JPH03173368A - Oscillatory wave motor - Google Patents

Oscillatory wave motor

Info

Publication number
JPH03173368A
JPH03173368A JP1312048A JP31204889A JPH03173368A JP H03173368 A JPH03173368 A JP H03173368A JP 1312048 A JP1312048 A JP 1312048A JP 31204889 A JP31204889 A JP 31204889A JP H03173368 A JPH03173368 A JP H03173368A
Authority
JP
Japan
Prior art keywords
wave motor
vibration wave
vibrating body
composite resin
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1312048A
Other languages
Japanese (ja)
Inventor
Takayuki Shirasaki
白崎 隆之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP1312048A priority Critical patent/JPH03173368A/en
Publication of JPH03173368A publication Critical patent/JPH03173368A/en
Priority to US08/380,333 priority patent/US5557157A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To obtain an excellent sliding characteristic in the range of high temperature by using as a composite resin layer a material in which an aromatic polyimide resin is filled and blended with a friction conditioning material and an abrasion resistance improvement agent of non-fiber type. CONSTITUTION:A movable body 7 is provided with a ring-like supporting body 5 comprising a metal of high thermal conductivity such as an aluminum alloy and a sliding body 6 which is bonded to the body 5 concentrically on the surface thereof by a heatproof bonding agent of epoxy group. The sliding body 6 is contacted with an oscillatory body 2 on the sliding surface thereof. A material in which a base material of an aromatic polyimide resin is filled and blended with a friction conditioning agent and if necessary an abrasion resistance improvement agent, is used as the composite resin layer of the sliding body 6. Thereby, even if being in the range of high temperature, the sliding body 6 and the oscillatory body 2 exhibit an excellent sliding characteristic and an oscillatory wave motor 19 of high torque and high efficiency in which the waviness and unevenness of the torque thereof are reduced can be obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気−機械エネルギー変換素子に電圧を印加す
ることにより振動体に進行性振動波を生じさせ、この振
動体に接触する部材との間で摩擦駆動により相対移動を
起こさせる振動波モータ、特に大出力型の振動波モータ
に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention generates a progressive vibration wave in a vibrating body by applying a voltage to an electro-mechanical energy conversion element, and generates a progressive vibration wave in a vibrating body by applying a voltage to an electric-mechanical energy conversion element. The present invention relates to a vibration wave motor that causes relative movement between the motors by friction drive, and particularly to a high-output vibration wave motor.

(従来の技術) 従来の振動波モータ特に大出力型の振動波モータは、例
えばステンレスからなる円環状振動体基板の裏面に薄い
円環形状の圧電素子群を固着すると共に、表面にタング
ステンカーバイド及びコバルトからなる超硬材料を溶射
し更に研磨することで硬質の摺動面を形成させて振動体
を構成させ、他方これに接触する部材として、アルミ合
金等の支持体に、ガラス転容点が100℃以上の熱可塑
性樹脂、具体的にはポリイミド(PI)、ポリアミドイ
ミド(P^工)、ポリエーテルイミド(PEI)、ポリ
エーテルエーテルケトン(PEEに)、ポリエーテルス
ルホン(PES)、ボリアリレート(PAR) 、ポリ
スルホン(PSF)、芳香族ポリアミド(P^)等の耐
熱樹脂に、炭素繊維等の強化材を充填含有させて強化型
複合樹脂層とした摺動体を固着させて構成させ、これら
振動体と接触する部材とが、該振動体に発生させた進行
性振動波により摩擦駆動で相対的に移動するものとして
形成されている。
(Prior Art) Conventional vibration wave motors, particularly high-output vibration wave motors, have a group of thin annular piezoelectric elements fixed to the back surface of a circular vibrating body substrate made of stainless steel, and tungsten carbide and tungsten carbide on the surface. A hard sliding surface is formed by thermally spraying a superhard material made of cobalt and further polished to form a vibrating body.On the other hand, as a member that comes into contact with this, a support such as an aluminum alloy has a glass inversion point. Thermoplastic resins with a temperature of 100°C or higher, specifically polyimide (PI), polyamideimide (P^), polyetherimide (PEI), polyetheretherketone (PEE), polyethersulfone (PES), polyarylate (PAR), polysulfone (PSF), aromatic polyamide (P^), and other heat-resistant resins are filled with reinforcing materials such as carbon fiber, and a reinforced composite resin layer is fixed to the sliding body. A member in contact with the vibrating body is configured to move relative to each other by frictional drive due to progressive vibration waves generated in the vibrating body.

なお上記接触する部材と振動体の相対的な移動は、いず
れが固定でまたいずれが移動するものであってもよいが
、本明細書における以下の説明では説明の簡明化のため
に振動体を固定とし、接触する部材を移動する場合の例
として示し、従って該接触する部材は「移動体」と称す
る。
Note that the relative movement between the contacting member and the vibrating body may be either fixed or movable, but in the following description of this specification, the vibrating body will be explained for the sake of simplicity. This is shown as an example in which the contacting member is fixed and the contacting member is moved, and therefore the contacting member is referred to as a "moving body."

さて上記従来の振動波モータにおいて、移動体の一部を
形成する強化型複合樹脂層としてガラス転移点が100
℃以上の熱可塑性樹脂を母材とした摺動体を用いている
のは、これらの耐熱性樹脂は材料物性として温度依存性
が小さく、モータ駆動時における温度上昇に対しても樹
脂材の軟化に起因するトルクダウンの現象がなく、また
モータの性能精度を安定できるからである。
Now, in the conventional vibration wave motor mentioned above, the glass transition point of the reinforced composite resin layer forming a part of the moving body is 100.
The reason why we use a sliding body made of thermoplastic resin with a temperature of ℃ or above is because these heat-resistant resins have low temperature dependence as a material property, and the resin material does not soften even when the temperature rises when the motor is driven. This is because there is no phenomenon of torque down caused by this, and the performance accuracy of the motor can be stabilized.

また上記樹脂材に炭素繊維等の強化材を配合充填してい
るのは、第1には、例えばタングステンカーバイド及び
コバルトからなる振動体側の超硬材料の摺動面に対して
、移動体の摺動面の性状が常に安定し、しかも長時間駆
動の際も十分な耐摩耗性を保証するためであり、第2に
は、摺動体の弾性率あるいは硬さ等の材料物性値を大き
くし、出力等モータの性能を向上するためであり、更に
第3には、摺動体の熱伝導性を向上して効率等モータの
性能を改善するためである。
Also, the reason why reinforcing materials such as carbon fibers are mixed and filled in the resin material is that the sliding surface of the moving body is This is to ensure that the properties of the moving surface are always stable and have sufficient wear resistance even during long-term operation.Secondly, the material properties such as the elastic modulus or hardness of the sliding body are increased, This is to improve motor performance such as output, and thirdly, to improve motor performance such as efficiency by improving the thermal conductivity of the sliding body.

