JPH03173121A - Crystallization apparatus of semiconductor film - Google Patents

Crystallization apparatus of semiconductor film

Info

Publication number
JPH03173121A
JPH03173121A JP31275489A JP31275489A JPH03173121A JP H03173121 A JPH03173121 A JP H03173121A JP 31275489 A JP31275489 A JP 31275489A JP 31275489 A JP31275489 A JP 31275489A JP H03173121 A JPH03173121 A JP H03173121A
Authority
JP
Japan
Prior art keywords
semiconductor film
light
substrate
transmitting plate
energy beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31275489A
Other languages
Japanese (ja)
Inventor
Yoshiteru Nitta
新田 佳照
Masatoki Tomita
賢時 冨田
Kiyonari Tanaka
聖也 田中
Noritoshi Yamaguchi
文紀 山口
Hiroaki Kubo
裕明 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP31275489A priority Critical patent/JPH03173121A/en
Publication of JPH03173121A publication Critical patent/JPH03173121A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To fine control a film quality by freely changing an intensity distribution of an energy beam and to obtain a desired characteristic by a method wherein a light-transmitting plate on which a plurality of linear light-shielding bodies to shield one part of the energy beam have been formed is arranged between an amorphous crystal semiconductor film and an energy beam generation means. CONSTITUTION:A continuously oscillated argon laser is used as an energy beam generation source 1. A generated beam L is narrowed so as to become a prescribed beam diameter by means of a lens 2; it is radiated toward a holding body 3 which holds a light-transmitting plate and a substrate on which a semiconductor film has been formed. The holding body 3 is constituted of the following: a light-transmitting plate holding frame 4 which holds a light- transmitting plate 5 on which linear patterns 6 as light-shielding bodies of the beam L have been formed; and a substrate holding frame 9 which holds a substrate 10 on which a semiconductor film 8 has been formed. It can be opened and shut freely and is detachable; it can be also used by combining the light- transmitting plate 5, on which various linear patterns 6 have been formed, with the substrate 10.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、非単結晶半導体膜にレーザ等のエネルギビー
ムを照射することによって、前記半導体膜を単結晶化す
る装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an apparatus for monocrystallizing a non-single crystal semiconductor film by irradiating the film with an energy beam such as a laser.

〔従来の技術〕[Conventional technology]

近年、非単結晶半導体膜にレーザ等エネルギビーム(以
下、単にビームともいう)を照射走査することによって
、該半導体膜を溶融し単結晶化する方法がS OI (
Silicon On In5ulator)技術等に
おいて有望視されている。
In recent years, S OI (
It is seen as promising in silicon-on-induction (Silicon On Induction) technology.

通常、ビームの照射方向と直交する面内において、ビー
ムの断面形(円)の中心を通る任意の直線上の強度分布
はガウス分布となる。したがって、この状態で半導体膜
上にビームを照射走査すれば、ビームが当たっている周
辺部(温度が低い部分)からその中央部(温度が高い部
分)へ向かって結晶成長が進行し、多数の核発生が起こ
る。このため、成長した多数の結晶面が出会い大きな単
結晶になることができない。したがって、膜質が良好で
かつ所望の半導体特性を有する半導体膜が得られないと
いう問題が生ずる。
Usually, the intensity distribution on any straight line passing through the center of the cross-sectional shape (circle) of the beam in a plane orthogonal to the beam irradiation direction is a Gaussian distribution. Therefore, if a beam is irradiated and scanned on the semiconductor film in this state, crystal growth will progress from the peripheral area (lower temperature area) to the central area (higher temperature area), resulting in a large number of crystals. Nucleogenesis occurs. For this reason, many grown crystal planes cannot meet and form a large single crystal. Therefore, a problem arises in that a semiconductor film with good film quality and desired semiconductor properties cannot be obtained.

そこで、この問題を解決する装置として、ビーム路に金
属針のビーム阻止体を配置し、これによりできた影の部
分のビーム強度が他の部分より弱くなるようにした装置
が提案されている(特開昭59−151420号公報等
参照)。
Therefore, as a device to solve this problem, a device has been proposed in which a metal needle beam blocker is placed in the beam path so that the beam intensity in the shadowed area is weaker than in other areas ( (See Japanese Patent Application Laid-Open No. 59-151420, etc.).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上述の技術では、ビームを遮蔽する手段
が金属針であり、ビームの径やその断面形が変化した場
合には、それに合わせて新たな金属針を用意するか、同
一の金属針を三次元的に移動する等により、所望のビー
ム強度にする必要がある。また、このために、光学系や
走査系その他による制御が複雑となるうえ装置全体が大
がかりとなる等の問題が生じる。さらに、−本の金属針
ではビームの強度分布はワンパターンとなり、金属針の
径や形状の許容度も小さいことからビームの強度分布に
バラエティを持たせることができない。したがって、半
導体膜の結晶化を行うにあたり、膜質のきめこまかな制
御を行うことができないという問題を有する。
However, in the above-mentioned technology, the means for shielding the beam is a metal needle, and if the diameter of the beam or its cross-sectional shape changes, a new metal needle must be prepared accordingly, or the same metal needle can be used as a tertiary needle. It is necessary to achieve the desired beam intensity by moving the beam originally. Further, this also causes problems such as the control of the optical system, scanning system, etc. becoming complicated and the entire apparatus becoming large-scale. Furthermore, with -1 metal needles, the beam intensity distribution becomes a single pattern, and the tolerance for the diameter and shape of the metal needles is small, making it impossible to provide variety in the beam intensity distribution. Therefore, when crystallizing a semiconductor film, there is a problem that fine control of the film quality cannot be performed.

本発明はこれら問題点に鑑み案出さ九たものであって、
きわめて簡便な方法または装置によって、ビームの強度
分布を自在に変えることができ、これにより、膜質のき
めこまかな制御を行い、ひいては所望の特性を有する半
導体膜が得られるようにすることを目的とする。
The present invention has been devised in view of these problems, and includes:
The aim is to be able to freely change the intensity distribution of a beam using an extremely simple method or device, thereby achieving fine control of film quality and ultimately obtaining a semiconductor film with desired characteristics. .

〔課題を解決するための手段〕[Means to solve the problem]

上述の課題は以下に述べる手段によって解決される。 The above-mentioned problem is solved by the means described below.

すなわち、 エネルギビームの一部を遮る複数の線状の遮光体を形成
した透光板を非単結晶半導体膜とエネルギビーム発生手
段との間に配置してなる半導体膜結晶化装置によって課
題は解決される。
In other words, the problem is solved by a semiconductor film crystallization device in which a light-transmitting plate formed with a plurality of linear light shields that blocks part of the energy beam is placed between the non-single-crystal semiconductor film and the energy beam generating means. be done.

〔作用〕[Effect]

次に、本発明の作用について説明する。 Next, the operation of the present invention will be explained.

本発明の半導体膜結晶化法及びその装置によれば、非単
結晶半導体膜に照射するエネルギビームの一部は透光板
に形成された線状の遮光体によって遮られるので、ビー
ムの強度分布を容易に変化させることができる。
According to the semiconductor film crystallization method and apparatus of the present invention, a part of the energy beam irradiated to the non-single crystal semiconductor film is blocked by the linear light shield formed on the transparent plate, so that the beam intensity distribution can be easily changed.

すなわち、線状の遮光体パターンを種々に変えることに
より、ビームの強度分布が変化するので、例えばビーム
の径や強度分布を変えるような場合においても、新たな
ビーム阻止体を用意する必要がなく、ビーム阻止体を三
次元的に移動させる必要もないので、これによる走査系
その他の制御が複雑となることがない。
In other words, by changing the linear light shielding pattern in various ways, the beam intensity distribution changes, so even when changing the beam diameter or intensity distribution, for example, there is no need to prepare a new beam blocking body. Since there is no need to move the beam blocking body three-dimensionally, the control of the scanning system and other parts due to this does not become complicated.

