JPH03171010A - Production of plane optical waveguide lens - Google Patents

Production of plane optical waveguide lens

Info

Publication number
JPH03171010A
JPH03171010A JP1309233A JP30923389A JPH03171010A JP H03171010 A JPH03171010 A JP H03171010A JP 1309233 A JP1309233 A JP 1309233A JP 30923389 A JP30923389 A JP 30923389A JP H03171010 A JPH03171010 A JP H03171010A
Authority
JP
Japan
Prior art keywords
transmittance
photomask
optical waveguide
waveguide lens
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1309233A
Other languages
Japanese (ja)
Inventor
Yoshiharu Yamada
祥治 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP1309233A priority Critical patent/JPH03171010A/en
Publication of JPH03171010A publication Critical patent/JPH03171010A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Abstract

PURPOSE:To relatively easily obtain the high-quality plane optical waveguide which has no discontinuous surface by approximately one-dimensionally distributing the transmittance of a photomask to adjust the exposure to a photosensitive material and approximately quadratic-functionally forming an intra-surface refractive index distribution in one direction within the plane. CONSTITUTION:The photomask 12 consists of a high transmittance region and low transmittance region, the transmittance of which attains only the two kinds of the values in the microregions divided to a prescribed size. The photomask is so formed that the transmittance has the one-dimensional distribution as a whole by adjusting the area ratio of these two regions. Namely, the exposure to the photosensitive material is adjusted by approximately one-dimensionally distributing the transmittance of the photomask 12, by which the intra-surface refractive index distribution is formed approximately quadratic-functionally in the one direction within the plane. The lens which has no discontinuous boundary surfaces and decreases the scattering loss of propagated light is obtd. in this way.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、平面光導波路レンズの製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a planar optical waveguide lens.

〔従来の技術〕[Conventional technology]

従来、平面光導波路レンズの製造方法は、(i)シート
面の周辺領域に対して高屈折率領域とすること等によっ
て形成したレンズ形状領域をシート面に不連続的に複数
個形成する製法と、(ii)シート面に連続的な屈折率
分布を形成してレンズ作用を実現させる製法とに大別さ
れる。後者の製法の具体例としては、不純物の熱拡散を
利用する方法が一般的である。
Conventionally, the manufacturing method of a planar optical waveguide lens includes (i) a manufacturing method in which a plurality of lens-shaped regions are discontinuously formed on the sheet surface by making the peripheral region of the sheet surface a high refractive index region, etc.; and (ii) a manufacturing method in which a continuous refractive index distribution is formed on the sheet surface to realize a lens effect. As a specific example of the latter manufacturing method, a method that utilizes thermal diffusion of impurities is common.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前述の方法は、いずれも、微細加工のた
めのエッチング工程や、熱拡散工程を含むため、高価な
製造装置を必要とし、低価格化が困難である。また、レ
ンズ状領域を形成する方法においては、光の散乱を防止
するために領域間の不連続面を極めて高精度に形成する
必要がある。
However, since all of the above-mentioned methods include an etching process for microfabrication and a thermal diffusion process, they require expensive manufacturing equipment and are difficult to reduce in price. Furthermore, in the method of forming lenticular regions, it is necessary to form discontinuous surfaces between regions with extremely high precision in order to prevent scattering of light.

本発明は、上述した問題点を解決するためになされたも
のであり、不連続面のない高品質の平面先導波路レンズ
を比較的容易な方法で得られる平面光導波路レンズの製
造方法を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems, and provides a method for manufacturing a planar optical waveguide lens that allows a high-quality planar waveguide lens without discontinuous surfaces to be obtained by a relatively easy method. The purpose is to

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために本発明では、感光性材料含有
シート面のフォトマスク露光によって面内屈折率分布を
得る平面光導波路レンズの製造方法であって、前記フォ
トマスクの透過率を略一次元分布とすることによって前
記感光性材料への露光量を調整することにより、前記面
内屈折率分布を面内の一方向に対して略二次関数的に形
成する工程を備えるように構成した。
In order to achieve the above object, the present invention provides a method for manufacturing a planar optical waveguide lens that obtains an in-plane refractive index distribution by exposing the surface of a sheet containing a photosensitive material to a photomask, the method comprising: The present invention is configured to include a step of forming the in-plane refractive index distribution in a substantially quadratic manner with respect to one direction within the plane by adjusting the amount of exposure to the photosensitive material.

