JPH03174337A - Glass containing deposited superfine particles of cucl and cubr and production thereof - Google Patents

Glass containing deposited superfine particles of cucl and cubr and production thereof

Info

Publication number
JPH03174337A
JPH03174337A JP3747990A JP3747990A JPH03174337A JP H03174337 A JPH03174337 A JP H03174337A JP 3747990 A JP3747990 A JP 3747990A JP 3747990 A JP3747990 A JP 3747990A JP H03174337 A JPH03174337 A JP H03174337A
Authority
JP
Japan
Prior art keywords
glass
cubr
cucl
precipitated
ultrafine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3747990A
Other languages
Japanese (ja)
Other versions
JP2881911B2 (en
Inventor
Tsuneo Manabe
真鍋 恒男
Naoki Sugimoto
直樹 杉本
Hiroshi Usui
寛 臼井
Arao Nakamura
中村 新男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP3747990A priority Critical patent/JP2881911B2/en
Publication of JPH03174337A publication Critical patent/JPH03174337A/en
Application granted granted Critical
Publication of JP2881911B2 publication Critical patent/JP2881911B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Glass Compositions (AREA)

Abstract

PURPOSE:To enable functioning with a compact light source such as semiconductor laser by molding specified glass into a prescribed shape and depositing superfine particles of CuCl and/or CuBr in the glass by heat treatment. CONSTITUTION:A mixture of 10-70% (by mol) SiO2 with 30-90% B2O3, 0.1-50% Li2O+Na2O+K2O and 0.01-10% CuCl+CuBr is further mixed with <=5% SnO2+ SnO+Sb2O3+Sb2O5 as required. The mixture is molded by heating at 1,200-1,600 deg.C for 5min-10hr to obtain glass and this glass is molded into a prescribed shape, cooled to room temp. and held at 400-800 deg.C for 5min-100hr to deposit superfine particles of CuCl and/or CuBr in the glass.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、CuCl、CuBr超微粒子析出ガラス及び
その製造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to CuCl, CuBr ultrafine particle precipitated glass and its manufacturing method.

[従来の技術] 従来、黄色〜赤色のシャープカット色ガラスフィルター
として用いられていた、CdS、 CdSeなどの半導
体超微粒子が析出したガラスが、最近高い非線形光学特
性を有する事が示され、高調波光の発生、位相共役光の
発生、光双安定性を利用した超高速光スィッチ、メモリ
ーなどの非線形光学材料として注目されている。超微粒
子析出ガラスが高い非線形光学特性を有する理由は、半
導体超微粒子中の励起子が、ガラスの作る深いポテンシ
ャルによって3次元的に閉じ込ぬられる量子閉じ込め効
果によるものと考えられている。
[Prior art] Glass with precipitated semiconductor ultrafine particles such as CdS and CdSe, which was conventionally used as yellow to red sharp-cut color glass filters, has recently been shown to have high nonlinear optical properties, and has been used as a filter for harmonic light. It is attracting attention as a nonlinear optical material for use in the generation of phase conjugate light, generation of phase conjugate light, ultrafast optical switches that utilize optical bistability, memories, etc. The reason why ultrafine particle precipitated glass has high nonlinear optical properties is thought to be due to the quantum confinement effect in which excitons in semiconductor ultrafine particles are three-dimensionally confined by the deep potential created by the glass.

このような半導体超微粒子が析出したガラスは、前述し
たCd5−CdSe系の超微粒子析出ガラスが知られて
いる。
As a glass on which such semiconductor ultrafine particles are precipitated, the above-mentioned Cd5-CdSe-based ultrafine particle precipitated glass is known.

一方、最近CuC1を微粒子化することにより、非常に
高い非線形光学効果が生じる可能性が理論的に予言され
ている。また、CuC1を析出させたガラスは、ソ連で
過去報告されてはいるが、そのガラスの組成等の詳細に
ついては一切明らかにされていない。
On the other hand, it has recently been theoretically predicted that a very high nonlinear optical effect may be produced by making CuC1 into fine particles. Further, although glass on which CuC1 is precipitated has been reported in the Soviet Union in the past, details such as the composition of the glass have not been disclosed at all.

