JPH0658603B2 - Trajectory interpolation method for automatic machines - Google Patents

Trajectory interpolation method for automatic machines

Info

Publication number
JPH0658603B2
JPH0658603B2 JP12692586A JP12692586A JPH0658603B2 JP H0658603 B2 JPH0658603 B2 JP H0658603B2 JP 12692586 A JP12692586 A JP 12692586A JP 12692586 A JP12692586 A JP 12692586A JP H0658603 B2 JPH0658603 B2 JP H0658603B2
Authority
JP
Japan
Prior art keywords
point
trajectory
points
interpolation
interpolation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12692586A
Other languages
Japanese (ja)
Other versions
JPS62282304A (en
Inventor
昌彦 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP12692586A priority Critical patent/JPH0658603B2/en
Publication of JPS62282304A publication Critical patent/JPS62282304A/en
Publication of JPH0658603B2 publication Critical patent/JPH0658603B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/41Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by interpolation, e.g. the computation of intermediate points between programmed end points to define the path to be followed and the rate of travel along that path
    • G05B19/4103Digital interpolation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Complex Calculations (AREA)
  • Numerical Control (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、NC装置等の自動機械において、ツールの通
過点として入力された離散的な点列を滑らかな曲線軌道
で補間する方法に関する。
The present invention relates to a method for interpolating a discrete point sequence input as a passing point of a tool with a smooth curved trajectory in an automatic machine such as an NC device.

〔従来の技術〕[Conventional technology]

NC工作機械、産業用ロボットなどの自動位置制御装置
の軌道情報の与え方として、軌道上の離散的な点列を与
える方法(PTP軌道情報)と、軌道を連続的な情報で
与える方法(CP軌道情報)とがある。
As a method of giving trajectory information of automatic position control devices such as NC machine tools and industrial robots, a method of giving a discrete point sequence on the trajectory (PTP trajectory information) and a method of giving the trajectory as continuous information (CP Orbit information).

この両者を比較すると、PTP軌道情報の方が、情報量
が格段に少なく、軌道発生が容易であり、軌道の一部修
正、追加などが容易であり、また速度設定が容易である
など多くの有利な特質がある。
Comparing the two, the PTP trajectory information has a much smaller amount of information, the trajectory can be easily generated, the trajectory can be partially corrected or added, and the speed can be easily set. There are advantageous attributes.

しかし、自動位置制御装置で軌道を実際に発生させるに
は、最終的には連続な位置指令をサーボ系に与えること
が必要である。
However, in order to actually generate a trajectory by the automatic position control device, it is finally necessary to give a continuous position command to the servo system.

したがって、PTP軌道情報により自動位置制御装置の
軌道を発生させるためには、PTP軌道情報からCP軌
道情報への変換が必要となる。この変換を軌道補間法と
呼ぶ。
Therefore, in order to generate the trajectory of the automatic position control device based on the PTP trajectory information, it is necessary to convert the PTP trajectory information into the CP trajectory information. This conversion is called a trajectory interpolation method.

従来、複数の点列を一次微係数及び二次微係数が連続に
なるような滑らかな曲線でつなぐ軌道補間法として種々
の方法が提案されている。
Conventionally, various methods have been proposed as a trajectory interpolation method that connects a plurality of point sequences with a smooth curve such that the first derivative and the second derivative are continuous.

軌道補間法として、従来良く知られているものとして、
折線補間法,円弧補間法及びスプライン関数補間法があ
る。
As a well-known conventional orbital interpolation method,
There are polygonal line interpolation method, circular arc interpolation method, and spline function interpolation method.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

上に挙げた軌道補間法のうち、折線補間法は2点間を直
線で補間するものであり、軌道補間法として最も簡便な
ものである。この補間法によって得られる軌道は、位置
は連続であるが一次微係数、すなわち速度は一般的には
不連続である。
Among the trajectory interpolation methods listed above, the polygonal line interpolation method interpolates between two points with a straight line, and is the simplest trajectory interpolation method. In the trajectory obtained by this interpolation method, the position is continuous, but the first derivative, that is, the velocity is generally discontinuous.

円弧補間法は、3点間を同一円弧で補間するものであ
り、同一円弧上では位置、速度、加速度が連続である。
しかし、一般的には2つの円弧の接点においては位置は
連続であるが、一次微係数すなわち速度は不連続であ
る。
The circular arc interpolation method interpolates three points with the same circular arc, and the position, velocity, and acceleration are continuous on the same circular arc.
However, generally, the position is continuous at the contact points of the two arcs, but the first derivative or velocity is discontinuous.

