヒド
ロフラン、クロロホルム、ジオキサン、ジメチンアセト
アミド、ジメチルホルムアミド、ジメチルスルホキシド
等の溶媒に溶解し、微結晶錯体を分散させ、導電性基質
に塗布し、乾燥してスイッチング素子層を形成させる。
The above-mentioned binder is dissolved in a suitable solvent such as tetrahydrofuran, chloroform, dioxane, dimethineacetamide, dimethylformamide, dimethylsulfoxide, etc. to disperse the microcrystalline complex, coated on a conductive substrate, dried and switched. An element layer is formed.

本発明に用いる電荷発生輸送層乃至電荷受容層は、比照
射により電荷(キヤリヤ:ホール)を発生し、表面へこ
れらを移送すると共に、スイッチング素子から注入され
る電荷(電子)を表面迄移送するものでなければならな
い。
The charge generating / transporting layer or charge receiving layer used in the present invention generates charges (carriers: holes) by specific irradiation, transfers these to the surface, and transfers charges (electrons) injected from the switching element to the surface. Must be one.

本発明で用いるPVK−TeNF電荷移動錯体は、上述した特
性に特に優れている。即ち、従来正孔輸送物質や電子輸
送物質としては多種多様の物質が知られており、またそ
の錯体にも種々の組合せがあるが、スイッチング素子層
からの電子注入バリヤーが約0.4eVであり、最も代表的
なPVK−TNF錯体のそれよりも約0.25eV低い値であり、電
子の注入が容易に行われるという利点がある。
The PVK-TeNF charge transfer complex used in the present invention is particularly excellent in the above-mentioned properties. That is, a wide variety of substances are conventionally known as hole transporting substances and electron transporting substances, and there are various combinations of their complexes, but the electron injection barrier from the switching element layer is about 0.4 eV, The value is about 0.25 eV lower than that of the most typical PVK-TNF complex, which is an advantage that electron injection is easily performed.

本発明において、ポリビニルカルバゾール(PVK、単量
体単位基準)とテトラニトロフルオレノン(TeNF)と
は、1:0.4乃至1:1、特に1:0.6乃至1:0.7のモル比で用い
るのがよい。
In the present invention, polyvinylcarbazole (PVK, monomer unit basis) and tetranitrofluorenone (TeNF) are preferably used in a molar ratio of 1: 0.4 to 1: 1, particularly 1: 0.6 to 1: 0.7.

第5図は、TeNF:PVKのモル比を変化させ、5.0×10V/c
mの電場で測定した、電子及び正孔の移動度を示す。こ
の結果によると、上述したモル比では、正孔の移動が制
御され、従って暗部(D)での帯電電位が維持されるの
と共に、明部(L)では注入された電子の移動が活発に
行われて、第2−D図に示す帯電工程で、コントラスト
の大きい電荷像が形成されることがわかる。
Fig. 5 shows that the molar ratio of TeNF: PVK was changed to 5.0 × 10 5 V / c.
Shows the mobility of electrons and holes measured in an electric field of m. According to this result, at the above-mentioned molar ratio, the movement of holes is controlled, so that the charging potential in the dark portion (D) is maintained, and the movement of the injected electrons is actively performed in the bright portion (L). It can be seen that a charge image having a large contrast is formed in the charging step shown in FIG. 2-D.

第6図は、後述するCu・TCNQをスイッチング素子層、及
びPVK・TeNF錯体を電荷発生輸送層乃至電荷受容層とし
た感光体の表面電位と時間との関係を示す線図であっ
て、曲線(1)は未処理感光体の表面帯電電位、曲線
(2)は露光開始後の表面帯電電位、曲線(3)は帯電
−露光によりスイッチング素子層が高導電状態となった
感光体を再帯電した際の表面帯電電位を示す。第6図
中、Voは高抵抗状態(OFF SRATE)でのスイッチング層
を備えた感光体の初期飽和帯電電位であり、Vは高電
導状態(ON STATE)でのスイッチング層を備えた感光
体の飽和帯電電位であり、メモリー効果(F)は下記式 で表される。
FIG. 6 is a diagram showing the relationship between the surface potential and time of a photoconductor having Cu / TCNQ as a switching element layer and PVK / TeNF complex as a charge generating / transporting layer or charge receiving layer, which will be described later. (1) is the surface charge potential of the untreated photoconductor, curve (2) is the surface charge potential after the start of exposure, and curve (3) is the recharge of the photoconductor in which the switching element layer has become highly conductive due to charging-exposure. The surface charging potential at the time of performing is shown. In FIG. 6, Vo is the initial saturation charging potential of the photoconductor provided with the switching layer in the high resistance state (OFF SRATE), and V 1 is the photoconductor provided with the switching layer in the high conductivity state (ON STATE). Is the saturated charge potential of, and the memory effect (F) is It is represented by.

