JPH03174009A - Electrically conductive yarn - Google Patents

Electrically conductive yarn

Info

Publication number
JPH03174009A
JPH03174009A JP1309066A JP30906689A JPH03174009A JP H03174009 A JPH03174009 A JP H03174009A JP 1309066 A JP1309066 A JP 1309066A JP 30906689 A JP30906689 A JP 30906689A JP H03174009 A JPH03174009 A JP H03174009A
Authority
JP
Japan
Prior art keywords
fiber
vapor
grown carbon
carbon fiber
organic polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309066A
Other languages
Japanese (ja)
Inventor
Munehiro Ishioka
宗浩 石岡
Toshihiko Okada
敏彦 岡田
Kenji Matsubara
健次 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP1309066A priority Critical patent/JPH03174009A/en
Publication of JPH03174009A publication Critical patent/JPH03174009A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Inorganic Fibers (AREA)
  • Chemical Treatment Of Fibers During Manufacturing Processes (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the title yarn having high conductivity, high strength, producible by a simple means, comprising a mixture of a graphite interlaminar compound composed of vapor-phase grown carbon fiber as a host and an organic polymer having fiber-forming properties. CONSTITUTION:The objective yarn comprising a mixture of a graphite interlaminar compound composed of vapor-phase grown carbon fiber as a host and an organic polymer (e.g. PVA, polyacrylonitrile, nylon, PP, PE, PVC or polyester) having fiber-forming properties. The vapor-phase grown carbon fiber is produced by using methane, acetylene, benzene, crude gas oils, etc., as a carbon source, a ferrocene, iron acetylacetate, etc., and a converter gas exhausted from steel manufacturing plant as a carrier gas by a vapor phase method.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は導電性繊維に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to conductive fibers.

[従来の技術〕 従来、導電性繊維は酸化錫、酸化亜鉛、酸化インジウム
等の導電性金属化合物をガラス繊維やチタン酸カリウム
ウィスカーの表面に被覆したものを有機重合体と混合し
繊維に成型していた。例えば、上記導電性金属化合物の
層によって表面を被覆されたガラス繊維を含有する重合
体(A)と繊維形成性良好な重合体(B)とが接合され
てなる導電性複合繊維が特開昭59−94618号公報
に開示されている。また、チタン酸カリウム等の繊維質
成分の表面が炭素質を主成分とする被覆で被覆され、体
積固有抵抗率が10− ”Ω・0未満である高導電性繊
維が特開昭63−12759号公報に開示されている。
[Conventional technology] Conventionally, conductive fibers are made by coating the surface of glass fibers or potassium titanate whiskers with conductive metal compounds such as tin oxide, zinc oxide, or indium oxide, which are then mixed with organic polymers and molded into fibers. was. For example, a conductive composite fiber made by bonding a polymer (A) containing glass fiber whose surface is coated with a layer of the conductive metal compound and a polymer (B) with good fiber forming properties is disclosed in Japanese Patent Application Laid-Open No. It is disclosed in Japanese Patent No. 59-94618. In addition, a highly conductive fiber whose surface of a fibrous component such as potassium titanate is coated with a coating mainly composed of carbonaceous material and whose volume resistivity is less than 10-''Ω・0 is disclosed in JP-A-63-12759. It is disclosed in the publication No.

上記導電性金属化合物で表面を被覆されたチタン酸カリ
ウム短繊維と無機粒子とを含有する一種以上の重合体(
A)と、繊維形成性重合体CB)とが接合されている導
電性複合繊維であって、重合体(A)に含有される無機
粒子の量が重合体(A)100重量部に対して5重量部
以上であることを特徴とする導電性複合繊維が特開昭6
3−270811号公報に開示されている。
One or more polymers (
An electrically conductive composite fiber in which A) and a fiber-forming polymer CB) are bonded together, wherein the amount of inorganic particles contained in the polymer (A) is based on 100 parts by weight of the polymer (A). A conductive composite fiber characterized by having a content of 5 parts by weight or more is disclosed in Japanese Patent Application Laid-open No. 6
It is disclosed in Japanese Patent No. 3-270811.