しかしながら、このCd5−CdSe系の超微粒子析出
ガラスでは、従来の非線形光学材料に見られないような
高い非線形光学効果を示すものの、前述した超高速光ス
ィッチ、メモリーなどの非線形光学材料として用いるに
はその特性が充分ではなく、非常に高い出力のレーザー
光源を用いなくては動作しないという課題があった。
However, although this Cd5-CdSe-based ultrafine particle precipitated glass exhibits a high nonlinear optical effect not seen in conventional nonlinear optical materials, it cannot be used as a nonlinear optical material for the aforementioned ultrahigh-speed optical switches, memories, etc. The problem was that its characteristics were not sufficient, and it required a very high output laser light source to operate.

他方、特公昭46−3464号公報には、重量%表示で
5iOz 40〜70%、Ba5s  10〜26%、
A11as4〜26%、Bio  3〜25%の基礎ガ
ラスにCuC1゜CuBr粒子を析出した紫外線吸収ガ
ラスが開示されている。
On the other hand, in Japanese Patent Publication No. 46-3464, 5iOz 40-70%, Ba5s 10-26%,
An ultraviolet absorbing glass in which CuC1°CuBr particles are precipitated on a base glass of 4 to 26% A11as and 3 to 25% Bio is disclosed.

しかしながら、かかるガラスはCuC1等の超微粒子が
析出し難いという課題があった。
However, such glass has a problem in that ultrafine particles such as CuC1 are difficult to precipitate.

[発明の解決しようとする課題] 本発明は、従来技術が有していた上記課題を解消し、半
導体レーザーのようなコンパクトの光源により作動する
ことの予想される超微粒子析出ガラスの提供を目的とす
る。
[Problems to be Solved by the Invention] The purpose of the present invention is to solve the above-mentioned problems that the prior art had and to provide an ultrafine particle precipitated glass that is expected to be operated by a compact light source such as a semiconductor laser. shall be.

[課題を解決するための手段] 本発明は、 モル%表示で本質的に SiO□      lO〜70% B、0.      30〜90% LL、O+Na*O+に、0 0.1〜50%CuC1
+CuBr   0.01〜10%からなり、CuC1
及び/又はCuBr超微粒子を析出してなるCuCl、
CuBr超微粒子析出ガラスおよび、 モル%表示で本質的に SiO□      lO〜70% II −n −’J n 〜Qn’1 Al*Os        0.01〜40%LigO
+NaaO+Kt0 0.1〜50%CuC1+CuB
r     O,01〜10%からなり、CuC1及び
又はCuBr超微粒子を析出してなるCuCl、CuB
r超微粒子析出ガラス並びにそれらのガラスの製造法を
提供するものである。
[Means for Solving the Problems] The present invention is characterized in that SiO□1O~70% B, 0. 30-90% LL, O+Na*O+, 0 0.1-50% CuC1
+CuBr 0.01-10%, CuC1
and/or CuCl formed by precipitating CuBr ultrafine particles,
CuBr ultrafine particle precipitated glass and essentially SiO□ 1O~70% II-n-'Jn~Qn'1 Al*Os 0.01~40%LigO in mol%
+NaaO+Kt0 0.1~50%CuC1+CuB
CuCl, CuB consisting of r O, 01 to 10% and precipitated with CuCl and/or CuBr ultrafine particles
The present invention provides ultrafine particle precipitated glasses and methods for producing these glasses.

本発明における第1のガラスは、5to2が10モル%
未満の場合は、CuCl、CuBr超微粒子の析出が得
られ難く、逆に70%を超えた場合は、ガラスの生成温
度が高くなり、Cu及びCI、Br成分が揮散してしま
いいずれも好ましくない。
The first glass in the present invention contains 10 mol% of 5to2.
If it is less than 70%, it is difficult to obtain precipitation of CuCl and CuBr ultrafine particles, and conversely, if it exceeds 70%, the glass formation temperature becomes high and Cu, CI, and Br components volatilize, which is not preferable. .

また、B20.は30〜90モル%の範囲以外では、C
uCl、CuBr超微粒子の析出が得られ難く、好まし
くない。
Also, B20. is outside the range of 30 to 90 mol%, C
It is difficult to obtain precipitation of uCl and CuBr ultrafine particles, which is not preferable.

また、LixO,Na1l、 KaOは、単一成分で用
いられても、2種類以上混合して用いられてもかまわな
いが、合計量が0.1〜50モル%の範囲以外はCuC
l、CuBr超微粒子の析出は得られ難く、好ましくな
い。
In addition, LixO, Na1l, and KaO may be used as a single component or in a mixture of two or more types, but CuC
l. Precipitation of CuBr ultrafine particles is difficult to obtain and is not preferred.

そして、これらの範囲のうち、SiO□ 20〜60モ
ル%、B20,35〜70モル%、(LiaO+Na1
O+に20)が0.5〜20モル%よりなるガラスは、
均一で制御された粒径のCuCl、CuBr超微粒子が
容易に析出しつるので特に好ましい。
Among these ranges, SiO□ 20 to 60 mol%, B20, 35 to 70 mol%, (LiaO+Na1
Glass consisting of 0.5 to 20 mol% of 20) in O+ is
It is particularly preferred because ultrafine CuCl and CuBr particles with a uniform and controlled particle size are easily precipitated.

さらに、銅、塩素及び臭素はCuC1+CuBr換算で
0.01−10モル%含有する場合にCuC1、CuB
r超微粒子が析出することも見出した。銅、塩素及び臭
素がCuC1+CuBr換算で0.01モル%未満の場
合は、CuC1微粒子が析出せず、逆に銅、塩素及び臭
素はCuC1+CuBr換算で10モル%を超える場合
は、CuCl、CuBrは析出するが析出した粒子の大
きさを制御することが困難であるため、いずれも好まし
くない。
Furthermore, when copper, chlorine and bromine are contained in 0.01-10 mol% in terms of CuC1+CuBr, CuC1, CuB
It was also found that ultrafine particles were precipitated. If copper, chlorine, and bromine are less than 0.01 mol% in terms of CuC1+CuBr, CuC1 fine particles will not precipitate, and conversely, if copper, chlorine, and bromine exceed 10 mol% in terms of CuC1+CuBr, CuCl and CuBr will precipitate. However, since it is difficult to control the size of the precipitated particles, neither is preferable.

本発明における第2のガラスは、5iOa、B*Oz。The second glass in the present invention is 5iOa, B*Oz.

LizO+NazO+KaO,CuC1は第1のガラス
と同一の範囲にあり、A1□0.を0.01〜40モル
%含有する。
LizO+NazO+KaO, CuC1 is in the same range as the first glass, A1□0. Contains 0.01 to 40 mol%.

AIJsが0.01モル%未満ではガラスの耐候性が低
いのでかかる用途に使用する場合に好ましくない。一方
、Al2O,が40%を越えると、ガラス化し難くなる
ので好ましくない、 Al□03の含有量は上記範囲中
0.1〜30モル%の範囲がより好ましい。
If the AIJs content is less than 0.01 mol%, the weather resistance of the glass will be low, which is not preferable for use in such applications. On the other hand, if Al2O exceeds 40%, it becomes difficult to vitrify, which is undesirable.The content of Al□03 is more preferably in the range of 0.1 to 30 mol% within the above range.

上記成分に対し、SnO,5nOz、 5bzOs、 
Sb30gを総量で5%以下添加することにより Cu
C1゜CuBr超微粒子が更に析出し易くなるので好ま
しい。
For the above components, SnO, 5nOz, 5bzOs,
By adding 30g of Sb in a total amount of 5% or less, Cu
C1°CuBr ultrafine particles are more easily precipitated, which is preferable.