第7図は、TeNF:PVKのモル比を変化させ、初期飽和帯電
電位及びメモリー効果(F)との関係を調べた結果を示
す。この第7図の結果からも、両者のモル比が前述した
範囲で顕著なメモリー効果が得られることがわかる。
FIG. 7 shows the results of examining the relationship between the initial saturated charging potential and the memory effect (F) by changing the molar ratio of TeNF: PVK. From the results shown in FIG. 7, it is understood that a remarkable memory effect can be obtained when the molar ratio of the two is within the above range.

PVK・TeNF錯体の層は、例えばこれらを有機溶媒中に溶
解させ、これをスイッチング素子層上に塗布することに
より容易に形成させ得る。
The layer of PVK-TeNF complex can be easily formed by, for example, dissolving these in an organic solvent and applying the solution on the switching element layer.

本発明において、導電性基質としては、銅、アルミニウ
ム、ブリキ等の導電性金属基質や、導電処理した紙、或
いはネサ(NESA)ガラス等が使用され、これらはシート
或いはドラムの形で用いられる。
In the present invention, as the conductive substrate, a conductive metal substrate such as copper, aluminum or tin plate, conductive treated paper, NESA glass or the like is used, and these are used in the form of a sheet or a drum.

本発明の感光体において、スイッチング素子層の厚み
は、一般に1乃至5μm、特に1.5乃至3.5μm範囲にあ
り、電荷発生輸送乃至電荷輸送層の厚みは一般に6乃至
20μm、特に7乃至12μm範囲にあることが、帯電時の
表面電位を高いレベルに維持しつつ、しかもメモリー効
果を最大限に利用する上で好ましい。
In the photoreceptor of the present invention, the thickness of the switching element layer is generally in the range of 1 to 5 μm, particularly 1.5 to 3.5 μm, and the thickness of the charge generation / transport or charge transport layer is generally 6 to
It is preferable that the thickness is in the range of 20 μm, particularly 7 to 12 μm in order to keep the surface potential at the time of charging at a high level and to maximize the memory effect.

本発明の感光体は、一回露光での多数枚複写の電子写真
感光体として有用であると共に、読み出し可能な電子記
録体としての用途にも有用である。
INDUSTRIAL APPLICABILITY The photoconductor of the present invention is useful as an electrophotographic photoconductor for copying a large number of sheets in a single exposure and also as a readable electronic recording medium.

参考例 スイッチング素子層の形成 ボールミルにより粉砕した銅−テトラシアノキノジメタ
ン錯体(Cu・TCNQ)10重量部を、ポリアリレート樹脂
(U−polymer 8000 ユニチカ製)10重量部、ポリエ
チレングルコール(PEG1000 三洋化成工業社製)0.5重
量部、クロロホルム90重量部の組成から成る溶液と混合
し、30分間超音波分散した後、鋼基板上にワイヤーバー
により、塗布、乾燥した。乾燥は80℃で15分間、さらに
必要に応じて6時間の真空乾燥を行い、膜厚2μmのス
イッチング素子層を形成した。
Reference example Formation of switching element layer 10 parts by weight of copper-tetracyanoquinodimethane complex (Cu / TCNQ) crushed by a ball mill, 10 parts by weight of polyarylate resin (U-polymer 8000 Unitika), polyethylene glycol (PEG1000 Sanyo) 0.5 parts by weight and 90 parts by weight of chloroform were mixed and ultrasonically dispersed for 30 minutes, and then coated on a steel substrate with a wire bar and dried. Vacuum drying was carried out at 80 ° C. for 15 minutes, and if necessary, for 6 hours to form a switching element layer having a film thickness of 2 μm.

スイッチング現像の測定 上記スイッチング素子層にAを真空蒸着し、A蒸着
膜と銅基板を電極としてサンドイッチ型セルを形成し
た。
Measurement of Switching Development A was vacuum-deposited on the switching element layer to form a sandwich type cell using the A vapor deposition film and a copper substrate as electrodes.