スプライン関数補間は、離散な点列間をn次のべき関数
で補間するもので、このとき(n−1)次の微係数まで
の連続性が保証される。しかし、スプライン関数計算に
は軌道全体でn個の点列が与えられた場合、n×nのマ
トリックスの連立一次方程式を解かなければならないた
め、点の数が多い場合は多大な計算時間を必要とする。
そのため、NC制御装置においても実時間では処理でき
ない。したがって、外部演算装置でオフラインで演算
し、その結果を従来のNC言語プログラムに分解してN
C制御装置を動かしていた。
The spline function interpolation interpolates between discrete point sequences by an nth power function, and at this time, continuity up to the (n-1) th derivative is guaranteed. However, spline function calculation requires a large amount of calculation time when the number of points is large, because simultaneous linear equations of an n × n matrix must be solved when a sequence of n points is given for the entire trajectory. And
Therefore, even the NC control device cannot process in real time. Therefore, off-line operation is performed by an external operation device, the result is decomposed into a conventional NC language program, and N
The C controller was moving.

本発明は、このような従来の問題点に鑑みてなされたも
のであり、リアルタイムでスプライン関数を演算しなが
ら軌道の補間を行うことを目的とする。
The present invention has been made in view of such conventional problems, and an object thereof is to perform trajectory interpolation while calculating a spline function in real time.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため、本発明の補間方法は、ツール
の通過点として与えられた点列のうち、m番目の点とそ
の前後の点とを通る第1の二次曲線及びm+1番目の点
とその前後の点とを通る第2の二次曲線をそれぞれ導出
し、m番目の点及びm+1番目の点をそれぞれ始点及び
終点とし、始点における一次及び二次微係数が第1の二
次曲線のそれと等しく,終点における一次及び二次微係
数が第2の二次曲線のそれと等しいスプライン関数を導
出し、該スプライン関数に基づいてm番目の点とm+1
番目の点との間の軌道の補間を行うことを特徴とする。
In order to achieve this object, the interpolation method of the present invention uses the first quadratic curve and the (m + 1) th point passing through the m-th point and points before and after it in the point sequence given as the passing point of the tool. A second quadratic curve passing through the first and second points, and the m-th point and the m + 1-th point as the starting point and the ending point, respectively, and the first-order and second-order differential coefficients at the starting point are the first quadratic curves. Of the second quadratic curve whose linear and quadratic derivatives at the end point are equal to those of the second quadratic curve, and based on the spline function, the m-th point and m + 1 are derived.
It is characterized in that the trajectory is interpolated to and from the second point.

〔作用〕[Action]

本発明においては、ツールの通過点として、n個の点列
(X,Y,Z),P(X,Y
),・・・・P(X,Y,Z)が与えられ
たとき、Pm−1,P,Pm+1を通る二次曲線をパ
ラメータtにより表現する。
In the present invention, as a passage point of the tool, a sequence of n points P 0 (X 0 , Y 0 , Z 0 ), P 1 (X 1 , Y 1 ,
Z 1 ), ... P n (X n , Y n , Z n ) is given, and a quadratic curve passing through P m-1 , P m , and P m + 1 is represented by a parameter t.

(t)=a+bt+c(t)=a+bt+c(t)=a+bt+c ここで、パラメータtを、t=−1で点Pm−1を通
り、t=0でPを通り、t=1で点Pm+1を通るよ
うに選ぶ。なお、説明を簡単にするため、x軸について
のみ考える。したがって、二次曲線xについて次の関
係が成立する。
x m (t) = at a x t 2 + b x t + c x y m (t) = a x t 2 + b y t + c y z m (t) = a z t 2 + b z t + c z Here, the parameter t, t = -1 passes through the point P m-1 , t = 0 passes through P m , and t = 1 passes through the point P m + 1 . Note that only the x-axis will be considered to simplify the description. Therefore, the following relationship holds for the quadratic curve x m .