本発明のCuCl、CuBr超微粒子析出ガラスの製造
に際し、用いられる原料としては、例えば次の物質があ
げられる。
Examples of raw materials used in producing the CuCl, CuBr ultrafine particle precipitated glass of the present invention include the following substances.

ケイ素原料としては、例えば二酸化ケイ素などのケイ素
の酸化物の他、窒化物、有機ケイ素化合物や、ケイ酸ア
ルカリなどのケイ酸塩も他のアルカリ化合物と混合して
用いることができる。
As the silicon raw material, for example, in addition to silicon oxides such as silicon dioxide, nitrides, organosilicon compounds, and silicates such as alkali silicates can be used in combination with other alkali compounds.

ホウ酸原料としては、ホウ酸(H,BO,) 、無水ホ
ウ酸(B*Os)などの酸化物の他、窒化物、有機ホウ
素化合物や、ホウ酸アルカリなどのホウ酸塩も他のアル
カリ化合物と混合して用いることができる。
Boric acid raw materials include oxides such as boric acid (H, BO, ) and boric anhydride (B*Os), as well as nitrides, organic boron compounds, borates such as alkali borate, and other alkalis. It can be used in combination with other compounds.

アルカリ金属の原料としては、例えば炭酸塩が代表的で
あるが、水酸化物、塩化物等の他のアルカリ化合物を適
宜用いつる。
As a raw material for the alkali metal, carbonate is typically used, but other alkali compounds such as hydroxide and chloride may be used as appropriate.

銅及び塩素並びに臭素の原料としては、例えばCuCl
、CuC1*、 CuBr、 CuBraなどの銅の塩
化物、臭化物の他、銅は銅単体あるいは銅の酸化物、水
酸化物、硫酸塩等の無機塩や有機塩を用いることができ
る。また、塩素はアルカリ塩化物、アルカリ臭化物、塩
化アンモニウム、臭化アンモニウムや他の添加成分の塩
化物、臭化物として供給することも可能である。更に、
塩素、臭素は単体あるいは塩化物、臭化物の気体として
ガラスと反応させ導入することも可能である。
Examples of raw materials for copper, chlorine, and bromine include CuCl
In addition to copper chlorides and bromides such as , CuC1*, CuBr, and CuBra, copper alone or inorganic salts and organic salts such as copper oxides, hydroxides, and sulfates can be used. Further, chlorine can also be supplied as an alkali chloride, an alkali bromide, ammonium chloride, ammonium bromide, or other additive components such as chlorides and bromides. Furthermore,
Chlorine and bromine can be introduced alone or as a chloride or bromide gas by reacting with glass.

アルミニウム原料としては、水酸化アルミニウム、アル
ミナなどの水酸化物、酸化物の他、窒化物、有機アルミ
ニウム化合物なども用いることができる。
As the aluminum raw material, in addition to hydroxides and oxides such as aluminum hydroxide and alumina, nitrides and organic aluminum compounds can also be used.

本発明のCuCl、CuBr超微粒子が析出しつるガラ
スの製造手段としては、特に制限はなく、例えば諸原料
を所定量秤量して混合し、これを1200〜1600℃
で5分〜lO時間加熱溶融し、所定形状に成形せしめる
方法が用いられる。ガラス原料に塩化物等揮発し易いも
のを用いるため、予め構成成分の一部でガラスを形成し
ておき、残りの成分の原料を加え再度ガラス化する方法
が好ましい。またCVD等気相からガラスを得る方法、
ゾルゲル法等液相からガラスを得る方法も可能である。
There are no particular restrictions on the method for producing the vine glass in which ultrafine particles of CuCl and CuBr are precipitated according to the present invention.
A method is used in which the material is melted by heating for 5 minutes to 10 hours and molded into a predetermined shape. In order to use a material that easily volatilizes, such as chloride, as the glass raw material, it is preferable to form glass with some of the constituent components in advance, and add the raw materials for the remaining components to vitrify it again. Also, a method of obtaining glass from a gas phase such as CVD,
A method of obtaining glass from a liquid phase such as a sol-gel method is also possible.