また本発明では、前記フォトマスクは、所定の大きさに
分割された微小領域において透過率が二種の値のみをと
る高透過率領域と低透過率領域とから威り、当該二領域
の面積比を調整することにより全体として透過率が一次
元分布をなすように構成した。
Further, in the present invention, the photomask has a high transmittance region and a low transmittance region in which the transmittance takes only two values in minute regions divided into predetermined sizes, and the area of the two regions is By adjusting the ratio, the transmittance was configured to have a one-dimensional distribution as a whole.

さらに本発明では、前記感光性材料は光重合性モノマで
あり、フォトマスク露光後に未反応モノマを揮発除去す
る工程を備えるように構成した。
Further, in the present invention, the photosensitive material is a photopolymerizable monomer, and the method is configured to include a step of volatilizing and removing unreacted monomers after exposure with a photomask.

〔作用〕[Effect]

上記の構成を有する本発明の平面光導波路レンズの製造
方法では、フォトマスク透過光の強度は、感光性材料含
有シートの中心線付近では弱く (または強く)周辺に
向って漸増(漸減)する略一次元分布をなす。その結果
、感光性材料の反応も、露光強度分布と同様の分布を威
す。そして、最終的には、内面の一方向に対して略二次
関数的パタンを有する所望の面内屈折率分布が得られレ
ンズ作用が実現できる。
In the method for manufacturing a planar optical waveguide lens of the present invention having the above configuration, the intensity of the light transmitted through the photomask is weak (or strong) near the center line of the photosensitive material-containing sheet, and gradually increases (gradually decreases) toward the periphery. Forms a one-dimensional distribution. As a result, the reaction of the photosensitive material also has a distribution similar to the exposure intensity distribution. Finally, a desired in-plane refractive index distribution having a substantially quadratic pattern in one direction of the inner surface is obtained, and a lens effect can be realized.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面を参照して説明する。第
3図は、本発明に係る平面光導波路レンズの製造方法を
経時的に示す説明図で、以下の4つのプロセスから成る
Hereinafter, one embodiment of the present invention will be described with reference to the drawings. FIG. 3 is an explanatory diagram chronologically showing the method for manufacturing a planar optical waveguide lens according to the present invention, which consists of the following four processes.

(a) ベースフィルムの作威;感光性材料を母材(例
えばボリカーボネイト等)に含有させ、溶融押し出し法
(キャスティングともいう)等により、所定厚のシート
を形成する。感光性材料は、光重合性モノマが好ましく
、例えばアクリル酸メチル等が好適である。好適例とし
て、屈折率n2=1.48のアクリル酸メチルをドープ
モノマーとして、屈折率nl= 1.59のボリカーボネイトに含有させ、溶融押し出し
法(キャスティングともいう)により厚さ50〜100
μmのシ一ト11を形成する。
(a) Production of base film: A photosensitive material is contained in a base material (for example, polycarbonate, etc.), and a sheet of a predetermined thickness is formed by a melt extrusion method (also called casting) or the like. The photosensitive material is preferably a photopolymerizable monomer, such as methyl acrylate. As a preferred example, methyl acrylate with a refractive index of n2 = 1.48 is incorporated as a doping monomer into polycarbonate with a refractive index of nl = 1.59, and a thickness of 50 to 100 mm is formed by melt extrusion (also called casting).
A sheet 11 of μm is formed.

(b)  マスク露光による光重合;フオトマスク12
を前記シートに重ねて紫外線を露光する。フォトマスク
12の透過率は、例えば中心部で小さく、周辺に向かっ
て漸増するような略一次元分布をなすパターンが形成さ
れている。かかる透過率分布パターンを形成するには、
例えば、以下に示される方法を採用すればよい。すなわ
ち、フォトマスク12を所定の大きさの微小領域に分割
し、この分割された微小領域は、透過率が二種の値のう
ちのいずれかのみをとる高透過率領域と低透過率領域と
から形成され、かかる二領域の面積比を調整することに
よって全体として一次元分布をなす連続的な透過率を有
するフォトマスク12を得ることができる。
(b) Photopolymerization by mask exposure; Photomask 12
is placed on the sheet and exposed to ultraviolet light. The photomask 12 has a pattern with a substantially one-dimensional distribution in which the transmittance is small at the center and gradually increases toward the periphery, for example. To form such a transmittance distribution pattern,
For example, the method shown below may be adopted. That is, the photomask 12 is divided into minute areas of a predetermined size, and these divided minute areas are divided into a high transmittance area and a low transmittance area where the transmittance takes only one of two values. By adjusting the area ratio of these two regions, it is possible to obtain a photomask 12 having a continuous transmittance with a one-dimensional distribution as a whole.

これにより、フォトマスク12の透過 率を有するフォトマスク12に対応して露光量が調整さ
れた紫外光を各部のアクリル酸メチルモノマに照射し、
光重合反応を起こさせる。
As a result, the methyl acrylate monomer in each part is irradiated with ultraviolet light whose exposure amount is adjusted according to the photomask 12 having the transmittance of the photomask 12,
Causes a photopolymerization reaction.

(c)  未反応モノマの除去;未反応モノマを真空乾
燥によって除去すると、光重合ポリマの残量は中心部で
少く、周辺部で多くなり、結果として面内の一方向に対
して略二次関数的に変化するパターンを有する所望の面
内屈折率分布を持ったコア2が得られる。
(c) Removal of unreacted monomers: When unreacted monomers are removed by vacuum drying, the remaining amount of photopolymerized polymer is smaller in the center and larger in the periphery, resulting in a nearly quadratic shape in one direction within the plane. A core 2 having a desired in-plane refractive index distribution with a pattern that changes functionally is obtained.

(d)  表面のクラッティング;前記シートの上下方
向のクラッド層3として、低屈折率アクリル系の樹脂を
コートする。
(d) Surface cladding: A low refractive index acrylic resin is coated as the cladding layer 3 in the vertical direction of the sheet.

次に第l図、第2図に従って、前記製法で作成した平面
光導波路レンズ1の動作を説明する。
Next, the operation of the planar optical waveguide lens 1 manufactured by the above manufacturing method will be explained with reference to FIGS. 1 and 2.

第1図において、クサビ状にしぼられた入力光4はコア
2の一方の端面に集光される。即ち、入力光4は図中y
方向に関しては略平行光である。
In FIG. 1, the wedge-shaped input light 4 is focused on one end surface of the core 2. As shown in FIG. That is, the input light 4 is y in the figure.
In terms of direction, the light is approximately parallel.

X方向屈折率分布は第2図(a)に示されるような分布
となり、光は、高屈折率部であるコア2中に保持される
。一方、y方向屈折率分布は図2(b)に示されるよう
に、略二次関数的、例えばn        Y C ここで、n :中心部屈折率、Δn:中心部と最C 周辺部との屈折率差、Y:y方向導波路幅である。
The refractive index distribution in the X direction is as shown in FIG. 2(a), and light is retained in the core 2, which is a high refractive index portion. On the other hand, as shown in FIG. 2(b), the refractive index distribution in the y direction is approximately quadratic, for example n refractive index difference, Y: y-direction waveguide width.

入力光は、y方向周辺部において、屈折率が相対的に小
さい為に、位相速度が大きくなり、除々に収束する。光
の幅が最も小さくなる長さで平面先導波路レンズ1を切
断すれば、第1図に示すごとく、出力光5は、コーン状
のビーム形状となる。
Since the input light has a relatively small refractive index in the peripheral portion in the y direction, the phase velocity increases and it gradually converges. If the planar waveguide lens 1 is cut at a length that minimizes the width of the light, the output light 5 will have a cone-shaped beam shape, as shown in FIG.

このような本発明の平面光導波路レンズ1は、例えば第
4図に示されるようにレーザプリンタ用の偏向器〜感光
ドラム間の光伝送系に応用される。
The planar optical waveguide lens 1 of the present invention is applied, for example, to an optical transmission system between a deflector and a photosensitive drum for a laser printer, as shown in FIG.

すなわち、当該光伝送系は、先端傾斜面に回転ミラー2
1aを備える回転体21と、本発明の平面光導波路レン
ズ1と、感光ドラム22を備えて構成される。
In other words, the optical transmission system includes a rotating mirror 2 on the tip inclined surface.
1a, a planar optical waveguide lens 1 of the present invention, and a photosensitive drum 22.

そして、回転ミラー21aに向けて入射された入射レー
ザービーム41は、回転ミラー21aによって反射され
、平面光導波路レンズ1を走査光ビーム42として通過
し、最終的にコーン状のビーム形状51となり射出し、
感光ドラム22上に記録スポットを形成する。
Then, the incident laser beam 41 directed toward the rotating mirror 21a is reflected by the rotating mirror 21a, passes through the planar optical waveguide lens 1 as a scanning light beam 42, and finally becomes a cone-shaped beam 51 and exits. ,
A recording spot is formed on the photosensitive drum 22.

このような光伝送系は、その構成、構造が間単で底コス
トであり、しかも小形軽量化可能という点で優れたもの
である。また特別な配慮をすることなく、従来の高価な
f・θレンズに代えて利用できる。
Such an optical transmission system is excellent in that its configuration and structure are simple, low cost, and can be made smaller and lighter. Furthermore, it can be used in place of conventional expensive f/theta lenses without special consideration.

〔発明の効果〕〔Effect of the invention〕

以上詳述したことから明らかなように、本発明によれば
、不連続境界面が無く、従って、伝播光の散乱損失が少
なく高性能な平面光導波路レンズを比較的容易に製造す
ることができる。
As is clear from the detailed description above, according to the present invention, it is possible to relatively easily manufacture a high-performance planar optical waveguide lens that has no discontinuous boundary surfaces and has little scattering loss of propagating light. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の製造方法により得られる平面光導波路
レンズの動作の説明図であり、第2図(a),(b)は
それぞれ上記平面光導波路レンズのX方向およびy方向
の屈折率分布形状を示す図であり、第3図(a)〜(d
)は本発明に係る平面光導波路レンズの製造工程を示す
説明図、第4図(a).(b)は、それぞれ、本発明の
平面光導波路レンズを応用した光伝送系の具体例を示す
平面図および正面図である。 1・・・平面導波路レンズ、2・・・コア、3・・・ク
ラツド層、11・・・感光性材料含有シート、■2・・
・フォトマスク。
FIG. 1 is an explanatory diagram of the operation of the planar optical waveguide lens obtained by the manufacturing method of the present invention, and FIGS. 2(a) and (b) show the refractive index of the planar optical waveguide lens in the X direction and the y direction, respectively. It is a diagram showing the distribution shape, and FIGS. 3(a) to 3(d)
) is an explanatory diagram showing the manufacturing process of the planar optical waveguide lens according to the present invention, and FIG. 4(a). (b) is a plan view and a front view, respectively, showing a specific example of an optical transmission system to which the planar optical waveguide lens of the present invention is applied. DESCRIPTION OF SYMBOLS 1... Planar waveguide lens, 2... Core, 3... Clad layer, 11... Photosensitive material containing sheet, ■2...
・Photomask.

Claims (1)

【特許請求の範囲】 1、感光性材料含有シート面のフォトマスク露光によっ
て面内屈折率分布を得る平面光導波路レンズの製造方法
であって、前記フォトマスクの透過率を略一次元分布と
することによつて前記感光性材料への露光量を調整する
ことにより、前記面内屈折率分布を、面内の一方向に対
して略二次関数的に形成する工程を備えることを特徴と
する平面光導波路レンズの製造方法。 2、前記フォトマスクは、所定の大きさに分割された微
小領域において透過率が二種の値のみをとる高透過率領
域と低透過率領域とから成り、当該二領域の面積比を調
整することにより全体として透過率が略一次元分布をな
すようにしたことを特徴とする請求項1記載の平面光導
波路レンズの製造方法。 3、前記感光性材料は光重合性モノマであり、フォトマ
スク露光後に未反応モノマを揮発除去する工程を備える
ことを特徴とする請求項1項または請求項2記載の平面
光導波路レンズの製造方法。
[Claims] 1. A method for manufacturing a planar optical waveguide lens that obtains an in-plane refractive index distribution by exposing the surface of a sheet containing a photosensitive material to a photomask, wherein the transmittance of the photomask has a substantially one-dimensional distribution. The method further comprises a step of forming the in-plane refractive index distribution in a substantially quadratic manner with respect to one direction within the plane by adjusting the amount of exposure to the photosensitive material. A method for manufacturing a planar optical waveguide lens. 2. The photomask consists of a high transmittance region and a low transmittance region in which the transmittance takes only two values in minute regions divided into predetermined sizes, and the area ratio of the two regions is adjusted. 2. The method of manufacturing a planar optical waveguide lens according to claim 1, wherein the transmittance as a whole is made to have a substantially one-dimensional distribution. 3. The method for manufacturing a planar optical waveguide lens according to claim 1 or 2, wherein the photosensitive material is a photopolymerizable monomer, and the method includes a step of volatilizing and removing unreacted monomers after photomask exposure. .
JP1309233A 1989-11-30 1989-11-30 Production of plane optical waveguide lens Pending JPH03171010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1309233A JPH03171010A (en) 1989-11-30 1989-11-30 Production of plane optical waveguide lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1309233A JPH03171010A (en) 1989-11-30 1989-11-30 Production of plane optical waveguide lens

Publications (1)

Publication Number Publication Date
JPH03171010A true JPH03171010A (en) 1991-07-24

Family

ID=17990533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1309233A Pending JPH03171010A (en) 1989-11-30 1989-11-30 Production of plane optical waveguide lens

Country Status (1)

Country Link
JP (1) JPH03171010A (en)

Similar Documents

Publication Publication Date Title
US5998096A (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
US7050691B2 (en) Optical waveguide and method of manufacturing the same
KR100872244B1 (en) Process for producing filmy optical waveguide
JPH0618739A (en) Production of waveguide
KR100471380B1 (en) Method for Manufacturing Optical Waveguide Using Laser Direct Writing And Optical Waveguide Using the Same
EP0575885B1 (en) Process for producing polymerization or crosslinking rate-distributed article and process for producing lens, lens array or waveguide using the process
JP2007183468A (en) Manufacturing method of optical waveguide with mirror
JPH03171010A (en) Production of plane optical waveguide lens
KR20010074638A (en) Laser direct writing of planar lightwave circuits
JP2001296649A (en) Distributed density mask, method for manufacturing the same, and method for forming surface shape
JPH01134309A (en) Production of light guide
JPH04165311A (en) Manufacture of photo waveguide passage
JP3726790B2 (en) Manufacturing method of micro lens array
KR100261297B1 (en) Optical fiber device with grating at the end-surface and the fabrication method
JPH0675105A (en) Lens array plate and its production
JPH063506A (en) Production of lens and production of lens array plate
JPH01134310A (en) Production of light guide
JPH04165310A (en) Manufacture of photo waveguide passage
JP4279598B2 (en) Manufacturing method of gradient index lens
JP2728732B2 (en) Method of forming hologram by electron beam lithography
JPH03140905A (en) Optical waveguide body
KR20000064281A (en) Viewing screen and manufacturing method
JPS6019107A (en) Manufacture of optical waveguide
EP0241162A2 (en) Optical waveguide lenses
JP2003156614A (en) Method for forming pattern, optical parts and method for manufacturing optical parts