一方、気相法で得られる炭素繊維も知られており、特に
、インターカレートされた気相成長炭素繊維が高い導電
性を有していることも知られている(PROCEEDI
NGS OF THE TWENTYFIRST SY
MPO3IUMON  ELECTRICAL  lN
5ULATING  MATER■ALS、P251,
1988)。
On the other hand, carbon fibers obtained by the vapor phase method are also known, and in particular, it is known that intercalated vapor grown carbon fibers have high electrical conductivity (PROCEEDI
NGS OF THE TWENTY FIRST SY
MPO3IUMON ELECTRICAL IN
5ULATING MATER■ALS, P251,
1988).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、導電性金属化合物被覆短繊維は、蒸着法、ス
パッタリング法、スプレー法、無電解メツキ法などを利
用して製造されているが、これらは工程が煩雑であった
。また、繊維表面に炭素質の被覆を形成させることによ
り導電性繊維を得る方法は800〜1200℃で焼成炭
化の工程があり、コストがかかる。
Incidentally, conductive metal compound-coated short fibers are manufactured using vapor deposition methods, sputtering methods, spray methods, electroless plating methods, etc., but these processes are complicated. Furthermore, the method of obtaining conductive fibers by forming a carbonaceous coating on the fiber surface involves a process of firing and carbonizing at 800 to 1200° C., which is costly.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決して簡単な工程で製造し
うる高導電性の繊維を提供するものであり、気相成長炭
素繊維をホストとした黒鉛層間化合物が容易に得られ、
かつ高い導電性を有していてこれを有機重合体と混合し
て紡糸することにより容易に高導電性繊維が得られるこ
とを見出してなされたものである。
The present invention solves these problems and provides highly conductive fibers that can be manufactured in a simple process, and a graphite intercalation compound using vapor-grown carbon fiber as a host can be easily obtained.
This invention was made based on the discovery that highly conductive fibers can be easily obtained by mixing this fiber with an organic polymer and spinning it.

気相成長炭素繊維は気相法で得られたものであり、炭素
源はメタン、アセチレン、ベンゼン、トルエン等のほか
コークス炉からの副産物である粗軽油類、カルボン油、
ナフタリン、中油、アントラセン油、重油、ピッチ、コ
ールタール、これらの水素化物、これらの混合物等であ
ってもよい。
Vapor-grown carbon fibers are obtained by a vapor-phase method, and carbon sources include methane, acetylene, benzene, toluene, etc., as well as crude light oils, which are by-products from coke ovens, carbon oil,
Naphthalene, medium oil, anthracene oil, heavy oil, pitch, coal tar, hydrides thereof, mixtures thereof, etc. may be used.

さらに、ヘテロ原子を有するものも使用可能であり、例
えばチオフェン類、チオール類及びチオフェノール類を
用いることができる。触媒源としてはフェロセジ、鉄ア
セチルアセテート塩、ジ(インデニル)鉄(n)等の有
機鉄化合物のほか、その他の遷移金属、例えばチタン、
バナジウム、クロム、マンガン、コバルト、ニッケル、
ルビジウム、ロジウム、タングステン、パラジウム等の
有機化合物が用いられる。上記の炭素源ガスと触媒源ガ
スをキャリヤーガスで搬送して600〜1300″Cで
加熱することによって気相成長炭素繊維が形成される。
Furthermore, those having heteroatoms can also be used, such as thiophenes, thiols and thiophenols. Catalyst sources include organic iron compounds such as ferro-sedi, iron acetylacetate salt, di(indenyl) iron(n), and other transition metals such as titanium,
vanadium, chromium, manganese, cobalt, nickel,
Organic compounds such as rubidium, rhodium, tungsten, and palladium are used. Vapor-grown carbon fibers are formed by conveying the above carbon source gas and catalyst source gas with a carrier gas and heating them at 600 to 1300''C.

キャリヤーガスは上記の原料ガスを搬送するほか系内を
還元性雰囲気に保つ機能も要求され、そのために水素ガ
ス等が使用されるが、製鋼工場から排出される転炉ガス
は還元性ガスであり、これを用いることによって良質の
気相成長炭素繊維を安価に製造することができる(特開
平1−92422号公報)。本発明で使用される気相成
長炭素繊維の糸系は0.1〜10n程度、好ましくは1
〜3μm程度、そして長さは10n〜511u11程度
、好ましくは100n〜3帥程度である。
In addition to transporting the raw material gases mentioned above, the carrier gas is also required to maintain a reducing atmosphere within the system, and hydrogen gas is used for this purpose, but the converter gas discharged from steel plants is a reducing gas. By using this, high-quality vapor-grown carbon fibers can be produced at low cost (Japanese Patent Application Laid-Open No. 1992-92422). The yarn system of the vapor grown carbon fiber used in the present invention is about 0.1 to 10n, preferably 1
~3 μm, and the length is approximately 10 nm to 511 μm, preferably approximately 100 nm to 3 μm.

この気相成長炭素繊維をホストとして黒鉛層間化合物を
形成する。気相成長炭素繊維にインターカラントとして
塩化第2鉄、塩化第2銅等の塩素化合物、CuFz、M
gFtSAsFs、5bFs等のフッ素化合物、臭素等
を使用し、公知の方法により黒鉛層間化合物を生成させ
る。この製造法には溶融塩法、溶液法、気相法(two
−bulb法)等が知られており、そのいずれも利用す
ることができる。
A graphite intercalation compound is formed using this vapor-grown carbon fiber as a host. Chlorine compounds such as ferric chloride and cupric chloride, CuFz, M as intercalants in vapor grown carbon fibers
A graphite intercalation compound is produced by a known method using a fluorine compound such as gFtSAsFs or 5bFs, bromine, or the like. This manufacturing method includes the molten salt method, solution method, and gas phase method (two
-bulb method), and any of them can be used.

有機重合体は繊維形成能を有するものであればよく、例
えばポリビニルアルコール、ポリアクリロニトリル、ナ
イロン、ポリプロピレン、ポリエチレン、ポリ塩化ビニ
ル、ポリエステル等から適宜選択される。
The organic polymer may be any one having fiber-forming ability, and is appropriately selected from, for example, polyvinyl alcohol, polyacrylonitrile, nylon, polypropylene, polyethylene, polyvinyl chloride, polyester, and the like.

黒鉛層間化合物と有機重合体の混合比は有機重合体10
0重量部に対して黒鉛層間化合物5〜50重量部程度、
好ましくは10〜40重量部程度が適当である。5重量
部以下では導電性が不充分になり、一方、50重量部を
越えると強度が不足する。
The mixing ratio of the graphite intercalation compound and the organic polymer is 10% of the organic polymer.
About 5 to 50 parts by weight of graphite intercalation compound to 0 parts by weight,
A suitable amount is preferably about 10 to 40 parts by weight. If it is less than 5 parts by weight, the conductivity will be insufficient, while if it exceeds 50 parts by weight, the strength will be insufficient.

紡糸方法は公知の方法によればよく、例えば溶融押出法
、湿式紡糸法等を利用できる。紡糸後延伸することがで
き、さらに公知の表面処理等を施こすことができる。
The spinning method may be any known method, such as a melt extrusion method or a wet spinning method. After spinning, it can be stretched, and further known surface treatments etc. can be applied.

本発明の導電性繊維は体積固有抵抗が1O−4〜10”
Ω・cm程度であり、導電性が大きい。しかもこの抵抗
は安定であり、経時劣化が少ない。
The conductive fiber of the present invention has a volume resistivity of 1O-4 to 10"
It has a high conductivity of about Ω·cm. Moreover, this resistance is stable and does not deteriorate over time.

〔作用〕[Effect]

黒鉛層間化合物を高導電材料として利用する場合、空気
中での安定性と黒鉛構造のよく発達した原料が必要であ
る。気相成長炭素繊維(VGCF)は断面形状が年輪状
の易黒鉛化構造と持っており、黒鉛化が容易である。本
発明においてはこの気相成長炭素繊維をホストとして高
導電性の黒鉛層間化合物を得、これを繊維形成能を有す
る有機重合体と混合して紡糸することにより高強度繊維
を得、かつ気相成長炭素繊維を有機重合体に取込ませる
ことによって眉間化合物の経時劣化を防止している。
When using a graphite intercalation compound as a highly conductive material, a raw material that is stable in air and has a well-developed graphite structure is required. Vapor-grown carbon fiber (VGCF) has an easy-graphitizable structure with a tree-ring-like cross-sectional shape, and is easily graphitized. In the present invention, a highly conductive graphite intercalation compound is obtained using this vapor-grown carbon fiber as a host, and this is mixed with an organic polymer having fiber-forming ability and spun to obtain a high-strength fiber. By incorporating grown carbon fibers into an organic polymer, deterioration of the glabellar compound over time is prevented.

〔実施例〕〔Example〕

実施例1 特開平1−92424に記載された方法により製造され
た直径2−1長さ3IIII11ノ流動気相法VGCF
を2500°Cにて黒鉛化したグラファイトファイバー
(GF)を得た。これをホストとして気相反応法(tw
o−bulb法)にて臭素のGICを作った。すなわら
、ガラス容器臭素を注入し、密栓後20°C148時間
保持してGICを作った。
Example 1 Fluidized gas phase VGCF with diameter 2-1 length 3III11 manufactured by the method described in JP-A-1-92424
Graphite fiber (GF) was obtained by graphitizing at 2500°C. Using this as a host, the gas phase reaction method (tw
Bromine GIC was made using the o-bulb method). That is, a GIC was prepared by injecting bromine into a glass container, sealing the container, and holding the container at 20° C. for 148 hours.

このGIC30gをPVA(ポリビニールアルコール)
 20wt%のDMSO(ジメチルスルホキシド演に1
00gに入れて良く撹拌し均一分散液を得た。
Add 30g of this GIC to PVA (polyvinyl alcohol)
20 wt% DMSO (1% dimethyl sulfoxide)
00g and stirred well to obtain a uniform dispersion.

この分散液をφ0.5附のノズルからアセトン中に押し
出す湿式紡糸によりGIC混入PVA繊維を作った。こ
の繊維をφ0.15mmに延伸し、熱処理(200°C
 lhr)及びアセタール化処理(ホルムアルデヒド4
%、ボウ硝20%、硫酸25%浴中70”C)を施した
GIC-containing PVA fibers were produced by wet spinning, extruding this dispersion into acetone through a nozzle with a diameter of 0.5 mm. This fiber was drawn to φ0.15 mm and heat treated (200°C
lhr) and acetalization treatment (formaldehyde 4
%, 70"C) in a bath of 20% sulfur and 25% sulfuric acid.

この繊維の体積固有抵抗を測ったところ0.05Ω・c
mであった。
The volume resistivity of this fiber was measured and was 0.05Ω・c
It was m.

実施例2 実施例1と同じVGCFを同様に黒鉛化して得たGFを
用い、溶液法によりFeC13(塩素ガスバブリング下
室温48hr )でGICを製造した。これをPVA中
に20wt%混入した繊維を実施例1と同じように製造
した。
Example 2 Using GF obtained by graphitizing the same VGCF as in Example 1, GIC was manufactured using FeC13 (48 hours at room temperature under chlorine gas bubbling) by a solution method. A fiber in which 20 wt % of this was mixed into PVA was produced in the same manner as in Example 1.

このものの体積固有抵抗は、0.07Ω・cmであった
The volume resistivity of this material was 0.07 Ω·cm.

(発明の効果〕 本発明の導電繊維は導電度が高く、強度も大きい。しか
も簡便な手段で安価に製造することができる。
(Effects of the Invention) The conductive fiber of the present invention has high conductivity and high strength.Moreover, it can be manufactured by simple means at low cost.

Claims (1)

【特許請求の範囲】[Claims] 気相成長炭素繊維をホストとした黒鉛層間化合物と繊維
形成能を有する有機重合体との混合物よりなる導電性繊
A conductive fiber made of a mixture of a graphite intercalation compound and an organic polymer with fiber-forming ability using vapor-grown carbon fiber as a host.
JP1309066A 1989-11-30 1989-11-30 Electrically conductive yarn Pending JPH03174009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309066A JPH03174009A (en) 1989-11-30 1989-11-30 Electrically conductive yarn

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309066A JPH03174009A (en) 1989-11-30 1989-11-30 Electrically conductive yarn

Publications (1)

Publication Number Publication Date
JPH03174009A true JPH03174009A (en) 1991-07-29

Family

ID=17988473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309066A Pending JPH03174009A (en) 1989-11-30 1989-11-30 Electrically conductive yarn

Country Status (1)

Country Link
JP (1) JPH03174009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049592A1 (en) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. Synthetic fiber
CN104278360A (en) * 2014-09-28 2015-01-14 苏州长盛机电有限公司 Preparation method of graphene-doped conductive composite fiber
CN109056104A (en) * 2018-09-21 2018-12-21 佛山皖和新能源科技有限公司 A kind of preparation method of conducting polypropylene fiber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007049592A1 (en) * 2005-10-25 2007-05-03 Bussan Nanotech Research Institute Inc. Synthetic fiber
JP2007119931A (en) * 2005-10-25 2007-05-17 Bussan Nanotech Research Institute Inc Synthetic fiber
CN104278360A (en) * 2014-09-28 2015-01-14 苏州长盛机电有限公司 Preparation method of graphene-doped conductive composite fiber
CN109056104A (en) * 2018-09-21 2018-12-21 佛山皖和新能源科技有限公司 A kind of preparation method of conducting polypropylene fiber

Similar Documents

Publication Publication Date Title
CA2431727C (en) Branched vapor grown carbon fiber, electrically conductive transparent composition and use thereof
KR960015658B1 (en) Carbon fibrils
JP3983292B2 (en) High surface area nanofiber
JP5030907B2 (en) Fine carbon fiber and composition containing the same
AU637429B2 (en) Carbon fibrils, method for producing same and compositions containing same
KR20030028464A (en) Fine carbon fiber and process for producing the same, and conductive material comprising the same
JP4405650B2 (en) Carbonaceous nanotube, fiber assembly, and method for producing carbonaceous nanotube
JP2615268B2 (en) Carbon yarn and method for producing the same
JPH03174009A (en) Electrically conductive yarn
JPH0536521B2 (en)
JP4663187B2 (en) Fine carbon fiber mixture and composition containing the same
JP4357163B2 (en) Fine carbon fiber and composition containing the same
JP2015507593A (en) An improved method for synthesizing carbon nanotubes on multiple supports
JP4196017B2 (en) Carbonaceous nanofiber and method for producing the same
KR100522108B1 (en) High surface area nano fiber
JP2586054B2 (en) Method for producing vapor grown carbon fiber
JP2586055B2 (en) Method for producing vapor grown carbon fiber
JPS58156512A (en) Fibrous carbon material having thickly grown fine carbon cilium
CN113388959B (en) Low-softening-point asphalt-based flexible carbon nanofiber film and preparation method thereof
JPH03260109A (en) Gas phase grown carbon fiber-mixed organic fiber
JPH0665859A (en) Production of silicon carbide-coated carbon fiber
JPH06146118A (en) Carbon fiber and its production
JPH0769762A (en) Metal-plated carbon material and its production
JP2531739B2 (en) Method for producing vapor grown carbon fiber
JPH0192425A (en) Production of carbon fiber with vapor growth