本発明のCuCl、CuBr超微粒子の析出方法として
は、成形されたガラスを一旦室温まで冷却し次いで加熱
して所定温度に保持して超微粒子析出する方法と成形さ
れたガラスを冷却課程で所定温度に保持し超微粒子を析
出する方法とがある。前者の方法は析出する超微粒子の
大きさ等を制御し易いので、本発明の方法として好まし
い。
The method for precipitating the CuCl and CuBr ultrafine particles of the present invention includes a method in which the formed glass is cooled once to room temperature and then heated and held at a predetermined temperature to precipitate the ultrafine particles. There is a method in which ultrafine particles are precipitated by holding it at a temperature. The former method is preferable as the method of the present invention because it is easy to control the size of the precipitated ultrafine particles.

超微粒子を析出する温度は400〜800℃の範囲であ
り、400℃未満では目的とする超微粒子が析出し難い
ので好ましくない。一方かかる温度が800℃を越える
とガラスが軟化したり、ガラスに失速を生ずるので好ま
しくない。
The temperature at which the ultrafine particles are precipitated is in the range of 400 to 800°C, and temperatures below 400°C are not preferred because the desired ultrafine particles are difficult to precipitate. On the other hand, if the temperature exceeds 800° C., the glass may soften or stall, which is not preferable.

成形されたガラスを400〜800℃で5分〜100時
間保持することにより、5〜1000人のCuC1及び
/又はCuBr超微粒子が析出する。加熱方法としては
特に制限はなく、抵抗加熱型電気炉で加熱したり、バー
ナー等で加熱したり、あるいはマイクロ波、光等の電磁
波で加熱することも可能である。
By holding the shaped glass at 400 to 800°C for 5 minutes to 100 hours, 5 to 1000 CuCl and/or CuBr ultrafine particles are precipitated. There are no particular limitations on the heating method, and heating with a resistance heating type electric furnace, heating with a burner, etc., or heating with electromagnetic waves such as microwaves and light is also possible.

さらに、かかる処理によって析出したCuC1゜CuB
r超微粒子の粒径は、5〜1000入であることが好ま
しい。粒径が5λ未満の場合、Cu Cl +CuBr
超微粒子内にに励起子が形成されにくく、1000人を
超える場合は、期待している励起子の微粒子内への閉じ
込め効果が弱くなってしまうので好ましくない、この範
囲のうち10〜500人の粒径の場合、CuC1超微粒
子等の励起子の光吸収が、高エネルギー側にシフトし励
起子の顕著な閉じ込め効果が推測され特に好ましい。
Furthermore, CuC1°CuB precipitated by such treatment
The particle size of the r ultrafine particles is preferably 5 to 1000 particles. If the particle size is less than 5λ, Cu Cl + CuBr
It is difficult for excitons to be formed within the ultrafine particles, and if the number exceeds 1000, the expected effect of confining excitons within the microparticles will be weakened, which is undesirable. In the case of particle size, the light absorption of excitons such as CuC1 ultrafine particles is expected to shift to the high energy side and a remarkable confinement effect of excitons is expected, which is particularly preferable.

また、析出したCuC1超微粒子等の析出量は、0.0
1〜10体積%が好ましい、 0.01体積%未溝の場
合、CuC1超微粒子等に由来する非線形光学効果が充
分発現されず、1(1体積%を超える場合、前記範囲の
粒径の範囲に制御して析出させることが困難となるため
望ましくない。
In addition, the amount of precipitated CuC1 ultrafine particles was 0.0
1 to 10% by volume is preferable. If 0.01% by volume is ungrooved, the nonlinear optical effect derived from CuC1 ultrafine particles etc. will not be sufficiently expressed. This is not desirable because it becomes difficult to control the precipitation.