(−1)=a−b+C=Xm−1(0)=c=X(1)=a+b+c=Xm+1 これよりa,b,cを求めると、 a=(Xm−1+Xm+1)/2−X=(Xm+1−Xm−1)/2 c=X となる。よって、−1≦t≦1においては、 x(t)={(Xm−1+Xm+1)/2−X}t+(Xm+1
m−1)/2・t+X となる。同様に、点P,Pm+1,Pm+2を通る二
次曲線を求めると、−1≦u≦1においては、 xm+1(u)={(X+Xm+2)/2−Xm+1}u+(Xm+2−X
/2・u+Xm+1 となる。ここで、区間P,Pm+1の補間曲線を以下
のように定義する。
x m (-1) = a x -b x + C x = X m-1 x m (0) = c x = X m x m (1) = a x + b x + c x = X m + 1 From this a x, b x, when obtaining the c x, the a x = (X m-1 + X m + 1) / 2-X m b x = (X m + 1 -X m-1) / 2 c x = X m. Therefore, in −1 ≦ t ≦ 1, x m (t) = {(X m−1 + X m + 1 ) / 2−X m } t 2 + (X m + 1
X m−1 ) / 2 · t + X m . Similarly, when a quadratic curve passing through the points P m , P m + 1 , and P m + 2 is obtained, in −1 ≦ u ≦ 1, x m + 1 (u) = {(X m + X m + 2 ) / 2−X m + 1 } u 2 + (X m + 2 -X m
/ 2 · u + X m + 1 . Here, the interpolation curves of the sections P m and P m + 1 are defined as follows.

まず区間P,Pm+1(0≦t≦1,−1≦u≦0)
では、 x(t)={(Xm−1+Xm+1)/2−X}t+(Xm+1
m−1)/2・t+Xm+1(u)={X+Xm+2)/2−Xm+1}u+(Xm+1−X
/2・u+Xm+1 上式をu=t−1と置換して書き直すと、 xm+1(t)={(X+Xm+2)/2−Xm+1}(t−1)+(X
m+2−X)/2・(t−1)+Xm+1 となる。ここで区間P,Pm+1の補間曲線S(t)
を S(t)=x(t)(1/2+1/2cosπt)+x
m+1(t)(1/2−1/2cosπt) とする(第1図参照)。
First, sections P m and P m + 1 (0 ≦ t ≦ 1, −1 ≦ u ≦ 0)
Then, x m (t) = {(X m−1 + X m + 1 ) / 2−X m } t 2 + (X m + 1
X m−1 ) / 2 · t + X m x m + 1 (u) = {X m + X m + 2 ) / 2−X m + 1 } u 2 + (X m + 1 −X m ).
/ 2 · u + X m + 1 When the above equation is replaced with u = t−1 and rewritten, x m + 1 (t) = {(X m + X m + 2 ) / 2−X m + 1 } (t−1) 2 + (X
m + 2 -X m) / 2 · (t-1) + to become X m + 1. Here, the interpolation curve S m (t) of the sections P m and P m + 1
Where S m (t) = x m (t) (1/2 + 1/2 cosπt) + x
m + 1 (t) (1 / 2-1 / 2 cosπt) (see FIG. 1).

同様に区間Pm+1,Pの補間曲線Sm−1(t)は、 Sm−1(t)=xm−1(t)(1/2+1/2cosπt)+x(t)(1/2+1/2cos
πt) xm−1(t)={(Xm−2+X)/2−Xm−1}t+(X
m−2)/2・t+Xm−1(t)={Xm−1+Xm+1)/2−X}(t−1)+(Xm+1−X
m−1)/2・(t−1)X となる。ここで、点Pにおける一次微係数及び二次微
係数を求める。
Similarly, the interpolation curve S m-1 (t) of the sections P m + 1 and P m is S m-1 (t) = x m-1 (t) (1/2 + 1/2 cosπt) + x m (t) (1 / 2 + 1/2 cos
πt) x m-1 (t) = {(X m-2 + X m ) / 2-X m-1 } t 2 + (X m
X m-2) / 2 · t + X m-1 x m (t) = {X m-1 + X m + 1) / 2-X m} (t-1) 2 + (X m + 1 -X
m−1 ) / 2 · (t−1) X m . Here, the primary differential coefficient and the secondary differential coefficient at the point P m are obtained.

m−1(t)はt=1のときPを通るので、 次にS(t)の方からも同様に求めると、S(t)はt=
0で点Pを通るので、 以上より、Sm−1(t)とS(t)は点Pにおいて一次
微係数および二次微係数とも連続に接続されていること
がわかる。
Since S m-1 (t) passes through P m when t = 1, Next, when S m (t) is similarly obtained, S m (t) is t =
Since it passes through the point P m at 0, From the above, it can be seen that S m-1 (t) and S m (t) are connected continuously at the point P m with both the first derivative and the second derivative.

以上は、x軸についてのみの説明であるが、y軸、z軸
についても同様のことが成立する。
Although the above description is for the x-axis only, the same holds true for the y-axis and the z-axis.

これを再度整理すると、点P,(X,Y
),P(X,Y,Z),・・・P
(X,Y,Z)が与えられたとき、区間P
m+1の補間曲線Sを以下のようにして求めること
ができる。
If this is rearranged again, the points P 0 , (X 0 , Y 0 ,
Z 0 ), P 1 (X 1 , Y 1 , Z 1 ), ... P
When n (X n , Y n , Z n ) is given, the interval P m ,
The interpolation curve S m of P m + 1 can be obtained as follows.

ただし、0≦t≦1,1≦m≦n−2とする。However, 0 ≦ t ≦ 1, 1 ≦ m ≦ n−2.

(t)={(Xm−1+Xm+1)/2−X}t+(Xm+1
m−1)/2・t+X(t)={(Ym−1+Ym+1)/2−Y}t+(Ym+1
m−1)/2・t+Y(t)={(Zm−1+Zm+1)/2−Z}t+(Zm+1
m−1)/2・t+Zm+1(t)={(X+Xm+2)/2−Xm+1}(t−1)+(X
m+2−X)/2・(t−1)+Xm+1m+1(t)={(Y+Ym+2)/2−Ym+1}(t−1)+(Y
m+2−Y)/2・(t−1)+Ym+1m+1(t)={(Z+Zm+2)/2−Zm+1}(t−1)+(Z
m+2−Z)/2・(t−1)+Zm+1xm(t)=x(t)(1/2+1/2cosπt)+xm+1(t)(1/2−1/2cosπ
t) Sym(t)=y(t)(1/2+1/2cosπt)+ym+1(t)(1/2−1/2cosπ
t) Szm(t)=z(t)(1/2+1/2cosπt)+zm+1(t)(1/2−1/2cosπ
t) よって、区間P,Pm+1においては、点P
m−1(Xm−1,Ym−1,Zm−1),点P(X
,Y,Z),点Pm+1(Xm+1,Ym+1
m+1),点Pm+2(Xm+2,Ym+2,Z
m+2)の4点のみのデータで補間曲線を求めることが
できる。ただし、区間P,Pに関してはX(t),
(t),Z(t)で決まる二次曲線を、区間Pn−1
に関しては、Xn−1(t),Yn−1(t),Zn−1
(t)で決まる二次曲線をそれぞれその区間の補間曲線と
する。
x m (t) = {( X m-1 + X m + 1) / 2-X m} t 2 + (X m + 1 -
X m-1) / 2 · t + X m y m (t) = {(Y m-1 + Y m + 1) / 2-Y m} t 2 + (Y m + 1 -
Y m-1) / 2 · t + Y m z m (t) = {(Z m-1 + Z m + 1) / 2-Z m} t 2 + (Z m + 1 -
Z m-1 ) / 2 · t + Z m x m + 1 (t) = {(X m + X m + 2 ) / 2-X m + 1 } (t-1) 2 + (X
m + 2 -X m) / 2 · (t-1) + X m + 1 y m + 1 (t) = {(Y m + Y m + 2) / 2-Y m + 1} (t-1) 2 + (Y
m + 2 -Y m) / 2 · (t-1) + Y m + 1 z m + 1 (t) = {(Z m + Z m + 2) / 2-Z m + 1} (t-1) 2 + (Z
m + 2 -Z m) / 2 · (t-1) + Z m + 1 S xm (t) = x m (t) (1/2 + 1 / 2cosπt) + x m + 1 (t) (1 / 2-1 / 2cosπ
t) S ym (t) = y m (t) (1/2 + 1 / 2cosπt) + y m + 1 (t) (1 / 2-1 / 2cosπ
t) S zm (t) = z m (t) (1/2 + 1 / 2cosπt) + z m + 1 (t) (1 / 2-1 / 2cosπ
t) Therefore, in the sections P m and P m + 1 , the point P
m-1 (X m-1 , Y m-1 , Z m-1 ), point P m (X
m , Y m , Z m ), point P m + 1 (X m + 1 , Y m + 1 ,
Z m + 1 ), point P m + 2 (X m + 2 , Y m + 2 , Z
The interpolation curve can be obtained from the data of only 4 points of ( m + 2 ). However, for the sections P 0 and P 1 , X 0 (t),
A quadratic curve determined by Y 0 (t) and Z 0 (t) is divided into sections P n−1 ,
Regarding P n , X n-1 (t), Y n-1 (t), Z n-1
Each quadratic curve determined by (t) is used as an interpolation curve for that section.

〔実施例〕〔Example〕

次に、本発明をNC装置に適用する例について説明す
る。
Next, an example in which the present invention is applied to an NC device will be described.

NC制御装置に点P(X,Y,Z),P(X
,Y,Z),・・・P(X,Y,Z)の
位置情報と区間P,Pm+1の中をいくつの直線セグ
メントに分割するかの分割数kを入力する。
The points P 0 (X 0 , Y 0 , Z 0 ), P 1 (X
1 , Y 1 , Z 1 ), ... Position information of P n (X n , Y n , Z n ) and the division number k of how many straight line segments are divided in the sections P m and P m + 1. input.

t=0,1/k,2/k,・・・n/k,・・・k/k
を順次(1)式に代入してS,S,Sを求めること
ができる。
t = 0, 1 / k, 2 / k, ... n / k, ... k / k
Can be sequentially substituted into the equation (1) to obtain S x , S y , and S z .

これらの点を結ぶ直線補間をNC制御装置で実行するこ
とにより点P,P・・・Pを通る滑らかな補間曲
線で、切削等の加工作業を行うことができる。
By performing the linear interpolation connecting these points with the NC control device, it is possible to perform a machining operation such as cutting with a smooth interpolation curve passing through the points P 0 , P 1, ... P n .

〔発明の効果〕〔The invention's effect〕

以上に説明したように、本発明においては、複数の点列
のうち、現在の位置の近傍の4点のみに関する演算を順
次行うことにより、円滑なスプライン曲線を求めて補間
を行う。このため、入力点数に関係なく演算の量が一定
になり、逐次処理が可能となる。したがって、オンライ
ンで演算しながら加工できるようになり、従来のように
オフラインのCADやテープ作成器でプログラムを作成
していた時間とそのコストを節約することができる。
As described above, in the present invention, a smooth spline curve is obtained and interpolation is performed by sequentially performing operations only on four points in the vicinity of the current position among a plurality of point sequences. Therefore, the amount of calculation becomes constant regardless of the number of input points, and the sequential processing becomes possible. Therefore, it becomes possible to perform processing while calculating online, and it is possible to save the time and cost for creating a program by an off-line CAD or tape creator as in the past.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の方法による点列の補間を説明するた
めの線図である。
FIG. 1 is a diagram for explaining the interpolation of a sequence of points according to the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】ツールの通過点として与えられたn+1個
の点列P(X,Y,Z),P(X,Y
)、・・・P(X,Y,Z)のうち、m番
目(ただし、1≦m≦n−2)の点P(X,Y
)とその前後の点Pm−1(Xm−1,Ym−1
m−1),Pm+1(Xm+1,Ym+1
m+1)とを通る第1の二次曲線及びm+1番目の点
m+1(Xm+1,Ym+1,Zm+1)とその前後
の点P(X,Y,Z),Pm+2(Xm+2
m+2,Zm+2)とを通る第2の二次曲線をそれぞ
れ導出し、m番目の点及びm+1番目の点をそれぞれ始
点及び終点とし、始点における一次及び二次微係数が第
1の二次曲線のそれと等しく,終点における一次及び二
次微係数が第2の二次曲線のそれと等しい下記式Sxm
(t),Sym(t),Szm(t)で表されるスプライン関数
に基づいてm番目の点とm+1番目の点との間の軌道の
補間を行うことを特徴とする自動機械における軌道の補
間方法。 Sxm(t)=x(t)(1/2+1/2cosπt)+xm+1(t)(1/2−1/2cosπ
t) Sym(t)=y(t)(1/2+1/2cosπt)+ym+1(t)(1/2−1/2cosπ
t) Szm(t)=z(t)(1/2+1/2cosπt)+zm+1(t)(1/2−1/2cosπ
t) ただし、
1. A sequence of n + 1 points P 0 (X 0 , Y 0 , Z 0 ), P 1 (X 1 , Y 1 ,
Z 1 ), ... P n (X n , Y n , Z n ) of the m-th (1 ≦ m ≦ n−2) point P m (X m , Y m ,
Z m ) and the points P m-1 (X m-1 , Y m-1 ,
Z m−1 ), P m + 1 (X m + 1 , Y m + 1 ,
The first quadratic curve passing through Z m + 1 ) and the m + 1-th point P m + 1 (X m + 1 , Y m + 1 , Z m + 1 ) and the points P m (X m , Y m , Z m ), P m + 2 (before and after). X m + 2 ,
Y m + 2 , Z m + 2 ) and the second quadratic curve is derived, and the m-th point and the m + 1-th point are set as the start point and the end point, respectively, and the first and second derivatives at the start point are the first quadratic coefficient. The following equation S xm which is equal to that of the curve and whose primary and quadratic derivatives at the end point are equal to those of the second quadratic curve
(t), S ym (t), S zm (t) Based on the spline function represented, in the automatic machine characterized by performing the interpolation of the trajectory between the m-th point and the m + 1-th point Trajectory interpolation method. S xm (t) = x m (t) (1/2 + 1 / 2cosπt) + x m + 1 (t) (1 / 2-1 / 2cosπ
t) S ym (t) = y m (t) (1/2 + 1 / 2cosπt) + y m + 1 (t) (1 / 2-1 / 2cosπ
t) S zm (t) = z m (t) (1/2 + 1 / 2cosπt) + z m + 1 (t) (1 / 2-1 / 2cosπ
t) However,
JP12692586A 1986-05-30 1986-05-30 Trajectory interpolation method for automatic machines Expired - Fee Related JPH0658603B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12692586A JPH0658603B2 (en) 1986-05-30 1986-05-30 Trajectory interpolation method for automatic machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12692586A JPH0658603B2 (en) 1986-05-30 1986-05-30 Trajectory interpolation method for automatic machines

Publications (2)

Publication Number Publication Date
JPS62282304A JPS62282304A (en) 1987-12-08
JPH0658603B2 true JPH0658603B2 (en) 1994-08-03

Family

ID=14947293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12692586A Expired - Fee Related JPH0658603B2 (en) 1986-05-30 1986-05-30 Trajectory interpolation method for automatic machines

Country Status (1)

Country Link
JP (1) JPH0658603B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009921A1 (en) * 2020-07-10 2022-01-13 ファナック株式会社 Trajectory generation device and automatic location control device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2660282B2 (en) * 1987-07-07 1997-10-08 トーヨーエイテック株式会社 Non-circular NC machining method
JPH02113305A (en) * 1988-10-24 1990-04-25 Fanuc Ltd Spline interpolation system
US5949695A (en) * 1997-01-10 1999-09-07 Harris Corporation Interpolator using a plurality of polynomial equations and associated methods
JP3640754B2 (en) * 1997-02-21 2005-04-20 三菱電機株式会社 Numerical control apparatus and numerical control method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022009921A1 (en) * 2020-07-10 2022-01-13 ファナック株式会社 Trajectory generation device and automatic location control device

Also Published As

Publication number Publication date
JPS62282304A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
EP0130570B1 (en) Method and apparatus for controlling a robot hand along a predetermined path
US5926389A (en) Computer control system for generating geometric designs
US4794540A (en) Iterative spline function controlled positioning mechanism
EP0770941B1 (en) Method and device for interpolating free-form surface
JP2003303005A (en) Numerical control device
US5303333A (en) Method for controlling the acceleration and velocity of at least one controllable axis of a machine tool or robot
Koren Design of computer control for manufacturing systems
EP0470564B1 (en) Method of and apparatus for controlling motion of a machine member
EP0357778B1 (en) Method of speed control for servomotor
US5373439A (en) Method for controlling the traveling path of a robot during acceleration and deceleration
EP0476381B1 (en) Route interpolation method for robot
JPH0658603B2 (en) Trajectory interpolation method for automatic machines
Koninckx et al. Real-time NURBS interpolator for distributed motion control
JP2793804B2 (en) Pulse distribution method
JPH10228306A (en) Method for interpolating free curve in numerical controller
US3731175A (en) Servo system for velocity and position control
JPH03245209A (en) Teaching method and control method for continuous route of robot
JPH0561517A (en) Numerical controller
JP2003337607A (en) Method for controlling speed of numerical control apparatus
JP2779797B2 (en) Numerical control unit
JPH0561524A (en) Numerical controller
JPH05165514A (en) Interpolating system for numerical controller
JP2000347715A (en) Numerical controller
JPH0561521A (en) Numerical controller
JPH0561516A (en) Numerical controller

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees