JPH0317185B2 - - Google Patents

Info

Publication number
JPH0317185B2
JPH0317185B2 JP57115694A JP11569482A JPH0317185B2 JP H0317185 B2 JPH0317185 B2 JP H0317185B2 JP 57115694 A JP57115694 A JP 57115694A JP 11569482 A JP11569482 A JP 11569482A JP H0317185 B2 JPH0317185 B2 JP H0317185B2
Authority
JP
Japan
Prior art keywords
lithium
battery
thionyl chloride
negative electrode
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57115694A
Other languages
Japanese (ja)
Other versions
JPS598275A (en
Inventor
Yasuyuki Okamura
Zenzo Hagiwara
Minoru Mizutani
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP11569482A priority Critical patent/JPS598275A/en
Publication of JPS598275A publication Critical patent/JPS598275A/en
Publication of JPH0317185B2 publication Critical patent/JPH0317185B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】 本発明は、正極活物質に塩化チオニル、負極活
物質にリチウムを用いる塩化チオニル・リチウム
電池に於いて、その表面をポリエーテルサルフオ
ンフイルムで被覆した事を特徴とするリチウム負
極を用いた電池に関するものである。
[Detailed Description of the Invention] The present invention is a thionyl chloride lithium battery using thionyl chloride as a positive electrode active material and lithium as a negative electrode active material, and is characterized in that the surface thereof is coated with a polyether sulfon film. This invention relates to a battery using a lithium negative electrode.

近年著しい電子技術の進歩による電子機器の多
様化に伴い、電池に対する性能要求も多様化し、
Ag2O/Zn、MnO2/Zn、−(CF−)n/Li、
MnO2/Li等の各種電池が、それぞれの用途に応
じ大量に市場に供給されてきているが、塩化チオ
ニル・リチウム電池(SOCl2/Li電池)もまた、
その優秀なる性能、即ち、高いエネルギー密度、
出力密度、安定した高い電圧、優秀な貯蔵性能、
低温性能及び高率放電性能故に市場の注目を集め
ているものの一つである。
With the diversification of electronic devices due to remarkable advances in electronic technology in recent years, the performance requirements for batteries have also diversified.
Ag 2 O/Zn, MnO 2 /Zn, -(CF-)n/Li,
Various types of batteries such as MnO 2 /Li have been supplied to the market in large quantities depending on their purpose, but lithium thionyl chloride batteries (SOCl 2 /Li batteries) are also
Its excellent performance, namely high energy density,
power density, stable high voltage, excellent storage performance,
It is one of the products that is attracting attention in the market due to its low temperature performance and high rate discharge performance.

しかるにこの電池は、第1図に示す如くその構
造上活性金属であるリチウム負極が正極活物質で
あると共に電解質としても働く塩化チオニルと接
触している為、貯蔵中にリチウムが塩化チオニル
と反応し、その表面に高抵抗の塩化リチウムの不
動態被膜が生成し、長期貯蔵後の放電初期にこの
被膜の高抵抗に起因する著しい電圧降下(電圧遅
延)を起こし実使用上著しい不都合を与えるとい
う欠点があり、この電池の性能面での唯一の欠点
となつていた。
However, as shown in Figure 1, this battery has a structure in which the lithium negative electrode, which is an active metal, is in contact with thionyl chloride, which is the positive electrode active material and also acts as an electrolyte, so lithium reacts with thionyl chloride during storage. , a high-resistance passive film of lithium chloride is formed on its surface, and the high resistance of this film causes a significant voltage drop (voltage delay) at the beginning of discharge after long-term storage, resulting in significant inconvenience in actual use. This was the only drawback in terms of performance of this battery.

従来からこの種電圧遅延解消の為、多くの発
明、考案が為されており、例えばリチウム表面を
シアノアクリル酸メチル、シアノアクリル酸エチ
ルのフイルム等で被覆してから電池の状態で71℃
において「焼き込み」を行なつたり、或いはリチ
ウム表面を塩ビ−酢ビ共重合物のフイルムで被覆
し、更に塩化チオニル中に硫化リチウムを溶解し
その相乗効果を利用することにより、貯蔵中のリ
チウム表面への塩化チオニルの作用を妨げ、その
結果不動態膜の生成を防止し、電圧遅延を防止す
る等の方法が用いられてきた。しかしながらシア
ノアクリル酸メチル、シアノアクリル酸メチルは
市販の瞬間接着剤に用いられている如く非常に接
着性に富むため、その取り扱いが困難であり、ま
た塩ビ−酢ビ共重合体の被覆は、同物質の塩化チ
オニル溶液をリチウム上に塗布した後、塩化チオ
ニルのみを蒸発除去して形成させるが、塩化チオ
ニル自体は強い刺激臭と腐蝕性、毒性を有するた
め、その作業、設備が極めて面倒であり、さらに
硫化リチウムは非常に吸湿性に富むため、その保
管、取り扱いが極めて面倒であるという欠点を有
している。
Many inventions and ideas have been made to eliminate this kind of voltage delay. For example, the lithium surface is coated with a film of methyl cyanoacrylate or ethyl cyanoacrylate, and then the battery is heated to 71°C.
By performing "burning" on the lithium surface, or by coating the lithium surface with a film of vinyl chloride-vinyl acetate copolymer, and by dissolving lithium sulfide in thionyl chloride and utilizing the synergistic effect, the lithium during storage can be Methods have been used to prevent the action of thionyl chloride on the surface, thereby preventing the formation of a passive film and preventing voltage delay. However, methyl cyanoacrylate and methyl cyanoacrylate, which are used in commercially available instant adhesives, are extremely adhesive and difficult to handle. After applying a solution of the substance thionyl chloride on lithium, only thionyl chloride is removed by evaporation, but thionyl chloride itself has a strong pungent odor, corrosivity, and toxicity, so the work and equipment are extremely troublesome. Moreover, since lithium sulfide is highly hygroscopic, it has the disadvantage that its storage and handling are extremely troublesome.

本発明はこれらの欠点を解消するもので、簡単
な操作で被覆が可能で、且つ電圧遅延を有効に抑
制することができるリチウム表面の保護被膜に関
するものである。すなわち本発明は、接着性や吸
着性がなくて取り扱いが簡単なポリエーテルサル
フオンをリチウムに対し比較的安定で、且つ毒
性、腐蝕性、引火性のない低沸点溶媒(40℃)で
ある塩化メチレンに溶かして成る溶液中にリチウ
ムを単に浸漬し次いで乾燥するだけで得られるポ
リエーテルサルフオンフイルムで被覆したリチウ
ム負極を用いる事により、電池の状態で「焼き込
み」という煩雑な操作を行なうことなく、貯蔵中
の塩化チオニルとリチウムの反応を有効に防止
し、塩化リチウムの不動態膜の生成を抑制し、そ
の結果長期貯蔵後の電圧遅延を解消し良好なる放
電性能を有するSOCl2/Li電池を提供せんとする
ものである。
The present invention solves these drawbacks and relates to a protective coating for the surface of lithium that can be coated with a simple operation and that can effectively suppress voltage delay. In other words, the present invention uses polyether sulfone, which has no adhesive or adsorbing properties and is easy to handle, to chloride, which is a low boiling point solvent (40°C) that is relatively stable against lithium and is non-toxic, corrosive, and non-flammable. By using a lithium negative electrode coated with a polyether sulfon film obtained by simply immersing lithium in a solution prepared by dissolving it in methylene and then drying it, a complicated operation called "burning" is performed in the battery state. SOCl 2 /Li effectively prevents the reaction between thionyl chloride and lithium during storage, suppresses the formation of a passive film of lithium chloride, eliminates voltage delay after long-term storage, and has good discharge performance. The aim is to provide batteries.

以下本発明の一実施例を図面に基づき説明す
る。第1図は本発明によるポリエーテルサルフオ
ン被膜でその表面を覆つたリチウム負極を用いた
直径14mmφ、高さ29mmのSOCl2/Li電池の縦断面
図である。図中1はSuS304より成る正極ケース、
2はテフロンとアセチレンブラツクより成る正極
集電体、3はガラス不織布より成るセパレータ
ー、4は本発明のリチウム負極5はニツケルによ
り成る負極リード、6は正極活物質として働くと
共に電解液としても作用する1.5MのLiAlCl4を含
んだ塩化チオニル、7はSuS304製の負極端子で
注液管の役割も行なう先端は熔融封止されてお
り、SuS304製のケースフタ8とはガラス層9に
より絶縁、ハーメチツクシールされている。
An embodiment of the present invention will be described below based on the drawings. FIG. 1 is a longitudinal sectional view of an SOCl 2 /Li battery having a diameter of 14 mmφ and a height of 29 mm, using a lithium negative electrode whose surface is covered with a polyether sulfon film according to the present invention. 1 in the figure is a positive electrode case made of SuS304.
2 is a positive electrode current collector made of Teflon and acetylene black, 3 is a separator made of glass non-woven fabric, 4 is a lithium negative electrode 5 of the present invention is a negative electrode lead made of nickel, and 6 acts as a positive electrode active material and also acts as an electrolyte. Thionyl chloride containing 1.5M LiAlCl 4 , 7 is a negative electrode terminal made of SuS304, the tip which also serves as a liquid injection pipe is melt-sealed, and the case lid 8 made of SuS304 is insulated by a glass layer 9 and hermetically sealed. It has been sealed.

第2図は本発明によるリチウム負極の拡大断面
図であり、リチウム10の外表面をポリエーテル
サルフオン11で被覆したものであり、ドライボ
ツクス中にてポリエーテルサルフオンの5%塩化
メチレン溶液中にリチウムを浸漬後、直ちに引き
上げ乾燥するのみという簡単な操作により得られ
たものである。
FIG. 2 is an enlarged cross-sectional view of a lithium negative electrode according to the present invention, in which the outer surface of lithium 10 is coated with polyethersulfon 11, and the electrode is placed in a 5% methylene chloride solution of polyethersulfon in a dry box. It was obtained by a simple operation of immersing lithium in water and immediately pulling it up and drying it.

尚、ポリエーテルサルフオンの被覆は塩化メチ
レンに溶解させた任意の濃度のポリエーテルサル
フオン溶液中にリチウムを浸漬後乾燥することに
より容易に形成することができ、またポリエーテ
ルサルフオン塩化メチレン溶液は吸湿性接着性に
乏しいので通常大気中にて調整ができその取り扱
いは極めて容易である。
The polyether sulfon coating can be easily formed by immersing lithium in a polyether sulfon solution of any concentration dissolved in methylene chloride and then drying it. Because it has poor hygroscopic adhesive properties, it can usually be prepared in the atmosphere and is extremely easy to handle.

つぎに本実施例に基づくSOCl2/Li電池Aと全
く処理していないリチウムを用いて作成した電池
Bをそれぞれ60℃で10日間貯蔵した時1KΩ負荷、
温度25℃で放電した時の放電初期特性の比較を第
3図に示す。これより明らかな如く、本発明に基
づく電池は放電初期の電圧遅延がなく良好な立上
がり特性を示すのが判る。
Next, when SOCl 2 /Li battery A based on this example and battery B made using completely untreated lithium were stored at 60°C for 10 days, the load was 1KΩ.
Figure 3 shows a comparison of the initial discharge characteristics when discharged at a temperature of 25°C. As is clear from this, the battery according to the present invention has no voltage delay at the initial stage of discharge and exhibits good start-up characteristics.

またポリエーテルサルフオンの膜厚と効果の関
係を間接的に調べる為、ポリエーテルサルフオン
の塩化メチレン溶液濃度を5%〜40%の範囲で変
えてそれぞれリチウムを浸漬乾燥させてその表面
に各種膜厚のポリエーテルサルフオン層を形成せ
しめ、本実施例に基づく構造の電池を作成し、前
述と同一の試験を行ない電圧遅延を調べた。
In addition, in order to indirectly investigate the relationship between the film thickness and the effect of polyether sulfon, we varied the concentration of polyether sulfon in methylene chloride solution in the range of 5% to 40%, immersed and dried lithium, and applied various types of polyether sulfon to the surface. A battery having a structure based on this example was prepared by forming a thick polyether sulfon layer, and the same test as described above was conducted to examine the voltage delay.

結果を第4図に示す。全範囲に亘つて電圧遅延
抑制効果が認められたが、特に好ましいのは5%
〜15%の濃度範囲であつた。
The results are shown in Figure 4. Voltage delay suppressing effects were observed over the entire range, but 5% is particularly preferable.
The concentration range was ~15%.

このことより、ポリエーテルサルフオン被膜の
厚みと電圧遅延抑制効果の間には何らかの関係が
ありそうであるが、ポリエーテルサルフオン自体
の塩化チオニル中でのリチウムの保護機構が明確
でないため、はつきりした事は判らない。
From this, it seems that there is some relationship between the thickness of the polyether sulfon coating and the voltage delay suppressing effect, but since the protection mechanism of polyether sulfon itself for lithium in thionyl chloride is not clear, I don't know what happened.

しかしながらポリエーテルサルフオンによる電
圧遅延抑制効果はその塗膜厚に関係なく明らかで
あることは一目瞭然である。
However, it is obvious that the voltage delay suppressing effect of polyether sulfon is obvious regardless of the coating thickness.

以上より明らかな如く、本発明は電圧遅延のな
いSOCl2/Li電池を容易に提供するものであり、
その工業的価値著しく大である。
As is clear from the above, the present invention easily provides an SOCl 2 /Li battery without voltage delay,
Its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づくリチウムを用いた
SOCl2/Li電池の縦断面図。第2図は、本発明に
基づくポリエーテルサルフオン被膜を有するリチ
ウムの部分断面拡大図。第3図は本発明に基づく
電池Aと従来の電池Bの放電曲線。第4図はポリ
エーテルサルフオンの塩化メチレン溶液濃度と30
秒目電圧の相関図。 4……リチウム負極、10……リチウム、11
……ポリエーテルサルフオン。
Figure 1 shows a sample using lithium according to the present invention.
Longitudinal cross-sectional view of SOCl 2 /Li battery. FIG. 2 is an enlarged partial cross-sectional view of lithium with a polyether sulfon coating according to the present invention. FIG. 3 shows the discharge curves of battery A according to the present invention and conventional battery B. Figure 4 shows the concentration of polyether sulfone in methylene chloride solution and 30
Correlation diagram of second voltage. 4...Lithium negative electrode, 10...Lithium, 11
...Polyether sulfon.

Claims (1)

【特許請求の範囲】[Claims] 1 ポリエーテルサルフオン樹脂で表面を被覆し
たリチウムを負極活物質として用いることを特徴
とした塩化チオニル・リチウム電池。
1. A thionyl chloride lithium battery characterized by using lithium whose surface is coated with polyether sulfone resin as a negative electrode active material.
JP11569482A 1982-07-02 1982-07-02 Thionyl chloride-lithium battery Granted JPS598275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11569482A JPS598275A (en) 1982-07-02 1982-07-02 Thionyl chloride-lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11569482A JPS598275A (en) 1982-07-02 1982-07-02 Thionyl chloride-lithium battery

Publications (2)

Publication Number Publication Date
JPS598275A JPS598275A (en) 1984-01-17
JPH0317185B2 true JPH0317185B2 (en) 1991-03-07

Family

ID=14668921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11569482A Granted JPS598275A (en) 1982-07-02 1982-07-02 Thionyl chloride-lithium battery

Country Status (1)

Country Link
JP (1) JPS598275A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0157878B1 (en) * 1983-09-29 1990-01-31 Medtronic, Inc. Nonaqueous electrochemical cell
EP3480901B1 (en) 2017-11-06 2020-02-19 Schleifring GmbH Vibration absorbing device for slip-ring brushes

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553073A (en) * 1978-10-11 1980-04-18 Catanzarite Vincent Owen Lithium anode* thionyl chloride active cathode electrochemical battery coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5553073A (en) * 1978-10-11 1980-04-18 Catanzarite Vincent Owen Lithium anode* thionyl chloride active cathode electrochemical battery coating

Also Published As

Publication number Publication date
JPS598275A (en) 1984-01-17

Similar Documents

Publication Publication Date Title
Tobishima et al. Lithium cycling efficiency and conductivity for high dielectric solvent/low viscosity solvent mixed systems
US4740433A (en) Nonaqueous battery with special separator
JPS62283553A (en) Battery isolation plate assembly
JPS58131660A (en) Reducing agent in alkali battery electrolyte
JPH0317185B2 (en)
CA2106546C (en) Treated porous carbon black cathode and lithium based, nonaqueous electrolyte cell including said treated cathode
JPH0317184B2 (en)
JP3292220B2 (en) Lithium battery
US3269869A (en) Inter-electrode separator
JP3512826B2 (en) Button type alkaline battery
JPH0432505B2 (en)
JPH02210769A (en) Manufacture of nonaqueous battery
JPS6035461A (en) Organic electrolyte battery
KR900004056A (en) Negative electrode composition containing monodisperse internally added particles
JP3470425B2 (en) Manufacturing method of button type alkaline battery
JP2005209585A (en) Battery
JP2830479B2 (en) Non-aqueous electrolyte secondary battery
JPS58176875A (en) Nonaqueous electrolyte battery
JPS61190864A (en) Nonaqueous solvent battery
Shi et al. Effect of perfluoroalkylsulfonate on the discharge behaviour of PbO2 electrodes in sulfuric acid solution
JPS63241866A (en) Nonaqueous electrolytic battery
Gleason et al. Ammonia Vapor Activated Batteries
JP2739360B2 (en) Manganese dry cell
JPS63175347A (en) Nonaqueous solvent battery
JPS6041775A (en) Nonaqueous electrolyte battery