次に銅基板側に対し、+3.0V〜−3.0Vの電圧を印加し
た。第1回目の電圧印加におけるV−I曲線を第2図の
曲線(1)に示す。さらに第2回目以降の電圧印加にお
けるV−I曲線を曲線(2)に示す。
Next, a voltage of +3.0 V to -3.0 V was applied to the copper substrate side. The VI curve in the first voltage application is shown by the curve (1) in FIG. Further, the VI curve in the second and subsequent voltage application is shown in the curve (2).

実施例 感光体の作製 参考例と同様な方法により、スイッチング素子層を銅基
板上に形成させた。
Example Production of Photoreceptor A switching element layer was formed on a copper substrate by the same method as in the reference example.

次に、ポリビニルカルバゾール(Luvican M−170 BA
SF社製)10重量部にテトラヒドロフラン90重量部を加え
て10%PVK溶液を作製した。この10%PVK溶液10重量部に
2、4、5、7−テトラニトロ−9−フルオレノン0.6
重量部及びテトラヒドロフラン2.0重量部を加え、超音
波分散機で充分に溶解させ、感光層塗布液を先に形成さ
せたスイッチング層上にワイヤーバーにて塗布、乾燥を
行い、7μmの感光層を形成させ、感光体を得た。
Next, polyvinylcarbazole (Luvican M-170 BA
90 parts by weight of tetrahydrofuran was added to 10 parts by weight of SF company) to prepare a 10% PVK solution. To 10 parts by weight of this 10% PVK solution was added 2,4,5,7-tetranitro-9-fluorenone 0.6.
1 part by weight and 2.0 parts by weight of tetrahydrofuran are sufficiently dissolved with an ultrasonic disperser, and the photosensitive layer coating liquid is applied on the switching layer previously formed with a wire bar and dried to form a photosensitive layer of 7 μm. To obtain a photoconductor.

複写テスト 上述の作製した感光体を表面電位光減衰装置にセット
し、約30秒間正コロナ放電(+6.0KV)を行った後、原
稿露光を行った。なお、照射光としてタングステンラン
プ(14mW/cm2)を用い、約1分間露光を行った。
Copy Test The above-prepared photoconductor was set in a surface potential light attenuator, and after positive corona discharge (+6.0 KV) for about 30 seconds, document exposure was performed. A tungsten lamp (14 mW / cm 2 ) was used as irradiation light, and exposure was performed for about 1 minute.

次に市販の静電写真複写機(DC−162:三田工業社製)の
感光体ドラムをアルマイトドラムに取り換え、そこに露
光後の本感光体を貼付し、銅基板を接地した後正コロナ
放電(+6KV)、トナー現象、普通紙への転写、クリー
ニングのサイクルを連続的に繰り返し、静電印刷を行っ
た。
Next, replace the photoconductor drum of a commercially available electrostatographic copying machine (DC-162: manufactured by Mita Kogyo Co., Ltd.) with an alumite drum, attach the exposed photoconductor there, and ground the copper substrate, and then positive corona discharge (+ 6KV), toner phenomenon, transfer to plain paper, and cleaning cycle were repeated continuously to perform electrostatic printing.

印刷を50サイクルまで行ったところ、初期画像と比較し
ても画像のノイズや、コントラストの乱れはほとんど観
測されず、鮮明な印刷物が得られた。
When printing was performed for up to 50 cycles, even when compared with the initial image, almost no image noise or contrast disorder was observed, and clear printed matter was obtained.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の感光体の断面構造を示す図、第2図は
本発明の感光体を用いたメモリー像の形成及び静電像の
形成を示す原理図、第3図は本発明に用いるスイッチン
グ素子層の印加電圧と電流の関係を示す図、第4図はス
イッチング素子層の体積抵抗及び電場閾値とCu・TCNQの
含有量との関係を示す図、第5図は本発明に用いる電荷
発生輸送乃至は電荷受容層の電子及び正孔の移動度を示
す図、第6図は本発明の感光体の表面電位の時間変化を
示す図、第7図は電荷発生輸送層乃至は電荷受容層の初
期飽和電位及びメモリ効果とTeNF:PVKのモル比の関係を
示す図である。 1……導電性基質、2……スイッチング素子層 3……電荷発生輸送乃至電荷受容層
FIG. 1 is a diagram showing a sectional structure of a photoconductor of the present invention, FIG. 2 is a principle diagram showing formation of a memory image and electrostatic image using the photoconductor of the present invention, and FIG. 3 is a diagram showing the present invention. FIG. 4 is a diagram showing the relationship between the applied voltage and current of the switching element layer used, FIG. 4 is a diagram showing the relationship between the volume resistance and electric field threshold value of the switching element layer, and the Cu / TCNQ content, and FIG. 5 is used in the present invention. FIG. 6 is a diagram showing the mobility of electrons and holes in the charge generating / transporting or charge accepting layer, FIG. 6 is a diagram showing the time change of the surface potential of the photoreceptor of the present invention, and FIG. 7 is the charge generating / transporting layer or charge It is a figure which shows the initial saturation potential of a receptive layer, and a memory effect, and the relationship of the molar ratio of TeNF: PVK. 1 ... Conductive substrate, 2 ... Switching element layer 3 ... Charge generation / transport or charge acceptance layer

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基質、該導電性基質上に形成された
銅−テトラシアノキノジメタン錯体を含むスイッチング
素子層及びポリビニルカルバゾール系重合体とテトラニ
トロフルオレノンとの電荷移動錯体を含む表面層から成
ることを特徴とする電子写真感光体。
1. A conductive substrate, a switching element layer containing a copper-tetracyanoquinodimethane complex formed on the conductive substrate, and a surface layer containing a charge transfer complex of a polyvinylcarbazole polymer and tetranitrofluorenone. An electrophotographic photosensitive member comprising:
JP59064780A 1984-03-31 1984-03-31 Electrophotographic photoreceptor Expired - Lifetime JPH0668627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59064780A JPH0668627B2 (en) 1984-03-31 1984-03-31 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59064780A JPH0668627B2 (en) 1984-03-31 1984-03-31 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPS60208757A JPS60208757A (en) 1985-10-21
JPH0668627B2 true JPH0668627B2 (en) 1994-08-31

Family

ID=13268067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59064780A Expired - Lifetime JPH0668627B2 (en) 1984-03-31 1984-03-31 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH0668627B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01229259A (en) * 1988-03-09 1989-09-12 Seikosha Co Ltd Photosensitive body

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507452B2 (en) * 1972-01-08 1975-03-26
JPS539536A (en) * 1976-07-14 1978-01-28 Toyo Ink Mfg Co Electrophotographic photosensitive element
JPS549632A (en) * 1977-06-23 1979-01-24 Ricoh Co Ltd Electrophotographic photoreceptor
JPS5617358A (en) * 1979-07-20 1981-02-19 Fuji Photo Film Co Ltd Electrophotographic material with lasting electrical conductivity

Also Published As

Publication number Publication date
JPS60208757A (en) 1985-10-21

Similar Documents

Publication Publication Date Title
US3953207A (en) Composite layered photoreceptor
US3894868A (en) Electron transport binder structure
Comizzoli et al. Electrophotography—a review
US3795513A (en) Method of storing an electrostatic image in a multilayered photoreceptor
JPH0668627B2 (en) Electrophotographic photoreceptor
JPH07199487A (en) Electrophotographic photoreceptor
US3866236A (en) Imaging process using vertical particle migration
GB1578960A (en) Electrophotographic imaging member and process
US4055420A (en) Single phase organic photoconductive composition
JPH0550740B2 (en)
JP3500481B2 (en) Electrophotographic photoreceptor
JPS60207151A (en) Electrophotographic method
JP2625724B2 (en) Image forming method
JP2581060B2 (en) Latent image forming method
Weigl et al. Phthalocyanine-binder photoreceptors for xerography
JPH0616195B2 (en) Electrophotography
SU463275A3 (en) Electrophotographic element
JPH0554672B2 (en)
JPH08262762A (en) Electrophotographic photoreceptor
JP3458255B2 (en) Electrophotographic process by latent image transfer method
JPH07281460A (en) Electrophotographic photoreceptor for transfer of latent image
JP3465097B2 (en) Electrophotographic photoreceptor for latent image transfer
JP3781362B2 (en) Electrophotographic photoreceptor
JP2778121B2 (en) Electrophotographic photoreceptor
JPH01200259A (en) Memory type electrophotograhic sensitive body