[実施例] 実施例1 ガラス作製時に表の組成になるように原料を計400g
秤量し、よく混合した。これを白金坩堝に入れ1400
℃で2時間溶融した後、ステンレス板上に流し出して組
成の異なる16種類のガラスを得た。
[Example] Example 1 When producing glass, a total of 400 g of raw materials were used to make the composition as shown in the table.
Weighed and mixed well. Put this in a platinum crucible for 1400
After melting at ℃ for 2 hours, the mixture was poured onto a stainless steel plate to obtain 16 types of glasses with different compositions.

このガラスを460℃に4時間保持し、超微粒子の析出
を行った。この超微粒子析出ガラスを1IIIl以下の
厚さに研磨してサンプルを作成し、そのサンプルの77
にでの吸光スペクトルを測定した。350〜400nI
lのCuCl、CuBr、Cu(CI、Br)励起子吸
収構造を測定し、その吸光度を求めるとともにそのピー
ク位置を測定した。
This glass was held at 460° C. for 4 hours to precipitate ultrafine particles. A sample was prepared by polishing this ultrafine particle precipitated glass to a thickness of 1IIIl or less.
The absorption spectrum was measured. 350-400 nI
The exciton absorption structure of CuCl, CuBr, Cu (CI, Br) was measured, and its absorbance was determined and its peak position was measured.

析出した微粒子の粒径(a (人))は、透過型電子顕
微鏡で観察することにより求めた。
The particle size (a (person)) of the precipitated fine particles was determined by observation with a transmission electron microscope.

また、析出した超微粒子の濃度はCuC;1及び/又は
CuBr単結晶の励起子の吸収係数、4.5×IQ8c
m−’ (半値幅5 meV)から換算し求めた。
In addition, the concentration of the precipitated ultrafine particles is the exciton absorption coefficient of CuC; 1 and/or CuBr single crystal, 4.5 × IQ8c
m-' (half width 5 meV).

これらの測定値を表1に示した。These measured values are shown in Table 1.

同表から明らかなように10〜500人の粒径のCu(
1等の超微粒子が0.01〜lO%効率よく析出してお
り、非常に高い非線形光学効果が予想される。
As is clear from the same table, Cu (
Ultrafine particles of 1st grade are precipitated with an efficiency of 0.01 to 10%, and a very high nonlinear optical effect is expected.

[比較例] 本発明以外の組成を有する6種類のガラスについて、実
施例1と同様にしてサンプルを作成しCuC1等の超微
粒子析出し同様の測定を行なった。それらの組成、測定
結果を同様のサンプルNo、17〜22に示した。
[Comparative Example] Samples were prepared in the same manner as in Example 1 for six types of glasses having compositions other than those of the present invention, and the same measurements were performed on precipitation of ultrafine particles such as CuC1. Their compositions and measurement results are shown in similar samples Nos. 17-22.

なお同表に記載の添加物はそれぞれガラス原料に添加さ
れ、その添加量はガラス100モル%に対し添加された
量を示す。
The additives listed in the same table are each added to the glass raw material, and the amount added indicates the amount added to 100 mol% of the glass.

[発明の効果] 本発明によるCuCl、CuBr超微粒子が析出したガ
ラスは、非常に高い非線形光学効果を有することが期待
される。また、AItosを所定量含有させることによ
り、非線形光学効果を低下することなく耐候性に優れた
ガラスが得られる。
[Effects of the Invention] Glass on which CuCl and CuBr ultrafine particles according to the present invention are precipitated is expected to have extremely high nonlinear optical effects. Furthermore, by containing a predetermined amount of AItos, a glass with excellent weather resistance can be obtained without reducing the nonlinear optical effect.