(発明が解決しようとする課題) 上述の通り、振動波モータにおいて移動体の摺動面を提
供する摺動体にガラス転移点が100℃以上の耐熱性の
熱可塑性樹脂に炭素繊維を充填した強化型複合樹脂を用
いることで、モータ駆動による温度上昇時においてもモ
ータの性能及び精度は安定し、振動体の摺動面を形成す
る超硬材料に対して長時間駆動しても耐摩耗性は十分で
あり、更に出力効率等のモータ性能も高い値を示す。
(Problems to be Solved by the Invention) As mentioned above, the sliding body that provides the sliding surface of the moving body in a vibration wave motor is reinforced by filling a heat-resistant thermoplastic resin with a glass transition point of 100°C or higher with carbon fiber. By using mold composite resin, the performance and precision of the motor are stable even when the temperature rises due to motor drive, and the wear resistance of the carbide material that forms the sliding surface of the vibrating body is maintained even when driven for a long time. This is sufficient, and motor performance such as output efficiency also shows high values.

しかしながら振動体の超硬材料からなる硬質の摺動面に
、移動体の上記炭素繊維を強化充填した耐熱性熱可塑性
樹脂からなる複合樹脂層の摺動面を加圧接触すると、例
えば定格運転の条件として4 kgcrn、 1100
rpで駆動を開始すると、摩擦摺動面の温度上昇に伴っ
てトルクの「うねりj等が問題となる場合があり、より
一層の性能精度向上のためには更に改善すべき点のある
ことが知見された。
However, if the sliding surface of a composite resin layer made of a heat-resistant thermoplastic resin reinforced with the carbon fibers of the moving body is brought into pressure contact with the hard sliding surface of the vibrating body made of a superhard material, 4 kg crn, 1100 as the condition
When driving is started at RP, torque waviness may become a problem as the temperature of the friction sliding surface increases, and there are some points that need to be improved to further improve performance accuracy. It was discovered.

また定格での連続運転においては、定格トルク値に対し
て5%程度のトルクムラがあり、なお−層の改善が要望
された。
In addition, during continuous operation at the rated torque, there was a torque unevenness of about 5% with respect to the rated torque value, and further improvements were desired.

また更に、負荷トルクが大きいときは問題ないものの、
無負荷時あるいは低負荷時には、駆動によって摺動摩擦
に基づくいわゆる’ Ol tg Jの現象が発生する
という問題があフた。
Furthermore, although there is no problem when the load torque is large,
The problem of the so-called 'Ol tg J' phenomenon occurring due to sliding friction due to driving when no load or low load is applied has been solved.

このような観点からなされた本発明の目的とするところ
は、高温下においても優れた摺動特性を示し、トルクの
「うねり」やトルクムラの低減された高効率の振動波モ
ータを提供することを目的とする。
The purpose of the present invention, which has been made from this point of view, is to provide a highly efficient vibration wave motor that exhibits excellent sliding characteristics even under high temperatures and has reduced torque "undulation" and torque unevenness. purpose.

また本発明の別の目的は、振動波モータにおいて問題と
なっている無負荷時あるいは低負荷時の駆動に際しての
「鳴き」を解消することができる新規な構成の振動波モ
ータ、特に大出力型の振動波モータを提供することを目
的とする。
Another object of the present invention is to provide a vibration wave motor with a novel configuration that can eliminate the "squeal" that occurs during no-load or low-load operation, which is a problem with vibration wave motors, especially high-output types. The purpose of the present invention is to provide a vibration wave motor.

また本発明のさらに別の目的は、移動体に接触される振
動体の摺動面を、無電界メツキ法により安価に形成でき
る硬質面としたものを使用で診る振動波モータを提供す
るところにある。
Still another object of the present invention is to provide a vibration wave motor that uses a sliding surface of a vibrating body that comes into contact with a moving body as a hard surface that can be formed at low cost by electroless plating. be.

(課題を解決するための手段) 上記目的を実現するためになされた本発明の振動波モー
タの特徴は、進行性振動波を生ずる振動体に、該振動体
との接触面を提供する複合樹脂層を備えた部材を加圧接
触させて、振動体と該加圧接触する部材を該振動体に生
じさせた進行性振動波により摩擦駆動で相対9動させる
振動波モータにおいて、上記複合樹脂層が、芳香族ポリ
イミド樹脂の母材に、摩擦調整剤、及び必要に応じて非
繊維型の耐摩耗性改良剤を充填配合した複合樹脂で形成
されているという構成をなすところにある。
(Means for Solving the Problems) The vibration wave motor of the present invention achieved in order to achieve the above object is characterized by a composite resin that provides a contact surface with a vibrating body that generates progressive vibration waves. A vibration wave motor in which a member having a layer is brought into pressurized contact and a vibrating body and the member in pressurized contact are moved relative to each other by frictional drive by progressive vibration waves generated in the vibrating body, the composite resin layer as described above. However, it is constructed of a composite resin in which a friction modifier and, if necessary, a non-fibrous wear resistance improver are filled and blended into an aromatic polyimide resin base material.

本発明の振動波モータは、代表的には電気−機械エネル
ギー変換素子からなる駆動相に電圧を印加することによ
り、この駆動相が設けられた円環状の振動体に進行性振
動波を生じさせ、この振動体に加圧接触された移動体を
摩擦駆動させる振動波モータとして構成されるものであ
り、上記移動体は、熱良導性のアルミ合金等の支持体と
、この支持体に一体化されて上記振動体に接触する摺動
面を提供する上記複合樹脂層とから構成される。また本
発明の振動波モータにおける上記振動体には、従来のも
のと同様に、金属製等の振動体基板の表面に、タングス
テンカーバイド及びコバルトの超硬材料を溶射して必要
に応じて研磨して摺動面としたものを用いることも出来
るが、これに代えて無電界メツキ法を用いて炭化珪素(
StC) 、炭化ホウ素(84G)  ホウ素チタニウ
ム(TiBt)、チッ化ホウ素(8N)の一種以上を含
むニッケル−リン基合金の超硬面を形成させたものを用
いることがで診る。
The vibration wave motor of the present invention applies a voltage to the drive phase, typically consisting of an electro-mechanical energy conversion element, to generate progressive vibration waves in the annular vibrating body provided with this drive phase. The movable body is configured as a vibration wave motor that frictionally drives a movable body that is in pressurized contact with the vibrating body, and the movable body has a support body made of a thermally conductive aluminum alloy, etc., and is integrated with this support body. and the composite resin layer which provides a sliding surface that contacts the vibrating body. Further, in the vibrating body of the vibration wave motor of the present invention, as in conventional ones, superhard materials such as tungsten carbide and cobalt are thermally sprayed on the surface of the vibrating body substrate made of metal or the like, and polished as necessary. It is also possible to use a sliding surface made of silicon carbide (
The diagnosis can be made by using a nickel-phosphorus based alloy containing one or more of the following: StC), boron carbide (84G), boron titanium (TiBt), and boron nitride (8N), on which a carbide surface is formed.

本発明の振動波モータは、上述した複合樹脂材を用いて
移動体を形成し、あるいは複合樹脂材を用いて形成した
摺動体を支持体に固着一体化することで形成した移動体
を有することを特徴とする。
The vibration wave motor of the present invention has a movable body formed using the above-mentioned composite resin material, or a movable body formed by fixing and integrating a sliding body formed using the composite resin material to a support body. It is characterized by

このような複合樹脂層を形成する方法、及び移動体の支
持体上に一体化する方法としては、−殻内には、射出成
形、押出成形により上記複合樹脂材の摺動体を形成し、
これを接着剤を用いて支持体上に固着一体化することに
よって構成することができる。なお複合樹脂材で形成し
た摺動体の支持体上への固着は、ガラス転移点が100
℃以上の接着剤を用いて行なうことができ、このような
接着剤として具体的には、100℃での耐熱接着力及び
熱老化性等が十分考慮された化学反応型エポキシ系接着
剤を例示することができる。
A method for forming such a composite resin layer and a method for integrating it onto a support of a moving body include: forming a sliding body of the composite resin material in the shell by injection molding or extrusion molding;
This can be constructed by fixing and integrating this onto a support using an adhesive. Note that the sliding body made of a composite resin material is fixed on the support when the glass transition point is 100.
This can be done using an adhesive with a temperature of 100°C or higher, and a specific example of such an adhesive is a chemically reactive epoxy adhesive that has sufficient heat-resistant adhesive strength and heat aging properties at 100°C. can do.

本発明においては、振動体との摺動面を提供する複合樹
脂層の母材として芳香族ポリイミド樹脂が用いられるこ
とを特徴とする。
The present invention is characterized in that an aromatic polyimide resin is used as the base material of the composite resin layer that provides a sliding surface with the vibrating body.

この芳香族ポリイミド樹脂は熱硬化性樹脂であり代表的
にはビフェニルテトラカルボン酸二無水物と芳香族ジア
ミンの縮合物(「ユービレックス」 (商品名;宇部興
産社製))ビロメ\ リフト酸無水物とジアミノジフェニールエーテルの縮合
物(「ベスブル」 (商品名:デュポン社製))を例示
することができる。この縮合物は、広範囲に渡るプラス
チックの中で高温での特性の優れたものであり、例えば
荷重18.8kg/am2での熱変形温度は350℃で
あり、260℃の連続使用温度でも一般のエンジニアリ
ングプラスチックの常温での強度を示す。
This aromatic polyimide resin is a thermosetting resin, typically a condensation product of biphenyltetracarboxylic dianhydride and aromatic diamine ("Ubilex" (trade name; manufactured by Ube Industries, Ltd.)) Birome\lift acid anhydride An example of this is a condensate of diaminodiphenyl ether and diaminodiphenyl ether (“Besbre” (trade name: manufactured by DuPont)). This condensate has excellent properties at high temperatures among a wide range of plastics. For example, the heat distortion temperature at a load of 18.8 kg/am2 is 350°C, and even at a continuous use temperature of 260°C, it has excellent properties at high temperatures. Indicates the strength of engineering plastics at room temperature.

本発明の上記複合樹脂層には、摩擦調整剤好ましくは粉
末状の摩擦調整剤が充填される。このような摩擦調整剤
は母材である熱硬化l樹脂の潤滑性等を改善するために
充填されるものであり、このような摩擦調整剤としては
一般に無定形粉末の固体潤滑剤が用いられ、具体的には
フッ素樹脂、二硫化モリブデン、黒鉛、カーボン、酸化
鉛、鉛等の粉末(いずれも非繊維)を例示することがで
きる。
The composite resin layer of the present invention is filled with a friction modifier, preferably a powdered friction modifier. Such friction modifiers are filled to improve the lubricity of the base material thermosetting resin, and solid lubricants in the form of amorphous powder are generally used as such friction modifiers. Specifically, powders of fluororesin, molybdenum disulfide, graphite, carbon, lead oxide, lead, etc. (all non-fibers) can be exemplified.

上記摩擦調整剤は、代表的には母材に対し重量比で30
%以下の一酸化鉛等の鉛化合物の粉末、及び重量比で5
〜40%の四フッ化エチレン等のフッ素樹脂を同時添加
する場合を特に好ましいものとして挙げることができる
The friction modifier is typically 30% by weight relative to the base material.
% or less of lead compound powder such as lead monoxide, and 5% by weight
Particularly preferred is the simultaneous addition of 40% to 40% of a fluororesin such as tetrafluoroethylene.

上記四フッ化エチレン樹脂は低摩擦係数樹脂であるため
、充填量があまり多くなると摩擦係数は小さくなるが、
材料的な強度と耐摩耗性が低下するため上記範囲とされ
る。
The above-mentioned tetrafluoroethylene resin is a low coefficient of friction resin, so if the amount filled is too large, the coefficient of friction will become small.
Since the material strength and abrasion resistance decrease, the above range is set.

上記−酸化鉛粉末及び四フッ化エチレン樹脂粉末は、い
ずれも固体潤滑剤として母材である熱硬化性樹脂の潤滑
性を補うために有効であり、振動体摺動面に対し複合樹
脂層の摺動面を摩擦駆動する際に、−酸化鉛粉末は四フ
ッ化エチレン樹脂の被膜を振動体摺動面に転移させる作
用があり、特に高温での摺動で摩擦係数を常に安定させ
るために有効な物質である。
The above-mentioned lead oxide powder and tetrafluoroethylene resin powder are both effective as solid lubricants to supplement the lubricity of the thermosetting resin that is the base material. When the sliding surface is frictionally driven, -lead oxide powder has the effect of transferring a coating of tetrafluoroethylene resin to the sliding surface of the vibrating body, and is used to constantly stabilize the coefficient of friction especially during sliding at high temperatures. It is an effective substance.

潤滑剤としての上記−酸化鉛粉末等の鉛化合物、四フッ
化エチレン樹脂等のフッ素樹脂の粉末は、母材である熱
可塑性樹脂との密着性を考えて複合樹脂層としての耐摩
耗性や材料強度を保証するために例えば平均粒径が20
t1m以下とすることが好ましい。なお四フッ化エチレ
ン樹脂(PTFE)は低摩擦係数樹脂であるから充填量
が多いと摩擦係数は小さくなるが、材料的強度及耐摩耗
性は低下する。
The above-mentioned lubricants, such as lead compounds such as lead oxide powder and fluororesin powders such as tetrafluoroethylene resin, are suitable for use as a composite resin layer in terms of abrasion resistance and adhesion to the base material thermoplastic resin. For example, the average grain size is 20 to ensure material strength.
It is preferable to set it to t1m or less. Note that tetrafluoroethylene resin (PTFE) is a resin with a low coefficient of friction, so if the amount of filling is large, the coefficient of friction will decrease, but the material strength and wear resistance will decrease.

また上記複合樹脂層にはさらに、耐摩耗性の改良、摺動
面の温度変化に対する安定性向上の目的で必要に応じて
遷移金属粉末を充填配合することができる。このような
遷移金属粉末として具体的には、タングステン、モリブ
デン、クロム、コバルト、チタン、ニッケルを挙げるこ
とができ、母材に対し40%以下のタングステン粉末(
20μm以下)、あるいは15%以下のモリブデン粉末
(20pm以下)等を少なくとも1種添加する場合を例
示することができる。尚非繊維型の耐摩耗性改良剤とし
て、前記の遷移金属の代りに、平均粒径10〜30μm
の球形の炭素を用いても良く、特に炭素繊維と同様高硬
度で熱伝導性の高い炭素ビーズを例示しても良い。
Further, the composite resin layer may be further filled with transition metal powder, if necessary, for the purpose of improving wear resistance and improving stability against temperature changes of the sliding surface. Specific examples of such transition metal powders include tungsten, molybdenum, chromium, cobalt, titanium, and nickel.
20 μm or less) or 15% or less molybdenum powder (20 pm or less). In addition, as a non-fibrous type wear resistance improver, in place of the above-mentioned transition metal, an average particle size of 10 to 30 μm may be used.
Spherical carbon may be used, and in particular, carbon beads, which have high hardness and high thermal conductivity like carbon fibers, may be used.

(実施例) 以下本発明を図面に示す実施例に基づいて説明する。(Example) The present invention will be described below based on embodiments shown in the drawings.

第1図は本発明による振動波モータの一実施例を示す縦
断面図である。
FIG. 1 is a longitudinal sectional view showing an embodiment of a vibration wave motor according to the present invention.

この図において、2はステンレス等の金属部材からなる
円環状の振動体基板であり、その裏面側には、薄い円環
形状の圧電素子群1が耐熱性のエポキシ樹脂系接着剤で
同心的に固着され、また表面側の摺動面は、進行性振動
波の撮動振幅を大きくとるために周方向に多数の溝部が
軸方向に切り込まれて措歯状をなしている。
In this figure, 2 is an annular vibrating body substrate made of a metal member such as stainless steel, and on the back side of the substrate, a group of thin annular piezoelectric elements 1 are connected concentrically with a heat-resistant epoxy resin adhesive. The sliding surface on the front side has a tooth-like shape with a large number of grooves cut in the axial direction in the circumferential direction in order to increase the imaging amplitude of the progressive vibration wave.

3は高熱伝導性の金属材からなる筐体であり、その中心
部に第1のボール軸受11が設けられると共に、この第
1のホール軸受11の軸心と同心的に上記振動体2がネ
ジ4で固定されている。
Reference numeral 3 denotes a housing made of a highly thermally conductive metal material, in which a first ball bearing 11 is provided in the center, and the vibrating body 2 is screwed concentrically with the axis of the first Hall bearing 11. It is fixed at 4.

10は中間にフランジ部10cが形成された出力軸であ
り、その一端部側10aは上記第1のボール軸受11の
内輪に軸方向摺動が可能に貫通支持され、また他端部側
10bは、後記する第2のボール軸受12の内輪及び後
記するバネ圧調整ナツト部材18の軸孔に軸方向摺動自
在かつ回転自在に:iaしている。15は上記出力軸1
0のフランジ部10cにネジ16で固定された円盤状の
中間部材であり、その外周端部には、環状に形成された
移動体7が同心的に外装嵌合して固定されている。
Reference numeral 10 denotes an output shaft having a flange portion 10c formed in the middle, one end side 10a of which is supported through the inner ring of the first ball bearing 11 so as to be able to slide in the axial direction, and the other end side 10b is an output shaft. , is axially slidably and rotatably fitted into an inner ring of a second ball bearing 12 (described later) and a shaft hole of a spring pressure adjusting nut member 18 (described later). 15 is the above output shaft 1
It is a disk-shaped intermediate member fixed to the flange portion 10c of the 0 with screws 16, and a movable body 7 formed in an annular shape is concentrically fitted and fixed to the outer peripheral end of the intermediate member.

上記移動体7は、アルミ合金等の熱伝導性の高い金属か
らなる環状の支持体5と、この支持体5の表面に、耐熱
性のエポキシ系接着剤で同心的に接着された摺動体6と
から構成され、この摺動体6は本例では例えば厚み1m
mの環状体として後述する配合及び構造をもった複合樹
脂層として形成される。この摺動体6が振動体2の摺動
面に接触する。
The moving body 7 includes an annular support 5 made of a highly thermally conductive metal such as an aluminum alloy, and a sliding body 6 concentrically bonded to the surface of the support 5 with a heat-resistant epoxy adhesive. In this example, the sliding body 6 has a thickness of, for example, 1 m.
The annular body of m is formed as a composite resin layer having the formulation and structure described below. This sliding body 6 contacts the sliding surface of the vibrating body 2.

またこの移動体7は、その底部に設けられたゴム類の弾
性シート部材17を介して中間部材15に支持された構
造に設けられていて、上記出力軸10のフランジ部10
cと上記第2のボール軸受12との間に弾装されたコイ
ル状の圧縮バネ部材14が発生する軸荷重が、この弾性
シート部材17を介して支持体5の軸方向に与えられて
、振動体2の摺動面と移動体7の摺動体6とが加圧接触
されるようになっている。
The movable body 7 is supported by an intermediate member 15 via an elastic sheet member 17 made of rubber provided at the bottom thereof, and the flange portion 10 of the output shaft 10 is supported by an intermediate member 15.
The axial load generated by the coiled compression spring member 14 elastically mounted between C and the second ball bearing 12 is applied in the axial direction of the support body 5 via this elastic sheet member 17. The sliding surface of the vibrating body 2 and the sliding body 6 of the movable body 7 are brought into pressure contact.

8は振動波モータの筐体カバーであり、ネジ9により筐
体3に固定されている。そしてその中央部に形成された
軸受嵌合孔8bには第2のボール軸受12が軸方向摺動
可能に嵌合され、更にこの軸受嵌合孔8bの内周面には
、螺子部8cが形成されてバネ圧調整ナツト部材18が
螺着されている。バネ圧調整ナツト部材18は、第2の
ボール軸受12の外輪12aにのみ接し、また第2のボ
ール軸受12の内輪12bは出力軸1oに対して軸方向
摺動可能でかつ回転可能に設けられていて、バネ圧調整
ナツト部材18に形成された2個の小孔18a、18a
に例えば先端部に2木の差し込み棒が形成された治具(
図示せず)の該差し込み棒を差し込んで時計方向に回す
ことで、このバネ圧調整ナツト部材18が図中左方向に
螺進しながら第2のボール軸受12を同方向に押し圧縮
バネ部材14を縮めてバネ力を大きくし、また逆方向に
回すと圧縮バネ部材14を広げてバネ力を弱くできるよ
うになっており、これによりバネのたわみによる出力軸
lOの軸荷重調整が可能とされている。なお出力軸lO
の軸荷重調整後に、筐体カバー8の小孔8aから接着剤
を流し込んで、第2のボール軸受12の外輪12aを筐
体カバー8に固着するのが通常である。
Reference numeral 8 denotes a housing cover of the vibration wave motor, which is fixed to the housing 3 with screws 9. A second ball bearing 12 is fitted into the bearing fitting hole 8b formed in the center thereof so as to be slidable in the axial direction, and a screw portion 8c is further provided on the inner circumferential surface of the bearing fitting hole 8b. A spring pressure adjusting nut member 18 is screwed onto the spring pressure adjusting nut member 18. The spring pressure adjusting nut member 18 is in contact only with the outer ring 12a of the second ball bearing 12, and the inner ring 12b of the second ball bearing 12 is provided to be slidable in the axial direction and rotatable with respect to the output shaft 1o. and two small holes 18a, 18a formed in the spring pressure adjusting nut member 18.
For example, a jig with two wooden insertion rods formed at the tip (
By inserting the insertion rod (not shown) and turning it clockwise, the spring pressure adjusting nut member 18 screws to the left in the figure and pushes the second ball bearing 12 in the same direction, causing the compression spring member 14 The spring force can be increased by compressing the spring, and by rotating it in the opposite direction, the compression spring member 14 can be expanded and the spring force can be weakened. ing. Note that the output shaft lO
After adjusting the axial load, the outer ring 12a of the second ball bearing 12 is usually fixed to the housing cover 8 by pouring an adhesive through the small hole 8a of the housing cover 8.

また、圧縮バネ部材14の一端と第2のボール軸受12
との間には、第2のボール軸受12の内輪12bにのみ
当接するスペーサ13が配置され、このスペーサ13に
圧縮バネ部材14の一端が当接し、出力軸が支障なくス
ムーズに回転できるようにしている。なお、圧縮バネ部
材14には、たわみに対する軸荷重の変動を小さくする
ためにバネ定数の極力小さなものが好ましく用いられる
Further, one end of the compression spring member 14 and the second ball bearing 12
A spacer 13 is arranged between the second ball bearing 12 and the inner ring 12b of the second ball bearing 12, and one end of the compression spring member 14 comes into contact with the spacer 13 so that the output shaft can rotate smoothly without any hindrance. ing. Note that the compression spring member 14 preferably has a spring constant as small as possible in order to reduce fluctuations in the axial load with respect to deflection.

上記した振動体2の圧電素子群1は、第2図に示すよう
に、夫々図示の如く分8i処理された駆動用のA圧電素
子群1a及びB圧電素子群1bと、振動状態を検出する
2つの振動検出用圧電素子1cと、接地用の共通電極1
dから構成され、B圧電素子群1bはA圧電素子群1a
に対し、励起されるべ誇振動数の波長(λ)の174だ
けずれたピッチで配置されている。
As shown in FIG. 2, the piezoelectric element group 1 of the vibrating body 2 described above includes driving piezoelectric element group 1a and B piezoelectric element group 1b, each of which has been subjected to 8i processing as shown, and which detects the vibration state. Two piezoelectric elements 1c for vibration detection and a common electrode 1 for grounding
d, and the B piezoelectric element group 1b is composed of the A piezoelectric element group 1a.
They are arranged at a pitch shifted by 174 of the wavelength (λ) of the excited beam frequency.

モしてA圧電素子群1aとB圧電素子群1bに、互いに
位相が90°異なる周波電圧を印加することにより、振
動体2の表面に進行性振動波が発生し、この振動体2に
上述の如く加圧接触された移動体7が摩擦駆動され、中
間部材15を介して出力軸10を回転させる。
By applying frequency voltages having phases different by 90 degrees to the A piezoelectric element group 1a and the B piezoelectric element group 1b, progressive vibration waves are generated on the surface of the vibrating body 2, and the above-mentioned vibration waves are generated on the surface of the vibrating body 2. The movable body 7 brought into pressure contact is frictionally driven to rotate the output shaft 10 via the intermediate member 15.

以上の構成の振動波モータにつき、移動体7の複合樹脂
層である振動体6の材質を検討するために下北第−表の
配合からなる摺動体としての板状体を形成しく実施例1
.2及び参考例1〜6)、下記に従ってその曲げ弾性率
を測定した。
In order to study the material of the vibrating body 6, which is the composite resin layer of the moving body 7, for the vibration wave motor having the above configuration, a plate-like body as a sliding body having the composition shown in Table 1 in Shimokita was formed.Example 1
.. 2 and Reference Examples 1 to 6), their flexural modulus was measured according to the following.

なお実施例の摺動体は、母材として芳香族ポリイミド樹
脂に、表中に記載の非繊維型充填材を配合した下記の通
りのものである。
The sliding body of the example is as follows, in which the non-fibrous filler described in the table is blended with an aromatic polyimide resin as a base material.

実施例1:ビフェニルテトラカルボン酸二無水物と芳香
族ジアミンとの縮合物であ る芳香族ポリイミド樹脂に、非繊維 型充填剤として四フッ化エチレン樹 脂粉末(平均粒径9Bm)を重量比で 8.5%、−酸化鉛粉末を(平均粒径 10pm)を重量比で6.0%充充填台し、圧縮成形し
、切削加工して1mm の板状体(摺動体)とした。
Example 1: Tetrafluoroethylene resin powder (average particle size 9Bm) was added as a non-fibrous filler to an aromatic polyimide resin which is a condensate of biphenyltetracarboxylic dianhydride and aromatic diamine at a weight ratio of 8 The base was filled with 6.0% by weight lead oxide powder (average particle size 10 pm), compression molded, and cut into a 1 mm plate-like body (sliding body).

実施例2:四フッ化エチレン樹脂粉末の充填量を9.4
%とし、さらにモリブデン粉 末の重量比で6゜5%充填配合した他 は、実施例1と同様にして板状体を 成形した。
Example 2: Filling amount of tetrafluoroethylene resin powder was 9.4
%, and a plate-shaped body was molded in the same manner as in Example 1, except that the weight ratio of molybdenum powder was 6.5%.

参考例としては、ガラス転移点が100℃以上の各耐熱
性熱可塑性樹脂に、耐摩耗性向上のために第−表中記載
量の炭素繊維を分散充填して、実施例と同様の板状体に
成形し、その曲げ弾性率を測定した結果を同表に示した
。なお炭素繊維の充填は主に耐摩耗性の向上を目的とし
ており、この目的からは充填量は多いことが望ましいが
、充填量が30%を越えると射出成形が困難となる。な
お炭素繊維の充填により材料の弾性率や硬さ等大きくな
って、結果的にモータ等の性能が向上することは知られ
ている。
As a reference example, each heat-resistant thermoplastic resin with a glass transition point of 100°C or higher is dispersed and filled with carbon fibers in the amounts listed in Table 1 to improve wear resistance, and a plate-like material similar to that of the example is prepared. The results of molding into a body and measuring its flexural modulus are shown in the same table. Note that the main purpose of filling carbon fibers is to improve wear resistance, and from this purpose it is desirable that the amount of carbon fibers is large, but if the amount of filling exceeds 30%, injection molding becomes difficult. It is known that filling carbon fiber increases the elastic modulus and hardness of the material, resulting in improved performance of motors and the like.

!二里淀 ASTM D792に基づき測定したもので厚み3.2
mmの板を用いた。
! Thickness 3.2 as measured based on Niriyodo ASTM D792
A plate of mm was used.

第 表 上記表から明らかであるように、本実施例の複合樹脂層
は、例えば実施例1.2は、熱可塑性樹脂を母材とした
参考例の板状体に比べてはるかに高い熱変形温度を示す
ことが理解される。
As is clear from the table above, the composite resin layer of this example, for example, Example 1.2, has a much higher thermal deformation than the plate-shaped body of the reference example using a thermoplastic resin as the base material. It is understood that it indicates temperature.

また実施例は、熱可塑性樹脂を母材とした参考例に比べ
て炭素繊維が充填されていないにもかかわらず曲げ弾性
率が高く、芳香族ポリイミドの機械的な強度が高いこと
を示している。
In addition, the example has a higher flexural modulus than the reference example using thermoplastic resin as the base material despite not being filled with carbon fibers, indicating that the aromatic polyimide has high mechanical strength. .

実施例 上記第−表に示された板状体(摺動体)を支持体に固着
して移動体を作製し、これを用いて第1図の振動波モー
タを製作した。
EXAMPLE A movable body was prepared by fixing the plate-like bodies (sliding bodies) shown in Table 1 to a support, and this was used to fabricate the vibration wave motor shown in FIG.

振動体2の振動体基板は、その熱膨張係数が固着される
圧電素子群1の面方向の熱膨張係数に近似し、金属とし
ては比較的熱膨張係数が小さく、また内部損失も小さい
弾性材料であるマルテンサイト系ステンレスを用いて、
直径が73mm、軸方向寸法が7mmの円環状のものと
して形成し、また移動体が加圧接触される摺動画は、炭
化珪素(Sin)を共析(10%程度)したニッケル−
リン基合金の硬質面(Hv=600 )をアニールして
硬度を上げて(l(v= 1100)用いた。
The vibrating body substrate of the vibrating body 2 is made of an elastic material whose thermal expansion coefficient approximates that of the piezoelectric element group 1 to which it is fixed in the plane direction, and which has a relatively small thermal expansion coefficient for a metal and has a small internal loss. Using martensitic stainless steel,
It is formed into an annular shape with a diameter of 73 mm and an axial dimension of 7 mm, and the sliding member with which the moving body comes into pressure contact is made of nickel-coated silicon carbide (Sin) eutectoid (approximately 10%).
The hard surface (Hv=600) of the phosphorus-based alloy was annealed to increase the hardness (l(v=1100)) and used.

移動体の作製は、上記振動体と概ね同寸法の円環状支持
体をアルミニウム合金により形成し、上記第−表で示し
た板状体(摺動体)を複合樹脂層としてエポキシ系接着
剤を用いて接着固定した。なおこの摺動体6は射出成形
品である10mm厚の板材の片側面が摺動面となるよう
に約ll1ll111厚で削り出し、支持体5に固着後
、摺動面を微小量切削く又は研磨)して最終的に1 m
m厚にすると共に、摺動面に炭素繊維が露出するように
したが、これはモータの初期性能と経時的性能に差が出
ないようにしたためである。
The moving body was manufactured by forming an annular support body of approximately the same size as the vibrating body from an aluminum alloy, and using an epoxy adhesive as a composite resin layer using the plate-like body (sliding body) shown in the table above. It was fixed with adhesive. The sliding body 6 is made by cutting a 10 mm thick plate material, which is an injection molded product, to a thickness of approximately 111111 so that one side of the plate material becomes a sliding surface, and after fixing it to the support 5, the sliding surface is cut or polished by a minute amount. ) and finally 1 m
The thickness was made m, and the carbon fibers were exposed on the sliding surface in order to avoid any difference between the initial performance and the performance over time of the motor.

なお参考例2,4.5の複合樹脂層には摺動時の潤滑性
向上のためにPTFEを5%充填した。また参考例の振
動波モータでは、移動体の摺動面を提供する複合樹脂層
に炭素1G維が充填配合されているため、振動体の摺動
面は上述したタングステンカーバイド及びコバルトから
なる超硬材料を溶射して硬質面(HV”F1200)と
した。
The composite resin layers of Reference Examples 2 and 4.5 were filled with 5% PTFE to improve lubricity during sliding. Furthermore, in the vibration wave motor of the reference example, the composite resin layer that provides the sliding surface of the moving body is filled with carbon 1G fibers, so the sliding surface of the vibrating body is made of the above-mentioned carbide made of tungsten carbide and cobalt. The material was thermally sprayed into a hard surface (HV"F1200).

以上の摺動体からなる複合樹脂層(上記参考例1〜6、
及び実施例1〜4)を固着した移動体を、第1図で説明
した大出力型の振動波モータに組込み、「鳴き」、「出
力」、及び「トルクムラ」を下記に従って測定した。
Composite resin layer consisting of the above sliding bodies (Reference Examples 1 to 6 above,
The movable body to which Examples 1 to 4) were fixed was incorporated into the large-output type vibration wave motor described in FIG. 1, and "squeal", "output", and "torque unevenness" were measured according to the following.

[01きの測定コ 第1図の振動波モータにおける圧縮ばね部材14が発生
する加圧力を9 kgfに設定し、FFTを用いて無負
荷回転時の鳴きを測定した。測定結果を概略鳴きあり及
び鳴きなしとして示した。
[01 Measurement] The pressing force generated by the compression spring member 14 in the vibration wave motor shown in FIG. 1 was set to 9 kgf, and the noise during no-load rotation was measured using FFT. The measurement results are shown as approximately squealing and no squealing.

[出力の測定] 定格トルク(4kgcm)での出力の犬ぎさを低速型ト
ルク検出器を用いて測定した。測定結果は出力の大きさ
により犬、中、小に分けた。
[Measurement of Output] The sharpness of the output at the rated torque (4 kgcm) was measured using a low-speed torque detector. The measurement results were divided into dog, medium, and small depending on the size of the output.

[トルクムラの測定] 定格(4kgcm、 10100rpで連続駆動したと
きのトルクムラを低速型トルク検8器を用いて測定した
。測定結果は、トルクの変動量により中、小に分けた。
[Measurement of torque unevenness] Torque unevenness when continuously driven at rated (4 kgcm, 10,100 rpm) was measured using a low-speed torque detector. The measurement results were divided into medium and small depending on the amount of torque fluctuation.

なお鳴き及び出力の測定ではいずれの例でもも振動体2
の振動振幅量は予め設定した一定量で行なった。
In addition, in both cases, when measuring the noise and output, the vibrating body 2
The vibration amplitude was set to a preset constant value.

また定格時のトルクムラの測定では定格値が得られるよ
うに摺動体の材料毎に振動体2の振動振幅量を設定した
In addition, in the measurement of torque unevenness at the rated time, the amount of vibration amplitude of the vibrating body 2 was set for each material of the sliding body so that the rated value could be obtained.

第   二   表 上記表の結果から明らかであるように、まず定格(4k
gcm、10100rpで連続運転を開始すると、参考
例はいずれの移動体も特に駆動直後の数分間でトルクの
うねりが見られるが、実施例ではうねり量が小さかった
Table 2 As is clear from the results in the above table, first the rating (4k
When continuous operation was started at gcm and 10,100 rpm, torque undulations were observed in all of the reference examples, especially within a few minutes immediately after driving, but in the examples, the amount of undulation was small.

また連続運転2時間後のトルクムラも、実施例のものは
トルクムラが2%程度と、参考例の5%よりも小さかっ
た。
Furthermore, the torque unevenness after 2 hours of continuous operation was about 2% in the example, which was smaller than 5% in the reference example.

また定格時(4kgcIll)の出力をみると、参考例
が4.8〜5.4Wの範囲にあるのに対し、実施例は5
.0〜5,2wであり、参考例に比べて定価はなく実用
に十分供し得る範囲であった。
Also, looking at the output at the rated state (4kgcIll), the reference example is in the range of 4.8 to 5.4W, while the example is in the range of 5.
.. It was 0 to 5.2w, and compared to the reference example, there was no list price and it was within a range that could be used for practical purposes.

更に無負荷時の鳴ぎをみると、参考例1〜6の摺動体で
は全て鳴きの現象が見られたが、実施例では全< Oi
hの現象の発生がなかった。
Furthermore, when looking at the noise under no load, the phenomenon of noise was observed in all the sliding bodies of Reference Examples 1 to 6, but in the example, all < Oi
There was no occurrence of the phenomenon described in h.

(発明の効果) 以上説明したように、本発明の大型振動波モータは、移
動体の摺動体を形成するために芳香族ポリイミド樹脂を
母材とし、これに摩擦調整剤を充填配合して用いること
により、定格の大出力時のトルクのうねり及びムラ等を
改善できるという効果がある。
(Effects of the Invention) As explained above, the large-scale vibration wave motor of the present invention uses an aromatic polyimide resin as a base material to form the sliding body of a moving body, and fills and blends a friction modifier into the aromatic polyimide resin. This has the effect of improving torque undulations, unevenness, etc. at the time of the rated high output.

また無負荷時あるいは低負荷時の駆動に際し「鳴き」を
回避することができるという効果がある。
Furthermore, there is an effect that "squeal" can be avoided when driving under no load or under low load.

更に振動体の摺動面として、炭化珪素(SiC)を共析
したニッケル−リン基合金の無電界メツキによる安価な
硬質面を用いることがで診るので、従来のタングステン
カーバイド及びコバルトからなる超硬材料を溶射した高
価な硬質面を用いた場合と同等の高精度、高出力型振動
波モータを構成でき、振動波モータを低コストに堤供で
きるという効果もある。
Furthermore, as the sliding surface of the vibrating body, an inexpensive hard surface formed by electroless plating of a nickel-phosphorus-based alloy eutectoided with silicon carbide (SiC) can be used. It is possible to construct a high-precision, high-output vibration wave motor equivalent to that obtained by using an expensive hard surface coated with a thermally sprayed material, and there is also the effect that the vibration wave motor can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を適用して構成される振動波モータの構
成概要を縦断面図として示した図、第2図は振動体を構
成する圧電素子群の配置を説明する平面図である。 1;圧電素子群    2:振動体 5:支持体      6;摺動体 7:移動体
FIG. 1 is a vertical cross-sectional view showing an outline of the configuration of a vibration wave motor constructed according to the present invention, and FIG. 2 is a plan view illustrating the arrangement of a group of piezoelectric elements constituting a vibrating body. 1; Piezoelectric element group 2: Vibrating body 5: Support body 6; Sliding body 7: Moving body

Claims (1)

【特許請求の範囲】 1、進行性振動波を生ずる振動体に、該振動体との接触
面を提供する複合樹脂層を備えた部材を加圧接触させて
、振動体と該加圧接触する部材を該振動体に生じさせた
進行性振動波により摩擦駆動で相対移動させる振動波モ
ータにおいて、上記複合樹脂層は、芳香族ポリイミド樹
脂の母材に、摩擦調整剤、及び必要に応じて非繊維型の
耐摩耗性改良剤を充填配合した複合樹脂で形成されてい
ることを特徴とする振動波モータ。 2、請求項1において、芳香族ポリイミド樹脂がビフェ
ニルテトラカルボン酸二無水物と芳香族ジアミンの縮合
物であることを特徴とする振動波モータ。 3、請求項1において、摩擦調整剤が鉛酸化物の少なく
とも一種と、フッ素樹脂とであることを特徴とする振動
波モータ。 4、請求項3において、鉛酸化物が酸化鉛粉末であつて
、母材に対し重量比で30%以下含有されていることを
特徴とする振動波モー タ。 5、請求項3において、フッ素樹脂が四フッ化エチレン
樹脂粉末であって、母材に対し重量比で5〜40%充填
されていることを特徴とする振動波モータ。 6、請求項1において、複合樹脂層が充填材としてモリ
ブデン、タングステン等の遷移金属粉末を含有すること
を特徴とする振動波モータ。 7、請求項1ないし6のいずれかにおいて、振動体に加
圧接触する部材が、支持体と、複合樹脂層をなす成形体
の固着一体化により形 成されていることを特徴とする振動波モー タ。 8、請求項1ないし7のいずれかにおいて、振動体に加
圧接触する部材が、複合樹脂層をなす成形体のみからな
ることを特徴とする振動波モータ。 9、請求項1ないし8のいずれかにおいて、振動体の摺
動面が、炭化珪素、炭化ホウ素、ホウ素チタニウム、チ
ッ化ホウ素の一種以上を含むニッケル−リン基合金の超
硬面であることを特徴とする振動波モータ。
[Claims] 1. A member provided with a composite resin layer that provides a contact surface with the vibrating body is brought into pressurized contact with a vibrating body that generates progressive vibration waves, and the vibrating body is brought into pressurized contact with the vibrating body. In a vibration wave motor in which members are moved relative to each other by frictional drive by progressive vibration waves generated in the vibrating body, the composite resin layer includes a base material of an aromatic polyimide resin, a friction modifier, and a non-woven material as necessary. A vibration wave motor characterized by being made of a composite resin filled with a fiber-type wear resistance improver. 2. The vibration wave motor according to claim 1, wherein the aromatic polyimide resin is a condensate of biphenyltetracarboxylic dianhydride and aromatic diamine. 3. The vibration wave motor according to claim 1, wherein the friction modifier is at least one type of lead oxide and a fluororesin. 4. The vibration wave motor according to claim 3, wherein the lead oxide is lead oxide powder and is contained in a weight ratio of 30% or less based on the base material. 5. The vibration wave motor according to claim 3, wherein the fluororesin is a polytetrafluoroethylene resin powder and is filled in a weight ratio of 5 to 40% with respect to the base material. 6. The vibration wave motor according to claim 1, wherein the composite resin layer contains transition metal powder such as molybdenum or tungsten as a filler. 7. A vibration wave motor according to any one of claims 1 to 6, characterized in that the member that presses into contact with the vibrating body is formed by fixing and integrating a support body and a molded body forming a composite resin layer. . 8. A vibration wave motor according to any one of claims 1 to 7, characterized in that the member that presses into contact with the vibrating body is composed only of a molded body forming a composite resin layer. 9. In any one of claims 1 to 8, it is provided that the sliding surface of the vibrating body is a cemented carbide surface of a nickel-phosphorus based alloy containing one or more of silicon carbide, boron carbide, boron titanium, and boron nitride. Features a vibration wave motor.
JP1312048A 1989-11-30 1989-11-30 Oscillatory wave motor Pending JPH03173368A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1312048A JPH03173368A (en) 1989-11-30 1989-11-30 Oscillatory wave motor
US08/380,333 US5557157A (en) 1989-11-30 1995-01-30 Vibration driven motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1312048A JPH03173368A (en) 1989-11-30 1989-11-30 Oscillatory wave motor

Publications (1)

Publication Number Publication Date
JPH03173368A true JPH03173368A (en) 1991-07-26

Family

ID=18024594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1312048A Pending JPH03173368A (en) 1989-11-30 1989-11-30 Oscillatory wave motor

Country Status (1)

Country Link
JP (1) JPH03173368A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303915A (en) * 2007-06-05 2008-12-18 Ntn Corp Yaw bearing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008303915A (en) * 2007-06-05 2008-12-18 Ntn Corp Yaw bearing

Similar Documents

Publication Publication Date Title
US5329201A (en) Vibration driven motor
US5013956A (en) Lining material and ultrasonic wave driven motor using lining material
US5034646A (en) Vibration motor
US5352950A (en) Vibration wave driven motor
US5557157A (en) Vibration driven motor
KR101413838B1 (en) Motor, lens barrel, camera system and method for manufacturing motor
US4978882A (en) Vibration wave driven motor
JPH03284173A (en) Oscillatory wave motor
US5912525A (en) Vibration actuator
US6320299B1 (en) Friction member used in vibration wave driving apparatus, and device using the vibration wave driving apparatus as driving source
JP2925192B2 (en) Vibration wave drive
JPH03173368A (en) Oscillatory wave motor
US5338998A (en) Vibration driven actuator
US6643906B2 (en) Friction member, and vibration wave device and apparatus using friction member
JP3160139B2 (en) Vibration wave motor
JPH0442787A (en) Oscillatory wave motor
JP2965734B2 (en) Vibration wave motor
JPH03173370A (en) Oscillatory wave motor
JPH0421373A (en) Oscillation wave motor
JPH03285573A (en) Vibration wave motor
JPH0421372A (en) Oscillation wave motor
JPH01206880A (en) Ultrasonic motor
JPH07177768A (en) Vibration wave motor
JPH0779578A (en) Vibration-wave motor
JPH03285574A (en) Vibration wave motor