JPH03171206A - Position command generation method for multi-axis machine - Google Patents

Position command generation method for multi-axis machine

Info

Publication number
JPH03171206A
JPH03171206A JP30941189A JP30941189A JPH03171206A JP H03171206 A JPH03171206 A JP H03171206A JP 30941189 A JP30941189 A JP 30941189A JP 30941189 A JP30941189 A JP 30941189A JP H03171206 A JPH03171206 A JP H03171206A
Authority
JP
Japan
Prior art keywords
axis
command
given
function
approximated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30941189A
Other languages
Japanese (ja)
Other versions
JP3077145B2 (en
Inventor
Shukaku Kura
修郭 久良
Yoshiji Hiraga
義二 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Manufacturing Co Ltd filed Critical Yaskawa Electric Manufacturing Co Ltd
Priority to JP01309411A priority Critical patent/JP3077145B2/en
Publication of JPH03171206A publication Critical patent/JPH03171206A/en
Application granted granted Critical
Publication of JP3077145B2 publication Critical patent/JP3077145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To attain highly precise orbit control by giving a specified command function being the function of time to respective axes with a certain axis as a reference when a space curve is approximated to a polygonal line. CONSTITUTION:When the space curve is approximated to the polygonal line, the interpolation command of a straight line is given by expressions I and II when an X-axis and a Y-axis are set to be x1(t) and y1(t). Here, VY/VX=K and (VX<2>+VY<2>)<1/2>:moving speed. When the gains of respective axes are set to be Kx and Ky and (m) is selected as an expression III, y(t)/x(t)=K is satisfied in spite of the values of KY and KX. Thus, the command for the other axis can previously be corrected by considering the characteristic of a servo system with the command of one axis which is approximated to the straight line as the reference, and highly precise orbit control can be realized without increasing an operation time for every sampling period.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は,2軸以上の軸構成を有し、各軸がサーボ機構
で構成されている,NC,ロボット等の多軸機械の軌道
制御指令の発生方法社関する.[従来の技術] NC工作機械,ロボット等の多軸構成機械における空間
曲線としての自由曲線の生成は、与えられた曲線を微小
区間毎に直線で近似した折線近似を行なっている.モし
て各軸のサーボには、この直線を時間関数形の指令とし
て与えている.精度の良い形状を実現するために、極力
各軸のサーボ特性を一致させるように努めている.しか
し、厳密に特性を一致させることは不可能であり,その
ために形状誤差を生じることとなっている. このような問題点を解決するために、一つの基準軸を決
め他の軸については、基準軸の指令とあらかじめ計算さ
れた値と定数とを乗じたものと、基準軸と当該軸の応答
特性の差に別の定数を乗じたものとの和を指令として与
える方法が提案されている(特願昭62− 18356
3) .〔発明が解決しようとするBM3 サンプル値制御系では、サンプリング周期はできるだけ
短くすることが望ましい.そのためには毎サンプル行な
うべき計算量を極力減らさなければならない。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is applicable to trajectory control of multi-axis machines such as NCs and robots, which have two or more axes and each axis is composed of a servo mechanism. Regarding the method by which the directive is issued. [Prior Art] To generate a free curve as a space curve in a multi-axis component machine such as an NC machine tool or a robot, a broken line approximation is performed in which a given curve is approximated by a straight line for each minute section. This straight line is given to the servo of each axis as a time function command. In order to achieve a highly accurate shape, we strive to match the servo characteristics of each axis as much as possible. However, it is impossible to exactly match the characteristics, which results in shape errors. In order to solve these problems, one reference axis is determined, and for the other axes, the reference axis command is multiplied by a pre-calculated value and a constant, and the response characteristics of the reference axis and the relevant axis are calculated. A method has been proposed in which the sum of the difference multiplied by another constant is given as a command.
3). [BM3 In the sample value control system that the invention seeks to solve, it is desirable that the sampling period be as short as possible. To achieve this, it is necessary to reduce the amount of calculation that must be performed for each sample as much as possible.

しかし、この方法は、サンプル値制御系で、毎サンプル
上述の計算を行なわねばならず、軸数が増えるにつれ計
算時間も増大するという′欠点をもっている. [課題を解決するための手段] 本発明の多軸機械の位置指令発生方法は、任意に与えら
れる空間曲線を折線近似によってその動きとして実現す
る場合に、ある軸を基準とし、その軸には、折線近似を
図形上で実現できる時間(t)の関数であるf+(t)
を指令関数として与えるが、他の軸には、x+f+(t
)+fi(t)(ただし、i・2.3、・・・、Nとし
、f+(t)はr+(t)よりtに関し1次低い関数.
xIは定数〉を指令関数として生成して与える. 〔作用] 上述のように、折線近似決定時に全ての発生関数を求め
ておくので、毎サンプルでの計算量には、紬数が増えて
も全く影響を与えない.しかも多軸間の応答特性の違い
を完全に補償することができ、高精度な軌道制御が可能
となる.[実施例] 次に,本発明の実施例について図面を参照して説明する
. 第1図は本発明の一実施例を示すX%,Y軸の2軸から
なるサーボ系の概略構成図、第2図は点(xo+ yo
)から点(Xr.311)へ直線移動させる様子を示す
図である. 多軸構成の機械について、ここでは2軸を例にして説明
する.それ以上の多輪の場合には第1,第2軸の関係を
第1,第3.第1.第4軸として考えればよい. (t》速度指令をステップ状に与えて直線補間する場合 第2図に示している直線の補間指令は、X, Y軸のそ
れぞれをxt(t) e y凰(t)とするとき、(!
),《2}式で与えられる. 恥(t) =y,t           −(t)y
+(t)”Vyt−κVxj            
       ・・・ (2)v− r五石v1:移動
速度 (あらかじめ与えられる) となる。この時、各袖のゲインKをそれぞれκ8.K,
とすると、各軸の定常解は次式(3) . (4)とな
る. である. そこで、 xt(t)・V.t のとき、 yl(t)−Vyt◆謙 −{5) −(6) 定常解は次式(7》 となる. ここで、 とおくと, となる。園をこのように選ぶとy(t)/x(t)=K
はκV* KXの値に関係なく満足される。
However, this method has the disadvantage that the above calculation must be performed for each sample in the sample value control system, and as the number of axes increases, the calculation time also increases. [Means for Solving the Problems] The method for generating position commands for a multi-axis machine of the present invention uses a certain axis as a reference when realizing the movement of an arbitrarily given space curve by polygonal line approximation. , f+(t), which is a function of time (t) that can realize the broken line approximation on the figure.
is given as the command function, but for other axes, x+f+(t
)+fi(t) (where, i・2.3,...,N, f+(t) is a function that is one order lower in t than r+(t).
xI is given by generating a constant〉 as a command function. [Effect] As mentioned above, since all generation functions are obtained when determining the line approximation, the amount of calculation for each sample is not affected at all even if the number of Tsumugi increases. Furthermore, differences in response characteristics between multiple axes can be completely compensated for, making highly accurate orbit control possible. [Example] Next, an example of the present invention will be described with reference to the drawings. Fig. 1 is a schematic configuration diagram of a servo system consisting of two axes, X% and Y axes, showing an embodiment of the present invention, and Fig. 2 shows a point (xo + yo
) to the point (Xr.311). A multi-axis machine will be explained here using a two-axis machine as an example. If the number of wheels is larger than that, the relationship between the first and second axes should be changed to the first, third, and so on. 1st. You can think of it as the fourth axis. (t) When performing linear interpolation by giving a speed command in steps The linear interpolation command shown in Figure 2 is as follows: ( !
), given by formula 《2》. Shame (t) = y, t - (t) y
+(t)”Vyt−κVxj
... (2) v-r five stones v1: Movement speed (given in advance). At this time, the gain K of each sleeve is set to κ8. K,
Then, the steady solution for each axis is given by the following equation (3). (4) becomes. It is. Therefore, xt(t)・V. When t, yl(t)-Vyt◆Ken-{5)-(6) The steady-state solution is the following equation (7).Here, if we set , we get .If we choose the garden in this way, then y( t)/x(t)=K
is satisfied regardless of the value of κV*KX.

今、X+ (L)’f+ (L)”Vxtとおくと、3
1t(t)−Kf+(t)◆一となる。ここでーは《1
0》式により与えられる. 第3図は空間曲線をP.P,, P,Pク+ ””+ 
pv−+pvと折線近似する様子を示す図,第4図は第
3図の場合の位置指令計算部1の位置指令の演算処理を
示す流れ図である. システムクロック八T,サーボゲインK,, KYを人
力し《ステップl0,速度V.総点数關を人力する《ス
テップ12》。点の位1fj−1とする《ステップl3
》.点j.j◆1間のX軸方向の速JfVxと補間回数
Nを計算し(ステップ14) ,(t0)式の鵬の値を
計算する。補間回数iの初期値一l,位置指令の初期値
δ×。一〇,δy0−0とし(ステップl6),点jと
j◆1間のN個の位置指令δX I + δy.を演算
し、X軸サーボ機構2,Y軸サーボ機構3に出力する(
ステップ17〜20)。ステップ14〜20を点Pエま
での各折線について繰り返す(ステップ21.22)。
Now, if we set X+ (L)'f+ (L)"Vxt, then 3
1t(t)-Kf+(t)◆1. Here is《1
0》 is given by the formula. Figure 3 shows the space curve P. P,, P, Pku+ ””+
FIG. 4 is a flowchart showing the calculation process of the position command by the position command calculation unit 1 in the case of FIG. 3. Manually set the system clock 8T, servo gain K, and KY (step 10, speed V. Step 12: Manually calculate the total score. Set the point digit to 1fj-1《Step l3
》. Point j. The speed JfVx in the X-axis direction between j◆1 and the number of interpolations N are calculated (step 14), and the value of the pitch in equation (t0) is calculated. The initial value of the number of interpolations i is l, and the initial value of the position command is δ×. 10, δy0-0 (step l6), and N position commands δX I + δy between points j and j◆1. is calculated and output to the X-axis servo mechanism 2 and Y-axis servo mechanism 3 (
Steps 17-20). Steps 14-20 are repeated for each broken line up to point Pe (step 21.22).

(2)速度指令をランプ状に与えて直線補間する場合 xl(t)−a t2− (t1) yl (t) = Ka t2+mt+n     ・
・− (t2)をそれぞれの軸サーボ系への指令とする
。各軸の応答の定常解は次式(t3), (t4)とな
る。
(2) When performing linear interpolation by giving a speed command in a ramp shape xl (t) - a t2 - (t1) yl (t) = Ka t2 + mt + n ・
- Let (t2) be the command to each axis servo system. The steady-state solutions for the response of each axis are expressed by the following equations (t3) and (t4).

したがって、 となる。(+5). (+6)式より次式を得る。therefore, becomes. (+5). The following equation is obtained from equation (+6).

信 n=−                 ・・・(t
8)K× ここでも Xt(L)−L(L)・αt2 とするとき, y+(L)・Kf,(t)◆f2《0 たたし、f2(t)=st◆n ■,nは(t7) . (t8)式で与えられる。
Faith n=-...(t
8) K× Again, when Xt(L)-L(L)・αt2, y+(L)・Kf,(t)◆f2《0 Tatami, f2(t)=st◆n ■, n is (t7). It is given by equation (t8).

なる関数を発生してX,Y各軸のサーボ機構2.3へ指
令を出すと、その応答はゲインKX+κ7の違いにかか
わらず,理想の直線となる。
When a function is generated and a command is issued to the servo mechanism 2.3 for each of the X and Y axes, the response becomes an ideal straight line regardless of the difference in gain KX+κ7.

(3》加速度を直線で変化させる場合 速度がステップ.ランプの場合についてはすでに記述し
ているので、速度を2乗カーブで加速する場合について
述べる。
(3) When the acceleration is changed in a straight line The case in which the speed is a step or ramp has already been described, so the case in which the speed is accelerated in a square curve will be described.

速度を2乗カーブとするとき位置指令はXl (t) 
ma,L3m (t9)となる。
When the speed is a square curve, the position command is Xl (t)
ma, L3m (t9).

この時、本方法では yl (L)−Ka.t3++aL”+nt+p   
 −” (20)と′1−ることを意味している。
At this time, in this method, yl (L)-Ka. t3++aL”+nt+p
-” (20) means '1-.

ここで. Xl(t) . y+(L)をそれぞれのサ
ーボ機構2.3への指令とずる時その応答は したかって、 が導かれる。
here. Xl(t). When y+(L) is the command to each servo mechanism 2.3, the response is desired, and the following is derived.

これら3式より が得られる。From these three formulas is obtained.

このことは X▲(t)・fi(L) とするとき、 y. (L) =Kf, (t)+mt2+nt+pな
る関数を発生し、X.Y軸のサーボ系2.3へそれぞれ
指令を与えれば理想的な直線になることを示している。
This means that when X▲(t)・fi(L), y. (L) =Kf, (t)+mt2+nt+p is generated, and X. It is shown that if commands are given to the Y-axis servo systems 2.3, an ideal straight line will be drawn.

以上に示した演算(式(5). (6). (t1).
(t2),(t9). (20))は毎サンプルで行な
う必要はなく、折線近似の各折点て行なえばよい。
The calculations shown above (Equation (5). (6). (t1).
(t2), (t9). (20)) need not be performed for every sample, but may be performed for each breaking point of the broken line approximation.

[発明の効果] 以上説明したように本発明は、直線近似された1つの軸
の指令を基準に他の軸への指令を、サーボ系の特性を考
慮してあらかじめ修正することを可能にし,これを各軸
への指令とすることにより、サンプリング周期毎の演算
時間をふやすことなく多軸機械の高請度な軌道制御を実
現するという効果がある.
[Effects of the Invention] As explained above, the present invention makes it possible to modify in advance the commands to other axes based on the command of one linearly approximated axis in consideration of the characteristics of the servo system. By using this as a command for each axis, it is possible to realize highly reliable trajectory control of a multi-axis machine without increasing the calculation time for each sampling period.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すX軸.Y軸の2軸から
なるサーボ系の概略構成図,第2図は点(xo. yo
)から点(XI. y+)へ直線移動させる様子を示す
図、第3図は空間曲線をhat, hPs, ””PM
−IPklと折線近似する様子を示す図、第4図は第3
図の場合の位置指令計算部1の位置指令の演算処理を示
す流れ図である。 1・・・位置指令計算部、 2−X軸サーボ機構、 3−Y輪サーボ機構、 11〜2 2−・・ステップ.
FIG. 1 is an X-axis diagram showing an embodiment of the present invention. Figure 2 is a schematic configuration diagram of a servo system consisting of two axes, the Y-axis.
) to the point (XI.y+), Figure 3 shows the space curve as hat, hPs, ""PM
- A diagram showing how IPkl is approximated by a broken line, Figure 4 is the third
3 is a flowchart showing the position command calculation process of the position command calculation unit 1 in the case shown in FIG. 1...Position command calculation unit, 2-X-axis servo mechanism, 3-Y-wheel servo mechanism, 11-2 2-...Step.

Claims (1)

【特許請求の範囲】 1、2軸以上の構成を有し、各軸がサーボ機構で構成さ
れている機械において、 任意に与えられる空間曲線を折線近似によってその動き
として実現する場合に、ある軸を基準とし、その軸には
、折線近似を図形上で実現できる時間(t)の関数であ
るf_i(t)を指令関数として与えるが、他の軸には
、K_if_i(t)+f_i(t)(ただし、i=2
、3、・・・、Nとし、f_i(t)はf_i(t)よ
りtに関し1次低い関数、K_iは定数)を指令関数と
して生成して与える、多軸機械の位置指令発生方法。
[Claims] In a machine having one or two or more axes, each of which is composed of a servo mechanism, when an arbitrarily given spatial curve is realized as its movement by polygonal line approximation, is the reference, and on that axis, f_i(t), which is a function of time (t) that can realize the broken line approximation on the figure, is given as a command function, but on the other axes, K_if_i(t) + f_i(t) (However, i=2
, 3, . . . , N, f_i(t) is a function one order lower in t than f_i(t), and K_i is a constant) is generated and given as a command function.
JP01309411A 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism Expired - Fee Related JP3077145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01309411A JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01309411A JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Publications (2)

Publication Number Publication Date
JPH03171206A true JPH03171206A (en) 1991-07-24
JP3077145B2 JP3077145B2 (en) 2000-08-14

Family

ID=17992686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01309411A Expired - Fee Related JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Country Status (1)

Country Link
JP (1) JP3077145B2 (en)

Also Published As

Publication number Publication date
JP3077145B2 (en) 2000-08-14

Similar Documents

Publication Publication Date Title
Sundar et al. Optimal obstacle avoidance based on the Hamilton-Jacobi-Bellman equation
Phan et al. A mathematical theory of learning control for linear discrete multivariable systems
JPH074739B2 (en) Digitizing method
JPH022663B2 (en)
KR910002317B1 (en) Numerical control device
JPH03171206A (en) Position command generation method for multi-axis machine
US3896361A (en) Method and apparatus for compensating an error in numerical control
JPS62247405A (en) Restoring method for command position
Ahmed et al. Industrial implementation of a fuzzy logic controller for brushless DC motor drives using the PicoMotion control framework
JPH08328635A (en) Position control system
Shugen et al. Dynamic redundancy resolution of redundant manipulators with local optimization of a kinematic criterion
JPH0250482B2 (en)
JP2629758B2 (en) Trajectory correction method
WO2021019818A1 (en) Control system, analysis method, and program
JPH02245802A (en) System for distributing shift command to servo motor
JP2806955B2 (en) 3D tool compensation method
Anisimov et al. The Synthesis of Robust Control System for Manipulation Robot Based on Gramian Approach
SU811220A1 (en) Device for control of multicoordinate technological sets
Zheng Dynamic and kinetic behavior of two coordinating robots in assembly
KR0160999B1 (en) Error compensation method for the circular trajectory of robot
CN117548845A (en) Gantry slave axis control method, device, equipment and storage medium
JPH01274218A (en) System for correcting locus of industrial robot
JP2002091526A (en) Numerical controller
JPH02219108A (en) Robot controller
JPH0414113A (en) Robot control method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees