JPH03171547A - Scattering preventive type fluorescent lamp - Google Patents

Scattering preventive type fluorescent lamp

Info

Publication number
JPH03171547A
JPH03171547A JP31006289A JP31006289A JPH03171547A JP H03171547 A JPH03171547 A JP H03171547A JP 31006289 A JP31006289 A JP 31006289A JP 31006289 A JP31006289 A JP 31006289A JP H03171547 A JPH03171547 A JP H03171547A
Authority
JP
Japan
Prior art keywords
coating
fluorescent lamp
membrane
transparent
polymer resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31006289A
Other languages
Japanese (ja)
Inventor
Yoshinori Otaka
大高 良憲
Haruo Shibata
柴田 治男
Toyoichi Amano
天野 豊一
Mutsuo Takahashi
高橋 睦夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP31006289A priority Critical patent/JPH03171547A/en
Publication of JPH03171547A publication Critical patent/JPH03171547A/en
Pending legal-status Critical Current

Links

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

PURPOSE:To prevent a deterioration of a high polymer resin and to improve the scattering preventive effect by forming an ultraviolet ray absorbing membrane and plural layers of transparent membranes which consist of high polymer resins with different expansion rates in order at the outer surface of a glass tube. CONSTITUTION:By a membrane 2 to absorb ultraviolet rays less than 400nm formed at the outer surface of a glass tube 1, a deterioration owing to the ultraviolet rays less than 400nm emitted from a fluorescent lamp furnishing a transparent membrane 3 of a high polymer resin with the expansion rate 200% or more and a transparent membrane 4 of a high polymer with the expansion rate less than 150% can be prevented. And since the lamp can stand a surface shock by the membrane 3, and can stand a spot shock by the membrane 4, the scattering preventive effect can be increased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は新規な飛散防止形蛍光灯に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a novel shatterproof fluorescent lamp.

従来の技術 蛍光灯はガラス管を用いていることから、取扱をあやま
ってガラス管を破損させた場合、ガラス片が飛散り人身
事故をおこすおそれがある。これに対処する方法として
、蛍光灯についてはガラス管の外面を例えば、ポリエス
テル樹脂等の高分子樹脂製の透明チューブで覆った飛散
防止形蛍光灯が公知である。これは熱収縮タイプのポリ
エステル樹脂のチューブをガラス管に被せ、ついでこの
チューブを加熱処理することによりガラス管外面に高分
子樹脂被膜を形成したものである。
Since conventional fluorescent lamps use glass tubes, if the glass tubes are damaged due to improper handling, glass fragments may fly off and cause personal injury. As a method for dealing with this problem, a shatterproof type fluorescent lamp is known in which the outer surface of a glass tube is covered with a transparent tube made of a polymer resin such as polyester resin. This is a method in which a glass tube is covered with a heat-shrinkable polyester resin tube, and then the tube is heat-treated to form a polymer resin coating on the outer surface of the glass tube.

発明が解決しようとする課題 従来の飛散防止形蛍光灯では耐候性,膜強度等を考慮し
て前記のようにポリエステル樹脂製のチューブが用いら
れている。
Problems to be Solved by the Invention In conventional shatterproof fluorescent lamps, tubes made of polyester resin are used in consideration of weather resistance, film strength, etc., as described above.

しかしながら、このチューブはチューブ加工の難しさが
原因で価格が極めて高いうえに、完威した蛍光灯に手作
業でチューブを被せるという極めて作業性が悪い工程が
不可欠で、そのために飛散防止形蛍光灯は一般形蛍光灯
に比べ極めて高価なものになってしまうという問題があ
った。
However, this tube is extremely expensive due to the difficulty of tube processing, and it requires an extremely inefficient process of manually covering the tube over a fully-used fluorescent lamp. The problem is that they are extremely expensive compared to general fluorescent lamps.

そこで発明者らは先に、例えば有機溶剤可溶ポリエステ
ルボリオール系のウレタン樹脂、架橋構造をもったウレ
タンエラストマーを水に分散させたポリウレタン水分散
体を主成分とする樹脂等の透明な飛散防止用被膜の形成
が極めて容易となり、ランプコストを従来に比べ大幅に
低減することができる飛散防止形蛍光灯について提案し
たが、さらに高負荷形蛍光灯について検討を進めた結果
、前記高分子樹脂被膜の劣化が著しく進行するといった
問題が生じてきた。
Therefore, the inventors first developed transparent anti-scattering resins such as organic solvent-soluble polyester polyol-based urethane resins and resins whose main component is a polyurethane water dispersion in which a urethane elastomer with a crosslinked structure is dispersed in water. We proposed an anti-scattering fluorescent lamp, which makes it extremely easy to form a protective coating and significantly reduces lamp costs compared to conventional lamps.However, as a result of further studies on high-load fluorescent lamps, we found that the polymer resin coating described above A problem has arisen in which the deterioration of

また、落下強度試験においては、面衝撃であることから
、蛍光灯に対する衝撃の接触面積が大きく、一方耐衝撃
試験においては、点衝撃であることから、蛍光灯に対す
る衝撃面積が小さいが、前記高分子樹脂被膜を単独で使
用した場合には、落下強度試験と耐衝撃試験による飛散
防止強度に大きな差があり、飛散効果が薄れるという問
題が生じてきた。
In addition, in the drop strength test, since the impact is a surface impact, the contact area of the impact against the fluorescent lamp is large, while in the impact resistance test, the impact area is small against the fluorescent lamp because it is a point impact, but When a molecular resin coating is used alone, there is a large difference in anti-scattering strength between drop strength tests and impact tests, resulting in the problem that the anti-scattering effect is weakened.

これらについて、発明者らは鋭意研究をした結果、前記
高分子樹脂被膜の劣化は、蛍光灯から放射される400
nm以下の紫外線により高分子透明樹脂を形成する高分
子に遊離基が生成され、この反応が進行すると、高分子
架橋がつぎつぎに切断されて引っ張り強度や伸び率が低
下したり、樹脂が黄色に着色したりすることが明らかと
なった。
As a result of intensive research by the inventors regarding these issues, we found that the deterioration of the polymer resin coating is caused by
Free radicals are generated in the polymer that forms the transparent polymer resin by ultraviolet light of nm or less, and as this reaction progresses, the polymer crosslinks are broken one after another, resulting in a decrease in tensile strength and elongation, and the resin turns yellow. It became clear that it was colored.

本発明は、上記の問題点を解決するためになされたもの
であり、従来に比し被膜形威が容易でかつ作業性もよく
、しかも飛散防止用高分子樹脂の劣化を防止するととも
に、異なる衝撃に対して飛散防止効果のすぐれた飛散防
止形蛍光灯を提供するものである。
The present invention has been made in order to solve the above problems, and it is easier to form a film than before, has good workability, prevents deterioration of the scattering prevention polymer resin, and is different from the conventional one. An object of the present invention is to provide a shatterproof fluorescent lamp that has an excellent shatterproof effect against impact.

課題を解決するための手段 この目的を達戒するために本発明の飛散防止形蛍光灯は
、ガラス管の外面に、400nm以下の紫外線を吸収す
る被膜、伸び率が200パーセント以上の高分子樹脂か
らなる透明な被膜、150バーセント以下の高分子樹脂
からなる透明な被膜を順次形成した構成を有している。
Means for Solving the Problems In order to achieve this object, the shatterproof fluorescent lamp of the present invention has a coating on the outer surface of the glass tube that absorbs ultraviolet rays of 400 nm or less, and a polymer resin with an elongation rate of 200% or more. It has a structure in which a transparent film made of a transparent film made of a polymer resin of 150 percent or less is sequentially formed.

作用 本発明によると、ガラス管の外面に400nm以下の紫
外線を吸収する被膜を形成することにより、その上に被
着される高分子樹脂の透明被膜が蛍光灯から放射される
400nm以下の紫外線による劣化が防止できるととも
に、さらに、前記被膜上に伸び率が200バーセント以
上の大きく軟らかい高分子樹脂からなる透明な被膜を形
戒することにより、面衝撃に対して耐え得る。さらに、
その上に伸び率が150パーセント以下の小さく硬い高
分子樹脂からなる透明な被膜を形成することにより点衝
撃をに対しても耐え得る。
According to the present invention, by forming a coating on the outer surface of the glass tube that absorbs ultraviolet rays of 400 nm or less, the transparent coating of polymeric resin applied thereon can absorb ultraviolet rays of 400 nm or less emitted from fluorescent lamps. In addition to being able to prevent deterioration, by forming a transparent coating made of a large, soft polymer resin with an elongation rate of 200% or more on the coating, it can withstand surface impact. moreover,
By forming thereon a transparent film made of a small, hard polymer resin with an elongation rate of 150% or less, it can withstand point impact.

実施例 発明者らは第一段階として、ガラス管の外面に例えばポ
リウレタン樹脂からなる伸び率の異なった透明な被膜を
各々用いた飛散防止形蛍光灯を作製し、次のような落下
強度試験と耐衝撃試験を行ってガラス片の飛散状態を確
認した結果を第1表に示す。
Example As a first step, the inventors fabricated shatterproof fluorescent lamps using transparent coatings made of polyurethane resin with different elongation rates on the outer surface of glass tubes, and conducted the following drop strength test. Table 1 shows the results of an impact test to check the scattering of glass pieces.

(以  下  余  白) 第 1 表 第1表から明らかなように、衝撃の接触面積が大きくな
ればなるほど高分子樹脂被膜の弾力性力《高く軟らかい
伸び率の200/くーセント以上のものほどよく、また
、衝撃の接触面積が小さいほど前者とは逆に高分子樹脂
被膜の弾力性がない伸び率の150パーセント以下の硬
いものほどよいということが明らかとなった。
(Margins below) Table 1 As is clear from Table 1, the larger the impact contact area, the higher the elasticity of the polymer resin coating. It has also become clear that the smaller the impact contact area, the harder the polymer resin coating has no elasticity and is less than 150% of the elongation rate, contrary to the former.

上記の結果をふまえ、発明者らは次のような実験を行っ
た。
Based on the above results, the inventors conducted the following experiment.

第1層、紫外線吸収膜として有機溶剤形酸化亜鉛溶液を
用いて、この溶液中に水平保持した環形30ワット蛍光
灯を浸したのち、これを引き上げて、温度70℃,風速
5 m/seeの温風で乾燥することにより、第1図に
示すように、ガラス管lの外面に酸化亜鉛からなる透明
な紫外線吸収被膜2を10μの厚さに形威する。ついで
、第2層として、ポリウレタン水分散体く第一工業製薬
株式会社製:スーパーフレックス)1500grの液中
に、水平保持した前記蛍光灯を浸したのち、これを引き
上げて、温度100℃,風速5m/secの温風で乾燥
し、前記紫外線吸収被膜2上に伸び率が150〜800
パーセントのポリウレタン樹脂からなる透明な被膜3を
60μの厚さに形成する。
For the first layer, an organic solvent-based zinc oxide solution was used as the ultraviolet absorbing film. A 30-watt annular fluorescent lamp held horizontally was immersed in this solution, then pulled up and placed at a temperature of 70°C and a wind speed of 5 m/see. By drying with warm air, a transparent ultraviolet absorbing coating 2 made of zinc oxide is formed on the outer surface of the glass tube 1 to a thickness of 10 μm, as shown in FIG. Next, as a second layer, the fluorescent lamp held horizontally was immersed in 1500 gr of a polyurethane water dispersion (Superflex, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.), and then lifted out and placed at a temperature of 100°C and a wind speed. Dry with hot air at 5 m/sec to form an elongation rate of 150 to 800 on the ultraviolet absorbing coating 2.
% polyurethane resin is formed to a thickness of 60 μm.

ついで、第3層として、ポリウレタン水分散体1500
grの液中に水平保持した前記蛍光灯を浸したのち、こ
れを引き上げて、温度100℃,風速5 m / s 
e cの温風で乾燥し、伸び率が100〜200パーセ
ントのポリウレタン樹脂からなる透明な被膜4を40μ
の厚さに形成することにより飛散防止形蛍光灯を得た。
Then, as the third layer, polyurethane water dispersion 1500
After immersing the fluorescent lamp held horizontally in the gr liquid, it was pulled up and heated to a temperature of 100°C and a wind speed of 5 m/s.
A transparent film 4 made of polyurethane resin with an elongation rate of 100 to 200% is dried with 40 μm of e.g.
A shatterproof fluorescent lamp was obtained by forming the lamp to a thickness of .

なお、第1図中、5は蛍光体被膜を示す。In addition, in FIG. 1, 5 indicates a phosphor coating.

このようにして得られた蛍光灯を用いて、蛍光灯を水平
に保ち、3mの高さからこれを自然落下させる落下強度
試験と、1mの長さの糸の端に付けた200grの鋼球
を鉛直線から30度の角度で蛍光灯に当てる耐衝撃試験
を行った結果を第2表に示す。
Using the fluorescent lamp obtained in this way, a drop strength test was conducted in which the fluorescent lamp was held horizontally and dropped naturally from a height of 3 m, and a 200 gr steel ball was attached to the end of a 1 m long string. Table 2 shows the results of an impact test in which the sample was exposed to a fluorescent lamp at an angle of 30 degrees from the vertical line.

(以 下 余 白) 第 2 表 第2表から明らかなように、ガラス管の外面に紫外線吸
収膜を形成し、さらに前記被膜の上に伸び率が200パ
ーセント以上の大きく軟らかいボリウレタン樹脂からな
る透明な被膜を形成し、さらに前記被膜の上に伸び率が
150パーセント以下の小さく硬いポリウレタン樹脂か
らなる透明な被膜を形威した三層構造を採用することに
より、落下強度試験では、ガラス管は破損したものの、
被膜は破損せず、ガラス片はこの被膜に強固に付着した
状態になっており、したがってガラス片は被膜で保護さ
れて飛び散るものは全くなかった。
(Left below) Table 2 As is clear from Table 2, an ultraviolet absorbing film is formed on the outer surface of the glass tube, and a large, soft polyurethane resin with an elongation rate of 200% or more is formed on top of the film. By forming a transparent film and adopting a three-layer structure with a transparent film made of a small, hard polyurethane resin with an elongation rate of 150% or less on top of the film, glass tubes were Although it was damaged,
The coating was not damaged and the glass pieces were firmly attached to the coating, so the glass pieces were protected by the coating and did not fly away.

次に、耐衝撃試験でも、被膜は全く破損しなかった。Next, the coating was not damaged at all in the impact test.

また、寿命試験として5000時間点灯したところ、本
発明にかかる蛍光灯は黄色に着色せず、問題のないこと
が認められた。しかし、かかる紫外線吸収膜2を有せず
、単にガラス管1の外面に前記透明被膜3を形成した蛍
光灯では、1000時間の点灯で黄色に着色することが
認められた。
Furthermore, when the lamp was lit for 5,000 hours as a life test, the fluorescent lamp according to the present invention did not turn yellow and was found to have no problems. However, in a fluorescent lamp in which the transparent coating 3 was simply formed on the outer surface of the glass tube 1 without having such an ultraviolet absorbing film 2, it was observed that the fluorescent lamp turned yellow after being lit for 1000 hours.

以上のように本実施例によれば、ガラス管1の外面に紫
外線吸収被膜2を形成し、さらにこの被膜上に伸び率が
2.00パーセント以上の大きく軟らかいポリウレタン
樹脂からなる透明な被膜3を形成し、さらにこの被膜上
に伸び率が150パーセント以下の小さく硬いポリウレ
タン樹脂がらなる透明な被膜4を形成する三層構造を有
しており、従来に比しコストを1/2以下と大幅に低減
することができる。
As described above, according to this embodiment, an ultraviolet absorbing coating 2 is formed on the outer surface of a glass tube 1, and a transparent coating 3 made of a large, soft polyurethane resin with an elongation rate of 2.00% or more is further formed on this coating. It has a three-layer structure in which a transparent film 4 made of a small, hard polyurethane resin with an elongation rate of 150% or less is formed on this film, significantly reducing the cost by half or less compared to conventional methods. can be reduced.

発明の効果 以上説明したように本発明は、ガラス管の外面に400
nm以下の紫外線を吸収する被膜を形威し、さらに前記
被膜上に伸び率が200パーセント以上の高分子樹脂か
らなる透明被膜を形成し、さらに、その上に伸び率が1
50バーセント以下の小さく硬い高分子からなる透明被
膜を形成することにより、従来に比べてガラス管への飛
散防止被膜の形成が極めて容易となり、また材料費も安
価であることから、コストを従来に比し大幅に低減する
ことができ、さらに飛散防止効果が大なる上、飛散防止
用高分子樹脂の劣化を防止することができる飛散防止形
蛍光灯を提供することができるものである。
Effects of the Invention As explained above, the present invention provides a coating of 400% on the outer surface of the glass tube.
A coating that absorbs ultraviolet rays of nm or less is formed, and a transparent coating made of a polymer resin with an elongation rate of 200% or more is formed on the coating, and a transparent coating made of a polymer resin with an elongation rate of 1% or more is formed on the coating.
By forming a transparent coating made of a small, hard polymer with a size of 50 percent or less, it is much easier to form a shatterproof coating on glass tubes than before, and the material costs are also low, making it possible to reduce costs compared to conventional methods. It is possible to provide an anti-scattering type fluorescent lamp which can significantly reduce the amount of heat generated compared to the conventional one, has a greater anti-scattering effect, and can prevent deterioration of the anti-scattering polymer resin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発咽の一実施例である飛散防止形蛍光ランプ
の断面図である。 1・・・・・・ガラス管、2・・・・・・紫外線吸収被
膜、3・・・・・・200パーセント以上の軟らかい高
分子樹脂からなる透明な被膜、4・・・・・・150パ
ーセント以下の硬い高分子樹脂からなる透明な被膜、5
・・・・・・蛍光体被膜。
FIG. 1 is a sectional view of a shatterproof fluorescent lamp which is an embodiment of the present invention. 1... Glass tube, 2... Ultraviolet absorbing coating, 3... Transparent coating made of 200% or more soft polymer resin, 4... 150 Transparent film made of hard polymer resin of less than 5%
...phosphor coating.

Claims (1)

【特許請求の範囲】[Claims] ガラス管の外面に、400nm以下の紫外線を吸収する
被膜を形成し、次いで前記被膜の上に伸び率が200パ
ーセント以上の高分子樹脂からなる透明な被膜を形成し
、さらに前記透明な被膜の上に伸び率が150パーセン
ト以下の高分子樹脂からなる透明な被膜を形成したこと
を特徴とする飛散防止形蛍光灯。
A coating that absorbs ultraviolet rays of 400 nm or less is formed on the outer surface of the glass tube, then a transparent coating made of a polymer resin with an elongation rate of 200% or more is formed on the coating, and then a transparent coating is formed on the transparent coating. A shatterproof fluorescent lamp characterized by forming a transparent coating made of a polymer resin with an elongation rate of 150% or less.
JP31006289A 1989-11-29 1989-11-29 Scattering preventive type fluorescent lamp Pending JPH03171547A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31006289A JPH03171547A (en) 1989-11-29 1989-11-29 Scattering preventive type fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31006289A JPH03171547A (en) 1989-11-29 1989-11-29 Scattering preventive type fluorescent lamp

Publications (1)

Publication Number Publication Date
JPH03171547A true JPH03171547A (en) 1991-07-25

Family

ID=18000710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31006289A Pending JPH03171547A (en) 1989-11-29 1989-11-29 Scattering preventive type fluorescent lamp

Country Status (1)

Country Link
JP (1) JPH03171547A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496985B1 (en) * 1969-07-15 1974-02-18

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS496985B1 (en) * 1969-07-15 1974-02-18

Similar Documents

Publication Publication Date Title
JP4326679B2 (en) Hard coat film
ES2217144T3 (en) GLASS AND LAMINATED ELEMENT FOR USE IN THE SAME.
JP5934533B2 (en) Multi-layer film and optical sheet
JP5690094B2 (en) Weatherproof hard coat film
US5124618A (en) Shatter-proof fluorescent lamp
WO2020100926A1 (en) Optical film, polarizing plate, surface plate for image display device, and image display device
KR20040073279A (en) Adhesive polyester film for optical use
KR20110009736A (en) Highly adhesive polyester film for optical use
JP2009102573A (en) Support film to be used as support at step of manufacturing polarizing film
JP5281595B2 (en) Polyester film
WO2015008522A1 (en) Coated film
TWI596387B (en) Surface-treated laminated film and polarising plate using it
JPH03171547A (en) Scattering preventive type fluorescent lamp
KR900004821B1 (en) Fluorescent lamp
JP2746704B2 (en) Shatterproof fluorescent lamp
KR100991458B1 (en) Cooling fin for evaporator
JP5900584B2 (en) Weatherproof hard coat film
JPH03159053A (en) Scatter preventing fluorescent light
JPH03171548A (en) Scattering preventing type fluorescent lamp
JP2695232B2 (en) Method of manufacturing shatterproof fluorescent lamp
JPH11116910A (en) Adhesive sheet
JPH03159055A (en) Scatter preventing fluorescent light
JP2001116922A (en) Method of producing polarizing plate and polarizing film
JPH0447659A (en) Sputter prevented green fluorescent lamp
JPH02273454A (en) Scattering prevention type fluorescent lamp