〔実施例〕〔Example〕

本発明の半導体結晶化法及びその装置に係る第1実施例
を図面に基づいて詳細に説明する。
A first embodiment of the semiconductor crystallization method and apparatus of the present invention will be described in detail with reference to the drawings.

第1図は本実施例の半導体膜結晶化装置の概略図である
。図において1はエネルギビーム発生源であり、ここで
は連続発振アルゴンレーザを用いている。ビーム発生源
1から発生したビームLは、レンズ2により所定のビー
ム径となるように絞られて、後記する透光板及び半導体
膜が形成されている基板等を保持している保持体3に向
けて照射される。
FIG. 1 is a schematic diagram of the semiconductor film crystallization apparatus of this embodiment. In the figure, 1 is an energy beam generation source, and here a continuous wave argon laser is used. A beam L generated from a beam source 1 is focused by a lens 2 to a predetermined beam diameter, and is delivered to a holder 3 that holds a transparent plate, a substrate on which a semiconductor film, etc. (described later), etc. are formed. It is irradiated towards the target.

第2図に示すように、保持体3は、ビームLの遮光体で
ある線状パターン6が形成された透光板5を保持する透
光板保持枠4と、半導体膜8が形成された基板10を保
持する基板保持枠9とで構成されており、各保持枠の一
側部7を結合する不図示の蝶番により開閉自在となって
いる。また、各保持枠は互いに着脱可能になっており、
基板10に対し種々の線状パターン6が形成された透光
板5を組み合わせて用いることも可能である。通常は、
第1図に示されているように折り畳まれた閉状態で用い
られるが、線状パターンを透光板5に形成する場合や基
板10に半導体膜8を形成する場合等には開状態で用い
られる。
As shown in FIG. 2, the holder 3 includes a transparent plate holding frame 4 that holds a transparent plate 5 on which a linear pattern 6, which is a light shield for the beam L, is formed, and a semiconductor film 8 formed thereon. It is composed of a substrate holding frame 9 that holds a substrate 10, and can be opened and closed by a hinge (not shown) that connects one side portion 7 of each holding frame. In addition, each holding frame is removable from each other.
It is also possible to use a combination of light-transmitting plates 5 on which various linear patterns 6 are formed on the substrate 10. Normally,
Although it is used in the folded closed state as shown in FIG. 1, it is used in the open state when forming a linear pattern on the transparent plate 5 or when forming the semiconductor film 8 on the substrate 10. It will be done.

透光板5として、例えばホウケイ酸ガラス板を用い、こ
の上にモリブデン、タンタル、タングステン、ニッケル
等の高融点の金属膜やアルミニウム等の反射率の高い金
属膜の線状パターン6が気相成長法等の薄膜形成法によ
り厚さ1μm以内に形成される。
For example, a borosilicate glass plate is used as the transparent plate 5, and a linear pattern 6 of a metal film with a high melting point such as molybdenum, tantalum, tungsten, or nickel or a metal film with high reflectivity such as aluminum is grown in a vapor phase on this plate. It is formed to a thickness of 1 μm or less by a thin film forming method such as a method.

基板10は、ガラス(例えば#7059)であり、この
上に笑気ガス(N20)並びにシランガスもしくはジシ
ランガスを用いてプラズマCVD法等により厚さ約0.
 5μmの酸化シリコンの絶縁膜を形成したものを用い
る。なお、この絶縁膜は窒化シリコンもしくは炭化シリ
コン等であってもよい。また、基板10に石英ガラス等
を用いるならば、絶縁膜は形成しなくともよい。なぜな
ら、石英ガラスと前記絶縁膜とは材質が近似するため、
石英ガラスからの不純物拡散を考慮する必要がないから
である。前記絶縁膜上にはシランガスもしくはジシラン
ガスを用いたプラズマCVD法等により厚さ約0.5μ
mの非単結晶シリコンの半導体膜8を形成する。この半
導体膜8は形成後約550〜約600℃の温度でアニー
ルして脱水素処理を施したものを用いる。ここで、基板
保持枠9の上面9aと半導体膜8の上面とで凹部が形成
されており、また、透光板保持枠4の下面4aと透光板
5の下面5aとでも凹部が形成されている。
The substrate 10 is made of glass (for example, #7059), and is coated with a thickness of about 0.0 mm by plasma CVD or the like using laughing gas (N20) and silane gas or disilane gas.
A 5 μm silicon oxide insulating film is used. Note that this insulating film may be made of silicon nitride, silicon carbide, or the like. Further, if quartz glass or the like is used for the substrate 10, it is not necessary to form an insulating film. This is because the materials of the quartz glass and the insulating film are similar, so
This is because there is no need to consider impurity diffusion from quartz glass. The insulating film is coated with a thickness of about 0.5μ by plasma CVD using silane gas or disilane gas.
A semiconductor film 8 of non-single crystal silicon of m is formed. This semiconductor film 8 is annealed at a temperature of about 550 to about 600° C. after being formed to undergo dehydrogenation treatment. Here, a recess is formed between the upper surface 9a of the substrate holding frame 9 and the upper surface of the semiconductor film 8, and a recess is also formed between the lower surface 4a of the transparent plate holding frame 4 and the lower surface 5a of the transparent plate 5. ing.

すなわち、第1図のように保持体3が閉状態において、
基板保持枠9の上面9aと透光板保持枠4の下面4aと
が当接することにより、透光板5と半導体膜8との隙間
がミクロンオーダとなるように設計されている。
That is, when the holder 3 is in the closed state as shown in FIG.
The upper surface 9a of the substrate holding frame 9 and the lower surface 4a of the transparent plate holding frame 4 are in contact with each other, so that the gap between the transparent plate 5 and the semiconductor film 8 is on the order of microns.

第2図の線状パターン6のA部拡大図を第3図に示す。FIG. 3 shows an enlarged view of part A of the linear pattern 6 in FIG. 2.

図においてB1は半導体膜8に当たるビーム断面形を示
し、はぼ円形である。線状パターン6はビームLの走査
方向に平行に形成され、この線に直角方向にビーム断面
形B1の周辺部から中央部へ向かって疎から密となるよ
うに幅約1〜約5μm程度の互いにほぼ平行な直線状の
薄膜となっている。本実施例においては、相互に平行な
直線状パターンのグループが透光板5に複数グループ形
成されているが、各グループの形状はこのような態様に
限らず、基板10に形成する半導体膜8の所望のパター
ンに合わせて適宜変更しうる。
In the figure, B1 indicates the cross-sectional shape of the beam hitting the semiconductor film 8, which is approximately circular. The linear pattern 6 is formed parallel to the scanning direction of the beam L, and has a width of about 1 to about 5 μm and is arranged in a direction perpendicular to this line from sparse to dense from the periphery to the center of the beam cross section B1. They are linear thin films that are almost parallel to each other. In this embodiment, a plurality of groups of mutually parallel linear patterns are formed on the light-transmitting plate 5, but the shape of each group is not limited to this, and the shape of the semiconductor film 8 formed on the substrate 10 is not limited to this. It can be changed as appropriate according to the desired pattern.

したがって、第2図に示されているような単調な直線状
のパターンが形成されているとは限らない。
Therefore, a monotonous linear pattern as shown in FIG. 2 is not necessarily formed.

また、この実施例では、ビームLは直線状パターンのグ
ループのすべてによって遮られるが、ビーム断面形を第
3図に示した状態からさらに狭めて、例えば、破線で示
したB2のようにしてこのグループの一部の直線のみに
遮られるようにしてもよい。
In this embodiment, the beam L is blocked by all of the groups of linear patterns, but the beam cross section is further narrowed from the state shown in FIG. It may also be configured so that it is obstructed by only some straight lines of the group.

上記構成において、半導体膜にビームLを照射走査させ
る。ビームLは出力的0. 7〜約1.5ワット程度の
連続発振アルゴンレーザを用い、ビーム径を約10〜約
300μmに集光させて、速度約1〜約20cm/秒程
度で走査させる。なお、エネルギビームとしてレーザビ
ームの他に電子ビーム等を用いてもかまわない。
In the above configuration, the semiconductor film is irradiated and scanned with the beam L. Beam L has an output of 0. A continuous wave argon laser of about 7 to about 1.5 watts is used, the beam diameter is focused to about 10 to about 300 μm, and the beam is scanned at a speed of about 1 to about 20 cm/sec. Note that, in addition to a laser beam, an electron beam or the like may be used as the energy beam.

第3図においてビーム断面形B1の中心を通り、かつビ
ームLの走査方向に直角な直線C1上のビーム強度は第
4図のようになる。すなわち、ビーム断面形B1のほぼ
中央部のビーム強度は他の部分のビーム強度より小さく
し、かつほぼ双峰型にすることで、半導体膜の面内方向
での温度分布を制御し、多数の核発生を防止でき、単結
晶の大きな成長を促すことができる。また、本実施例に
よればビームLと保持体3との相対移動のみで半導体膜
8の結晶化が実現できるので、光学系や走査系その他の
制御が簡単となる。さらに、保持体3は開閉を行うよう
に制御すれば、線状パターン6や半導体膜8の形成を連
続的に行うことができ、製造工程を短縮することができ
る。さらにまた、この実施例によれば、ガラス基板上に
線状パターンを形成し、別のガラス基板上に大面積かつ
低温プロセスで容易に形成した非晶質の半導体膜を結晶
化する場合に、線状パターンや半導体膜の結晶化を迅速
かつ容易に行うことができので、例えばシリコンTPT
等のデバイスを安価なガラス基板上に形成するのにきわ
めて好適な手段といえる。
In FIG. 3, the beam intensity on a straight line C1 passing through the center of the beam cross-sectional shape B1 and perpendicular to the scanning direction of the beam L is as shown in FIG. In other words, the beam intensity at approximately the center of the beam cross section B1 is made smaller than the beam intensity at other parts, and by making the beam almost bimodal, the temperature distribution in the in-plane direction of the semiconductor film is controlled, and a large number of Nucleation can be prevented and large single crystal growth can be promoted. Furthermore, according to this embodiment, crystallization of the semiconductor film 8 can be achieved only by relative movement between the beam L and the holder 3, so that control of the optical system, scanning system, and the like becomes simple. Furthermore, by controlling the holding body 3 to open and close, the linear pattern 6 and the semiconductor film 8 can be formed continuously, and the manufacturing process can be shortened. Furthermore, according to this embodiment, when a linear pattern is formed on a glass substrate and an amorphous semiconductor film easily formed on another glass substrate in a large area by a low temperature process is crystallized, Since linear patterns and semiconductor films can be crystallized quickly and easily, for example, silicon TPT
It can be said that this is an extremely suitable means for forming such devices on an inexpensive glass substrate.

なお、本発明は上記しかつ図面に示す実施例にのみ限定
されるものではなく、要旨を逸脱しない範囲内で適宜変
更して実施し得る。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but may be implemented with appropriate modifications within the scope of the gist.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の半導体膜結晶装置によれ
ば、線状パターンを形成した透光板にビームを透過させ
て半導体膜を結晶化するので、ビームの強度分布を種々
に変えることができる。これにより、半導体膜の面方向
の温度分布を正確に制御することができ、大型かつ結晶
性の良好な単結晶の半導体膜が得られ、所望の特性を有
する半導体膜が得られる。また、従来のようにビームの
径やその断面形が変化しても、それに合わせて新たなビ
ーム阻止体を用意する必要がない。さらに、光学系その
他による制御も単純で済み、装置全体も簡単である等き
わめて有益である。
As explained above, according to the semiconductor film crystallization device of the present invention, since the semiconductor film is crystallized by transmitting the beam through the transparent plate on which a linear pattern is formed, the intensity distribution of the beam can be varied in various ways. can. Thereby, the temperature distribution in the plane direction of the semiconductor film can be accurately controlled, a large-sized single-crystal semiconductor film with good crystallinity can be obtained, and a semiconductor film having desired characteristics can be obtained. Further, even if the diameter of the beam or its cross-sectional shape changes, there is no need to prepare a new beam blocking body to match the change, unlike in the conventional case. Furthermore, the control of the optical system and other components is simple, and the entire apparatus is simple, which is extremely advantageous.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第4図は本発明に係る一実施例を示す図であ
り、第1図は半導体膜結晶化装置の概略構成図、第2図
は保持体の斜視図、第3図は線状パターンの拡大図、 よる分布図である。 0 Bl、  B2   ・ 第4図はビーム強度の位置に エネルギビーム発生源、 レンズ、 保持体、 透光板、 線状パターン、 半導体膜、 基板、 ビーム径、 レーザ。
1 to 4 are diagrams showing one embodiment of the present invention, in which FIG. 1 is a schematic configuration diagram of a semiconductor film crystallization apparatus, FIG. 2 is a perspective view of a holder, and FIG. This is an enlarged view of the shape pattern and a distribution map according to the figure. 0 Bl, B2 ・Figure 4 shows the energy beam source, lens, holder, transparent plate, linear pattern, semiconductor film, substrate, beam diameter, and laser at the position of the beam intensity.

Claims (1)

【特許請求の範囲】[Claims] エネルギビームの一部を遮る複数の線状の遮光体を形成
した透光板を非単結晶半導体膜とエネルギビーム発生手
段との間に配置してなる半導体膜結晶化装置。
A semiconductor film crystallization device comprising a light transmitting plate formed with a plurality of linear light shields that block part of an energy beam and arranged between a non-single crystal semiconductor film and an energy beam generating means.
JP31275489A 1989-11-30 1989-11-30 Crystallization apparatus of semiconductor film Pending JPH03173121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31275489A JPH03173121A (en) 1989-11-30 1989-11-30 Crystallization apparatus of semiconductor film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31275489A JPH03173121A (en) 1989-11-30 1989-11-30 Crystallization apparatus of semiconductor film

Publications (1)

Publication Number Publication Date
JPH03173121A true JPH03173121A (en) 1991-07-26

Family

ID=18033021

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31275489A Pending JPH03173121A (en) 1989-11-30 1989-11-30 Crystallization apparatus of semiconductor film

Country Status (1)

Country Link
JP (1) JPH03173121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208847B2 (en) 2006-11-15 2012-06-26 Ricoh Company, Ltd. Sheet folding apparatus and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8208847B2 (en) 2006-11-15 2012-06-26 Ricoh Company, Ltd. Sheet folding apparatus and image forming apparatus

Similar Documents

Publication Publication Date Title
JP4056577B2 (en) Laser irradiation method
JP4086932B2 (en) Laser irradiation apparatus and laser processing method
JP4059952B2 (en) Laser light irradiation method
US6563843B1 (en) Laser irradiation device
US8278659B2 (en) Uniform large-grained and grain boundary location manipulated polycrystalline thin film semiconductors formed using sequential lateral solidification and devices formed thereon
JP4021135B2 (en) Laser irradiation apparatus and method for manufacturing semiconductor device
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
JP2001015449A (en) Manufacture of semiconductor film
JP3751772B2 (en) Semiconductor thin film manufacturing equipment
JPH03286518A (en) Manufacture of thin semiconductor crystal layer
CN100442440C (en) Forming method for semiconductor thin film and forming device for semiconductor thin film
WO2006075568A1 (en) Production method and production device for polycrystalline semiconductor thin film
JPH03173121A (en) Crystallization apparatus of semiconductor film
JP4190901B2 (en) Laser irradiation apparatus and method for manufacturing semiconductor device
US7829245B2 (en) Mask for sequential lateral solidification and method of manufacturing the same
JP4410926B2 (en) Laser annealing method
JPH04142030A (en) Manufacture of semiconductor film
KR100619197B1 (en) Crystal growth apparatus and crystal growth method for semiconductor thin film
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
JPH04356393A (en) Laser beam machining optical system and laser beam machining method
JPH06140323A (en) Method of crystallizing semiconductor film
JPS62206819A (en) Semiconductor device
JPH01261820A (en) Laser irradiation apparatus
JPS5952831A (en) Beam annealing method
JPH03138925A (en) Semiconductor-film crystallizing method