更に、本発明によればCuC1等の超微粒子が低温で多
量に析出され、上記非線形光学効果を有するガラスを容
易に製造することができる。
Furthermore, according to the present invention, ultrafine particles such as CuC1 are precipitated in large quantities at low temperatures, making it possible to easily produce glass having the above-mentioned nonlinear optical effect.

Claims (4)

【特許請求の範囲】[Claims] (1)モル%表示で本質的に SiO_210〜70% B_2O_330〜98% Li_2O+Na_2O+K_2O0.1〜50%Cu
Cl+CuBr0.01〜10% からなり、CuCl及び/又はCuBr超微粒子を析出
してなるCuCl、CuBr超微粒子析出ガラス。
(1) Essentially SiO_210-70% B_2O_330-98% Li_2O+Na_2O+K_2O0.1-50%Cu in mol%
A CuCl and CuBr ultrafine particle precipitated glass consisting of Cl+CuBr0.01 to 10% and precipitated with CuCl and/or CuBr ultrafine particles.
(2)モル%表示で本質的に SiO_210〜70% B_2O_330〜90% Al_2O_30.01〜40% Li_2O+Na_2O+K_2O0.1〜50%Cu
Cl+CuBr0.01〜10% からなり、CuCl超微粒子を析出してなるCuCl、
CuBr超微粒子析出ガラス。
(2) Essentially SiO_210-70% in mol% B_2O_330-90% Al_2O_30.01-40% Li_2O+Na_2O+K_2O0.1-50%Cu
CuCl consisting of Cl + CuBr0.01-10% and formed by precipitating CuCl ultrafine particles,
CuBr ultrafine particle precipitation glass.
(3)モル%表示で本質的に SiO_210〜70% B_2O_330〜90% Li_2O+Na_2O+K_2O0.1〜50%Cu
Cl+CuBr0.01〜10% からなるガラスを所定形状に成形し、次いで成形したガ
ラスを400〜800℃に5分間〜100時間保持し、
ガラス中にCuBr超微粒子を析出するCuCl、Cu
Br超微粒子析出ガラスの製造法。
(3) Essentially SiO_210-70% B_2O_330-90% Li_2O+Na_2O+K_2O0.1-50%Cu in mol%
Glass consisting of Cl + CuBr0.01-10% is formed into a predetermined shape, and then the formed glass is held at 400-800°C for 5 minutes to 100 hours,
CuCl, Cu precipitates CuBr ultrafine particles in glass
A method for producing Br ultrafine particle precipitated glass.
(4)モル%表示で本質的に SiO_210〜70% B_2O_330〜90% Li_2+Na_2O+K_2O0.1〜50%CuC
l+CuBr0.01〜10% からなるガラスを所定形状に成形し、次いで成形したガ
ラスを400〜800℃に5分間〜100時間保持し、
ガラス中にCuBr及び/又はCuBr超微粒子を析出
するCuCl、CuBr超微粒子析出ガラスの製造法。
(4) Essentially SiO_210-70% B_2O_330-90% Li_2+Na_2O+K_2O0.1-50% CuC in mol%
A glass consisting of l+CuBr0.01 to 10% is formed into a predetermined shape, and then the formed glass is held at 400 to 800°C for 5 minutes to 100 hours,
A method for producing CuCl and CuBr ultrafine particle precipitated glass, in which CuBr and/or CuBr ultrafine particles are precipitated in glass.
JP3747990A 1989-03-30 1990-02-20 CuCl, CuBr ultrafine particle precipitated glass and method for producing the same Expired - Fee Related JP2881911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3747990A JP2881911B2 (en) 1989-03-30 1990-02-20 CuCl, CuBr ultrafine particle precipitated glass and method for producing the same

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP7676589 1989-03-30
JP1-76765 1989-03-30
JP1-240581 1989-09-19
JP24058189 1989-09-19
JP3747990A JP2881911B2 (en) 1989-03-30 1990-02-20 CuCl, CuBr ultrafine particle precipitated glass and method for producing the same

Publications (2)

Publication Number Publication Date
JPH03174337A true JPH03174337A (en) 1991-07-29
JP2881911B2 JP2881911B2 (en) 1999-04-12

Family

ID=27289486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3747990A Expired - Fee Related JP2881911B2 (en) 1989-03-30 1990-02-20 CuCl, CuBr ultrafine particle precipitated glass and method for producing the same

Country Status (1)

Country Link
JP (1) JP2881911B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187951A (en) * 1989-12-15 1991-08-15 Hoya Corp Semiconductor-containing glass
JPH0418501A (en) * 1990-04-10 1992-01-22 Isuzu Seiko Glass Kk Colored glass
JP2011116633A (en) * 2009-10-27 2011-06-16 Tokyo Univ Of Science Light-emitting glass, light-emitting device equipped with the light-emitting glass, and method for producing light-emitting glass

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03187951A (en) * 1989-12-15 1991-08-15 Hoya Corp Semiconductor-containing glass
JPH0418501A (en) * 1990-04-10 1992-01-22 Isuzu Seiko Glass Kk Colored glass
JP2011116633A (en) * 2009-10-27 2011-06-16 Tokyo Univ Of Science Light-emitting glass, light-emitting device equipped with the light-emitting glass, and method for producing light-emitting glass

Also Published As

Publication number Publication date
JP2881911B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
Beall et al. Transparent glass-ceramics
Layton et al. Nucleation and Crystallization of NaNbO3 from Glasses in the Na2O‐Nb2O5‐SiO2 System
Todorović et al. Lithium-niobate ferroelectric material obtained by glass crystallization
JPH11228180A (en) Li2o-al2o3-sio2 based glass ceramics
US5024974A (en) Glass having ultrafine particles of CuCl and/or CuBr precipitated therein and process for its production
Li et al. Crystallization behavior of transparent Na2O-Al2O3-SiO2 glass-ceramic containing rare-earth oxides
Ram et al. IR and Raman studies and effect of γ radiation on crystallization of some lead borate glasses containing Al 2 O 3
Ito et al. Transparency of LiTaO 3-SiO 2-Al 2 O 3 glass-ceramics in relation to their microstructure
US3762936A (en) Manufacture of borosilicate glass powder essentially free of alkali and alkaline earth metals
Poirier et al. Crystallization of monoclinic WO3 in tungstate fluorophosphate glasses
Nordmann et al. Crystallization behaviour and microstructural evolution of a Li2O–Al2O3–SiO2 glass derived from spodumene mineral
JPH04275946A (en) Blue/gray transparent glass ceramic article and method for manufacture thereof
JPH03174337A (en) Glass containing deposited superfine particles of cucl and cubr and production thereof
JPH04275947A (en) Transparent blue/black glass ceramic article and method for manufacture thereof
Machida et al. Effect of starting materials of nucleation agents on crystallization of CaO–Al2O3–SiO2 glass
Zan et al. New chalcohalide glasses from the Sb2S3-MXn system
DE3925486A1 (en) EARTH ALKALIALUMINOBORATE GLASS CERAMICS
JPH05238774A (en) Glass composition for low temperature sintered base plate and base plate obtained therefrom
de Oliveira et al. The effect of the addition of ZrSiO4 on the crystallization of 30Li2O70SiO2 powdered glass
US20120135236A1 (en) Coloured Glass Flakes
Masai et al. Glass-Ceramics Containing Nano-Crystallites of Oxide Semiconductor
JPH0664936A (en) Production of glass capable of sharply cutting ultraviolet ray
Dakui et al. Kinetic study of the crystallization of ZrF4 BaF2 LaF3 AlF3 glasses
JPH0748140A (en) Production of glass sharply cutting ultraviolet rays
Tkalčce et al. Influence of Dopants on Nucleation and Growth of High‐Quartz Solid Solution in Lithium Aluminosilicate Glass

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees