JP3077145B2 - Multi-axis machine where each axis is composed of servo mechanism - Google Patents

Multi-axis machine where each axis is composed of servo mechanism

Info

Publication number
JP3077145B2
JP3077145B2 JP01309411A JP30941189A JP3077145B2 JP 3077145 B2 JP3077145 B2 JP 3077145B2 JP 01309411 A JP01309411 A JP 01309411A JP 30941189 A JP30941189 A JP 30941189A JP 3077145 B2 JP3077145 B2 JP 3077145B2
Authority
JP
Japan
Prior art keywords
axis
command
axes
servo mechanism
given
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01309411A
Other languages
Japanese (ja)
Other versions
JPH03171206A (en
Inventor
修郭 久良
義二 平賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP01309411A priority Critical patent/JP3077145B2/en
Publication of JPH03171206A publication Critical patent/JPH03171206A/en
Application granted granted Critical
Publication of JP3077145B2 publication Critical patent/JP3077145B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Numerical Control (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、2軸以上の軸構成を有し、各軸がサーボ機
構で構成されている、NC,ロボット等の多軸機械に関
し、特にそ軌道制御指令の発生方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a multi-axis machine such as an NC or a robot having two or more axes, and each axis is constituted by a servo mechanism. The present invention relates to a method of generating an orbit control command.

[従来の技術] NC工作機械,ロボット等の多軸構成機械における空間
曲線としての自由曲線の生成は、与えられた曲線を微小
空間毎に直線で近似した折線近似で行われている。そし
て各軸のサーボ機構には、この直線を時間関数形の指令
として与えている。
[Background Art] Generation of a free curve as a space curve in a multi-axis configuration machine such as an NC machine tool or a robot is performed by a broken line approximation in which a given curve is approximated by a straight line for each minute space. This straight line is given to the servo mechanism of each axis as a time function type command.

精度の良い形状を実現するために、極力各軸のサーボ
特性を一致させるように努めている。しかし、厳密に特
性を一致させることは不可能であり、そのために形状誤
差を生じることとなっている。
We strive to match the servo characteristics of each axis as much as possible to achieve an accurate shape. However, it is impossible to exactly match the characteristics, which causes a shape error.

このような問題点を解決するために、一つの基準軸を
決め他の軸についは、基準軸の指令とあらかじめ計算さ
れた値と定数とを乗じたものと、基準軸と当該軸の応答
特性の差に別の定数を乗じたものとの和を指令として与
える方法が提案されている(特願昭62−183563)。
In order to solve such problems, one reference axis is determined, and for the other axes, the reference axis command multiplied by a value and a constant calculated in advance, and the response characteristics of the reference axis and the axis are determined. A method has been proposed in which the sum of the difference multiplied by another constant is given as a command (Japanese Patent Application No. 62-183563).

[発明が解決しようとする課題] サンプル値制御系では、サンプリング周期はできるだ
け短くすることが望ましい。そのためには毎サンプル行
なうべき計算量を極力減らさなければならない。
[Problem to be Solved by the Invention] In the sample value control system, it is desirable to make the sampling cycle as short as possible. For that purpose, the amount of calculation to be performed for each sample must be reduced as much as possible.

しかし、この方法は、サンプル値制御系で、毎サンプ
ル上述の計算を行なわねばならず、軸数が増えるにつれ
計算時間も増大するという欠点をもっている。
However, this method has a disadvantage that the above-described calculation must be performed for each sample in the sample value control system, and the calculation time increases as the number of axes increases.

本発明の目的は、サンプリング周期毎の演算時間を増
やすことなく、高精度な軌道制御を実現する。各軸がサ
ーボ機構で構成されている多軸機械を提供することにあ
る。
An object of the present invention is to realize high-accuracy trajectory control without increasing the calculation time for each sampling cycle. An object of the present invention is to provide a multi-axis machine in which each axis is constituted by a servo mechanism.

[課題を解決するための手段] 本発明の、各軸がサーボ機構で構成されている多軸機
械は、任意に与えられる空間曲線を折線近似によってそ
の動きとして実現する場合に、ある軸を基準とし、その
軸のサーボ機構には、折線近似を図形上で実現できる時
間(t)の関数であるfl(t)を指令関数として与える
が、他の軸のサーボ機構には、Kifl(t)+fi(t)
(ただし、i=2,3,…,Nとし、fi(t)はfl(t)より
tに関し1次低い関数,Kiは定数)を指令関数として生
成して与える位置指令計算手段を有する。
[Means for Solving the Problems] A multi-axis machine according to the present invention, in which each axis is formed by a servo mechanism, uses a certain axis as a reference when realizing an arbitrarily given space curve as its movement by broken-line approximation. and, the servo mechanism of the shaft, gives a polygonal line approximation as a command function f l (t) is a function of time can be realized on figure (t), the servo mechanism of the other axes, K i f l (t) + f i (t)
(Where, i = 2,3, ..., and N, f i (t) is f l (1 linear low function relates than t t), K i is a constant) the position command calculating means for applying to generate a command function Having.

[作用] 上述のように、折線近似決定時に全ての発生関数を求
めておくので、毎サンプルでの計算量には、軸数が増え
ても全く影響を与えない。しかも多軸間の応答特性の違
いを完全に補償することができ、高精度な軌道制御が可
能となる。
[Operation] As described above, since all the generating functions are obtained at the time of determining the polygonal line approximation, the amount of calculation for each sample has no effect even if the number of axes increases. In addition, differences in response characteristics between multiple axes can be completely compensated, and highly accurate trajectory control can be performed.

[実施例] 次に、本発明の実施例について図面を参照して説明す
る。
Example Next, an example of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示すX軸,Y軸の2軸から
なるサーボ系の概略構成図、第2図は点(x0,y0)から
点(x1,y1)へ直線移動させる様子を示す図である。
FIG. 1 is a schematic configuration diagram of a servo system including two axes of an X axis and a Y axis showing an embodiment of the present invention, and FIG. 2 is a diagram showing a point (x 0 , y 0 ) to a point (x 1 , y 1 ). It is a figure showing signs that it moves in a straight line.

多軸構成の機械について、ここでは2軸を例にして説
明する。それ以上の多軸の場合には第1,第2軸の関係を
第1,第3,第1,第4軸として考えればよい。
Here, a machine having a multi-axis configuration will be described using two axes as an example. In the case of more axes, the relationship between the first and second axes may be considered as the first, third, first and fourth axes.

(1)速度指令をステップ状に与えて直線補間する場合 第2図に示している直線の補間指令は、X,Y軸のそれ
ぞれをxi(t),yi(t)、X、Y軸のそれぞれの移動
速度をVx、Vyとするとき、(1),(2)式で与えられ
る。
(1) In the case of linearly interpolating by giving a speed command in a step-like manner The linear interpolation command shown in FIG. 2 is obtained by setting each of the X and Y axes to x i (t), y i (t), X, Y when the respective mobile shaft speed V x, and V y, (1), it is given by equation (2).

xi(t)=VXt …(1) yi(t)=VYt=KVXt …(2) となる。この時、各軸のゲインKをそれぞれKx,Kyとす
ると、各軸の定常解は次式(3),(4)となる。
x i (t) = V X t (1) y i (t) = V Y t = KV X t (2) Becomes In this, K x the gain K of each axis, when K y, stationary solutions of each axis by the following equation (3) and (4).

これより したがって、Kx=Kyでなければ、実際の直線は描きたい
直線から平行にずれる。このずれを補正するために指令
にmを加える。すなわち xi(t)=VXt …(5) のとき、 yi(t)=VYt+m …(6) とする このとき、それぞれの定常解は次式(7),(8)とな
る。
Than this Therefore, unless Kx = Ky, the actual straight line is shifted from the straight line to be drawn in parallel. In order to correct this deviation, m is added to the command. That is, when x i of (t) = V X t ... (5), and y i (t) = V Y t + m ... (6) At this time, each steady solution is given by the following equations (7) and (8).

ここで、 とおくと、 となる。mをこのように選ぶとy(t)/x(t)=Kは
KY,KXの値に関係なく満足される。
here, After all, Becomes When m is selected in this way, y (t) / x (t) = K becomes
Satisfied regardless of the values of K Y and K X.

今、xi(t)=fl(t)=Vxtとおくと、yi(t)=K
f1(t)+mとなる。ここでmは(10)式により与えら
れる。
Now, if x i (t) = f l (t) = V x t, y i (t) = K
f 1 (t) + m. Here, m is given by equation (10).

第3図は空間曲線を 折線近似する様子を示す図、第4図は第3図の場合の位
置指令計算部1の位置指令の演算処理を示す流れ図であ
る。
Figure 3 shows the space curve FIG. 4 is a flowchart showing a process of calculating a position command by the position command calculation unit 1 in the case of FIG.

システムクロックΔT,サーボゲインKX,KYを入力し
(ステップ11)、速度V,総点数Mを入力する(ステップ
12)。点の位置j=1とする(ステップ13)。点j,j+
1間のX軸方向の速度VXと補間回数Nを計算し(ステッ
プ14)、(10)式のmの値を計算する。補間回数iの初
期値=1,位置指令の初期値δxo=0,δyo=0とし(ステ
ップ16),点jとj+1間のN個の位置指令δxi,δyi
を演算し、X軸サーボ機構2,Y軸サーボ機構3に出力す
る(ステップ17〜20)。ステップ14〜20を点PMまでの各
折線について繰り返す(ステップ21,22)。
Input the system clock ΔT, servo gains K X and K Y (step 11), and input the speed V and the total number of points M (step 11).
12). The position j of the point is set to 1 (step 13). Point j, j +
An X-axis direction of the velocity V X between 1 calculates the interpolation number N (step 14), to calculate the value of m in (10). It is assumed that the initial value of the number of interpolations i = 1, the initial value of the position command δx o = 0, δy o = 0 (step 16), and N position commands δx i , δy i between points j and j + 1
Is calculated and output to the X-axis servo mechanism 2 and the Y-axis servo mechanism 3 (steps 17 to 20). Step 14-20 are repeated for each polyline to the point P M (step 21).

(2)速度指令をランプ状に与えて直線補間する場合 xi(t)=αt2 …(11) yi(t)=Kαt2+mt+n …(12) をそれぞれの軸サーボ系への指令とする。各軸の応答の
定常解は次式(13),(14)となる。
(2) When a speed command is given in the form of a ramp and linear interpolation is performed, x i (t) = αt 2 (11) y i (t) = Kαt 2 + mt + n (12) I do. The steady-state solution of the response for each axis is given by the following equations (13) and (14).

したがって、 となる。(15),(16)式より次式を得る。 Therefore, Becomes The following equation is obtained from equations (15) and (16).

ここでも xi(t)=f1(t)=αt2 とするとき、 yi(t)=Kf1(t)+f2(t) ただし、f2(t)=mt+n m,nは(17),(18)式で与えられる。 Again, when x i (t) = f 1 (t) = αt 2 , y i (t) = Kf 1 (t) + f 2 (t) where f 2 (t) = mt + nm, n is ( 17) and (18).

なる関数を発生してX,Y各軸のサーボ機構2,3へ指令を出
すと、その応答はゲインKX,KYの違いにかかわらず、理
想の直線となる。
When the following functions are generated and commands are issued to the servo mechanisms 2 and 3 for each of the X and Y axes, the response is an ideal straight line regardless of the difference between the gains K X and K Y.

(3)加速度を直線で変化させる場合 速度がステップ,ランプの場合についてはすでに記述
しているので、速度を2乗カーブで加速する場合につい
て述べる。
(3) When the acceleration is changed in a straight line Since the case where the speed is a step or a ramp has already been described, the case where the speed is accelerated by a square curve will be described.

速度を2乗カーブとするとき位置指令は xi(t)=axt3… (19) となる。When the speed is a square curve, the position command is x i (t) = a x t 3 (19).

この時、本方法では yi(t)=Kaxt3+mt2+nt+p …(20) とすることを意味している。At this time, this method means that y i (t) = Ka x t 3 + mt 2 + nt + p (20).

ここで、xi(t),yi(t)をそれぞれのサーボ機構
2,3への指令とする時その応答は したがって、 が導かれる。これら3式より が得られる。
Here, x i (t) and y i (t) are represented by respective servo mechanisms.
When a command is given to a few, the response is Therefore, Is led. From these three equations Is obtained.

このことは xi(t)=f1(t) とするとき、 yi(t)=Kaf1(t)+mt2+nt+p なる関数を発生し、X,Y軸のサーボ系2,3へそれぞれ指令
を与えれば理想的な直線になることを示している。
This means that when x i (t) = f 1 (t), a function of y i (t) = Kaf 1 (t) + mt 2 + nt + p is generated, and the servo systems 2 and 3 of the X and Y axes are respectively provided. This shows that the command gives an ideal straight line.

以上に示した演算(式(5),(6),(11),(1
2),(19),(20))は毎サンプルで行なう必要はな
く、折線近似の各折点で行なえばよい。
The operations shown above (Equations (5), (6), (11), (1
2), (19), and (20)) need not be performed for each sample, but may be performed at each break point of the broken line approximation.

[発明の効果] 以上説明したように本発明は、直線近似された1つの
軸の指令を基準に他の軸への指令を、サーボ系の特性を
考慮してあらかじめ修正することを可能にし、これを各
軸への指令とすることにより、サンプリング周期毎の演
算時間をふやすことなく多軸機械の高精度な軌道制御を
実現するという効果がある。
[Effects of the Invention] As described above, the present invention makes it possible to modify a command to another axis in advance in consideration of the characteristics of a servo system based on a command of one axis that has been linearly approximated, By using this as a command for each axis, there is an effect that high-accuracy trajectory control of a multi-axis machine is realized without increasing the calculation time for each sampling cycle.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示すX軸,Y軸の2軸からな
るサーボ系の概略構成図、第2図は点(x0,y0)から点
(x1,y1)へ直線移動させる様子を示す図、第3図は空
間曲線を と折線近似する様子を示す図、第4図は第3図の場合の
位置指令計算部1の位置指令の演算処理を示す流れ図で
ある。 1……位置指令計算部、 2……X軸サーボ機構、 3……Y軸サーボ機構、 11〜22……ステップ。
FIG. 1 is a schematic configuration diagram of a servo system including two axes of an X axis and a Y axis showing an embodiment of the present invention, and FIG. 2 is a diagram showing a point (x 0 , y 0 ) to a point (x 1 , y 1 ). Fig. 3 shows the state of linear movement to FIG. 4 is a flowchart showing a process of calculating a position command by the position command calculation unit 1 in the case of FIG. 1. Position command calculator 2. X-axis servo mechanism 3. Y-axis servo mechanism 11 to 22 steps.

フロントページの続き (56)参考文献 特開 昭64−28705(JP,A) 特開 昭60−105012(JP,A) 特開 昭62−52610(JP,A) 特開 平1−177108(JP,A) 実開 昭56−22601(JP,U) (58)調査した分野(Int.Cl.7,DB名) G05B 19/404 G05B 19/4103 Continuation of the front page (56) References JP-A-64-28705 (JP, A) JP-A-60-105012 (JP, A) JP-A-62-252610 (JP, A) JP-A-1-177108 (JP) , A) Jpn. Sho 56-22601 (JP, U) (58) Fields investigated (Int. Cl. 7 , DB name) G05B 19/404 G05B 19/4103

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】2軸以上の構成を有し、各軸がサーボ機構
で構成されている多軸機械において、 VX、VYをそれぞれX軸、Y軸の移動速度、KX、KYをそれ
ぞれX軸、Y軸のゲイン、tを時間として、X軸、Y軸
のそれぞれの指令関数xi、yiを 1)速度指令をステップ状に与えて直線補間する場合 xi(t)=VX・t,yi(t)=K・VX・t+m ただし、 2)速度指令をランプ状に与えて直線補間する場合 xi(t)=αt2,yi=K・αt2+mt+n ただし、 αは定数 3)加速度を直線で変化させる場合、 xi(t)=axt3,yi=K・axt3+mt2+nt+p ただし、 axは定数 で与え、3軸以上の場合、他の軸とX軸の関係が上記の
X軸とY軸の関係になるように他の軸の指令関数を与え
る位置指令計算手段を有することを特徴とする、各軸が
サーボ機構で構成されている多軸機構。
1. In a multi-axis machine having two or more axes and each axis being constituted by a servo mechanism, V X and V Y are respectively represented by X-axis and Y-axis movement speeds, K X and K Y. Where x is the gain of the X-axis and Y is the time, and t is the time, and the command functions x i and y i of the X-axis and Y-axis are: 1) When a speed command is given in a step-like manner and linear interpolation is performed, x i (t) = V X · t, y i (t) = K · V X · t + m where 2) In the case of linearly interpolating by giving a speed command in a ramp shape, x i (t) = αt 2 , y i = K · αt 2 + mt + n where α is a constant. 3) When the acceleration is changed in a straight line, x i (t) = a x t 3 , y i = K × a t 3 + mt 2 + nt + p where a x is given as a constant. In the case of three or more axes, there is provided position command calculating means for giving a command function of another axis so that the relation between the other axis and the X axis becomes the above-mentioned relation between the X axis and the Y axis. A multi-axis mechanism in which each axis is constituted by a servo mechanism.
JP01309411A 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism Expired - Fee Related JP3077145B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01309411A JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01309411A JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Publications (2)

Publication Number Publication Date
JPH03171206A JPH03171206A (en) 1991-07-24
JP3077145B2 true JP3077145B2 (en) 2000-08-14

Family

ID=17992686

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01309411A Expired - Fee Related JP3077145B2 (en) 1989-11-30 1989-11-30 Multi-axis machine where each axis is composed of servo mechanism

Country Status (1)

Country Link
JP (1) JP3077145B2 (en)

Also Published As

Publication number Publication date
JPH03171206A (en) 1991-07-24

Similar Documents

Publication Publication Date Title
KR900003121B1 (en) Complete follow-up servo system
EP0120970B1 (en) Acceleration and deceleration circuit
EP0130570B1 (en) Method and apparatus for controlling a robot hand along a predetermined path
US9757834B2 (en) Track control apparatus
JPS6118009A (en) Acceleration and deceleration control system
US5004968A (en) Method for acceleration and deceleration control of servomotors
US4581698A (en) Method and system for generating interpolation pulses
US4214192A (en) Path control apparatus for the computer directed control of a numerically controlled machine tool
JP3077145B2 (en) Multi-axis machine where each axis is composed of servo mechanism
US3896361A (en) Method and apparatus for compensating an error in numerical control
US5510996A (en) Method for determining auxiliary position-control parameters
JP2793804B2 (en) Pulse distribution method
JP3023648B2 (en) Position control device
US4020331A (en) Feed rate control system for numerical control machine tool
JP2826391B2 (en) Backlash acceleration control method
JPS59114604A (en) Acceleration and deceleration controlling system of industrial robot
JPS59194206A (en) Control system for delay error correction of servo system in numerical control
JPH0658603B2 (en) Trajectory interpolation method for automatic machines
US4642540A (en) Robot control systems
JPS60209812A (en) Acceleration and deceleration control system
JPS58214905A (en) Feedforward signal generating method of servo system
JP3608587B2 (en) Linear interpolation method
KR0161002B1 (en) Circular interpolation method of robot
KR0160999B1 (en) Error compensation method for the circular trajectory of robot
JPH01311305A (en) Method for interpolating pulse

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees