JPH03170812A - Measuring apparatus for dimension of structural member - Google Patents

Measuring apparatus for dimension of structural member

Info

Publication number
JPH03170812A
JPH03170812A JP30898689A JP30898689A JPH03170812A JP H03170812 A JPH03170812 A JP H03170812A JP 30898689 A JP30898689 A JP 30898689A JP 30898689 A JP30898689 A JP 30898689A JP H03170812 A JPH03170812 A JP H03170812A
Authority
JP
Japan
Prior art keywords
hole
head
measuring device
sensor head
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30898689A
Other languages
Japanese (ja)
Other versions
JP2738964B2 (en
Inventor
Hiromasa Kamei
博正 亀井
Ken Fujita
憲 藤田
Shiro Motomura
本村 士郎
Takuya Okada
拓也 岡田
Masahiro Fujiwara
正弘 藤原
Tomoshi Urakawa
浦川 智志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP30898689A priority Critical patent/JP2738964B2/en
Publication of JPH03170812A publication Critical patent/JPH03170812A/en
Application granted granted Critical
Publication of JP2738964B2 publication Critical patent/JP2738964B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To measure the size of a member necessary for numerical temporary assembly with high accuracy by supporting a multi-functional sensor head with a three-axis positioning arm, and providing a scanning device, a tracing target and a three-dimensional position measuring device. CONSTITUTION:A multi-functional sensor head 16 illuminates a girder steel 1 in the form of a ring. After photographing the steel 1, the sensor head 16 processes the image thereby to measure the central position of a bolt hole 2 and to obtain the pitch, position and direction of the hole. Moreover, the head 16 irradiates a slit beam, thereby measuring the length of the steel and distance between the hole and an end of the member. Accordingly, the warp and inclination of the member are measured by a four-point optical displacement sensor. A three-axis positioning arm 15 having a function to turn, oscillate and revolve supports the head 16, allowing the head 16 to be flexibly and speedily close to a measuring point. A scanning device 14 moves the arm 15 in three directions orthogonal to each other. Meanwhile a three-dimensional position measuring device 18 always tracks a tracing target 17 thereby to measure the distance to the target 17 by laser beams. In this manner, the three- dimensional position of the head 16 can be detected with high accuracy.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、構造物部材の工場検査に適用される寸法計測
装置に関し、その他8l器等の寸法検査に適用できるも
のである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a dimension measuring device applied to factory inspections of structural members, and is also applicable to dimension inspections of other 8L vessels and the like.

く従来の技術〉 一般に、橋梁は架設現場で組み立てる前に、製品検査法
として仮組立てを行うのが通常である。ここで、仮組立
ては、架設現場に材料や部材を搬送する直前に、工場等
でこれらの部材等の全部或いはその一部をいったん組み
立てて、架設に不都合がないかどうかをチェックする作
業であり、検査後は再び解体されて現場に搬送される。
BACKGROUND ART Generally, bridges are temporarily assembled as a product inspection method before being assembled at the construction site. Temporary assembly here refers to the work of assembling all or some of the materials and components at a factory, etc. immediately before transporting them to the construction site, and then checking to see if there are any problems with the construction. After inspection, it will be dismantled again and transported to the site.

しかし、仮組立て作業は確実な製品検査法である反面、
手間や費用がかかる問題があった。例えば、小型の橋梁
でも数日かかるうえ、大型の橋梁の場合は、屋外作業と
なるので更に煩雑な作業となり、危険も伴っていた。
However, while temporary assembly work is a reliable product inspection method,
There were problems that required time and money. For example, even a small bridge would take several days to complete, and in the case of a large bridge, the work would have to be done outdoors, making the work even more complicated and dangerous.

そこで、このような現物検査である仮組立てに代わって
、各部材等を光学的に非接触で測定することによって架
設に不都合がないかチェックする検査方法の開発が試み
られている(以下、その方法を数値仮組立てという。)
。その一例について第7図を参照して説明する。
Therefore, instead of temporary assembly, which is an actual physical inspection, attempts have been made to develop an inspection method that checks whether there are any problems with the erection by optically measuring each member without contact. This method is called numerical temporary assembly.)
. An example will be explained with reference to FIG. 7.

同図に示すように橋梁の桁鋼1において、桁組立部とな
るボルト穴2は、製品加工の結果として寸法公差、配置
等を厳しく検査する必要がある。ここでは、ボルト穴2
に寸法計測用ターゲットとなる球光源3を配置し、テレ
ビカメラ4aを左配置、テレビカメラ4bを右配置とし
て左右ずれの無い視野5で球光源3を立体視することで
、球光源3、即ちボルト穴2の位置を三次元的に測定し
ている。この原理は、テレビカメラ4a,4bに対応し
たモニタテレビ7a.7bにより観測角θで測定される
と、画面中心を共通にして変位相当ずつ画像8或いは箇
像9のように観測されるため、下式(4)に従って、三
角測量によって球光源3の位置が計測可能となる。
As shown in the figure, in the steel girder 1 of a bridge, the bolt holes 2 that form the girder assembly part need to be strictly inspected for dimensional tolerances, arrangement, etc. as a result of product processing. Here, bolt hole 2
By arranging the spherical light source 3 which is a target for dimension measurement, placing the television camera 4a on the left and the television camera 4b on the right, and viewing the spherical light source 3 stereoscopically with a field of view 5 with no left-right shift, the spherical light source 3, i.e. The position of bolt hole 2 is measured three-dimensionally. This principle applies to monitor televisions 7a and 7a corresponding to television cameras 4a and 4b. When measured at the observation angle θ by 7b, the center of the screen is shared and images corresponding to the displacement are observed as shown in images 8 and 9, so the position of the spherical light source 3 can be determined by triangulation according to equation (4) below. Measurable.

但し、(Xs. ”1e. Z*)は点pの三次元座標
値、(X *. ’J t. Z x)は点pのカメラ
計測三次元座標値であり、計測ターゲットに取り付けた
球光源3の2台のCCDカメラで三角測量したものであ
る。Mは台車移動に伴う被測定物の回転変位補正座標変
換行列、(ΔX.ΔY,ΔZ)は台車移動に伴う被測定
物の変位である。
However, (Xs. ``1e. Z*) is the three-dimensional coordinate value of point p, (X *. 'J t. Z x) is the camera-measured three-dimensional coordinate value of point p, and the sphere attached to the measurement target Triangulation is carried out using two CCD cameras of light source 3. M is a coordinate transformation matrix for correcting the rotational displacement of the object to be measured due to the movement of the cart, and (ΔX.ΔY, ΔZ) is the displacement of the object to be measured due to the movement of the cart. It is.

このような、演算は画像処理装置10で行われるため、
数値出力がオンラインで得られ、数値仮組立てが可能と
なるが、テレビカメラ4a,4bの視野5に限りがある
ため、一つの桁鋼全体の検査を行うためには、橋梁の桁
鋼1を搬送台車6に積載して移動させる必要がある。
Since such calculations are performed in the image processing device 10,
Numerical output can be obtained online and temporary numerical assembly is possible, but since the field of view 5 of the TV cameras 4a and 4b is limited, in order to inspect the entire girder steel 1 of the bridge, It is necessary to load it onto the carrier vehicle 6 and move it.

このように、従来技術によっても一応の数値仮組立を行
うことが出来るが、つぎの様な問題点があった。
As described above, numerical temporary assembly can be carried out to some extent using the conventional technology, but there are the following problems.

<1)部材の仮組立には、穴の位置だけでなく、穴間の
距離、穴と部材端部の距離及び方向、部材の反りや傾き
を組み合わせた総合的な部材寸法データを必要とするが
、上記従来技術では穴の位置を求められるだけで、その
他の配置等のデータは求められない。
<1) Temporary assembly of components requires comprehensive component dimension data that combines not only hole positions, but also distances between holes, distances and directions between holes and the ends of components, and warpage and inclination of components. However, in the above-mentioned conventional technology, only the position of the hole can be determined, but other data such as the arrangement etc. can not be determined.

(2)計測したい部位に球光源を設置しなければならず
、その段取り時間が多大となり、通常の仮組み工数と変
わらなくなる。
(2) It is necessary to install a ball light source at the part to be measured, which requires a large amount of setup time, which is no different from the usual temporary assembly man-hours.

(3)例えば、桁鋼等の部材を台車にて搬送するため剛
体移動を必要とするが、技術的に困難であり、精度補償
が難しい。
(3) For example, rigid body movement is required to transport members such as girder steel using carts, but this is technically difficult and difficult to compensate for accuracy.

(4)ボルト穴に球光源を配置する場合の取り付け精度
が曖昧となり易く、ヒューマンエラーを招いて信頼性に
欠ける欠点がある。
(4) When a ball light source is placed in a bolt hole, the installation accuracy tends to be ambiguous, leading to human error and resulting in a lack of reliability.

このように、上記従来技術では、実用面において多くの
問題があり、その解決が望まれていた。
As described above, the above-mentioned conventional technology has many problems in practical use, and solutions to these problems have been desired.

〈発明が解決しようとする課題〉 本発明は、次のような課題を解決することを目的とする
ものである。
<Problems to be solved by the invention> The present invention aims to solve the following problems.

■数値仮組み立てに必要となる部材寸法として穴位置、
穴ピッチ、穴と端部距離、配置又部材の反りや傾き等を
高精度に測定することの出来る多機能センサを開発する
こと。
■Dimensions of the parts required for numerical temporary assembly include hole positions,
To develop a multifunctional sensor capable of measuring hole pitch, distance between holes and ends, arrangement, warpage and inclination of members, etc. with high precision.

■センサを部材に接近させ、柔軟且高精度な位置決めで
死角なしで必要な部位の部材寸法を計測できる手段を開
発すること。
■ Developing a means to move the sensor close to the member and measure the dimensions of the required part using flexible and highly accurate positioning without blind spots.

■広範囲な計測範囲を高精度に計測できる手段を開発す
ること。
■Developing a means of measuring a wide measurement range with high precision.

■更には、以上の課題を克服したうえで、数値仮組み立
てに応用し、その実用性を改善すること。
■Furthermore, after overcoming the above issues, apply it to numerical temporary assembly and improve its practicality.

く課題を解決するための手段〉 斯かる目的を解決する本発明の構成は部材寸法として穴
位置、穴ピッチ、穴と部材端部距離及び配置を測定する
撮像装置、リング照明、スリット光源及び部材の反り、
傾きを測定する4点式の光変位計を持つ多機能センサヘ
ッドと、前記多機能センサヘッドを支持して旋回、首振
り、転回の各機能により測定点に接近させる3軸位置決
めアームと、前記3軸位置決めアームを相互に直交する
3方向に走査する走査装置と、前記多機能センサヘッド
に駆動原点として設けられる追尾用ターゲットと、前記
3軸位置決めアーム及び前記走査装置の動きに追従して
前記追尾用ターゲットを追尾すると共に前記追尾用ター
ゲットまでの距離をレーザ光を利用して測定する三次元
位置測定装置とを具備することを特徴とする。
Means for Solving the Problems〉 The structure of the present invention that solves the above objects includes an imaging device, a ring illumination, a slit light source, and a member that measure the hole position, hole pitch, distance and arrangement of the hole and the end of the member as part dimensions. Warp,
a multi-functional sensor head having a four-point optical displacement meter for measuring inclination; a three-axis positioning arm that supports the multi-functional sensor head and allows it to approach a measurement point by rotating, swinging, and turning functions; a scanning device that scans a 3-axis positioning arm in three mutually orthogonal directions; a tracking target provided on the multifunctional sensor head as a drive origin; The present invention is characterized by comprising a three-dimensional position measuring device that tracks a tracking target and measures the distance to the tracking target using a laser beam.

〈作用〉 ■測定の対象となる部材は撮像装置により撮像されると
共にリング照明により均一な照度が得られるようにリン
グ状に照明される。撮像装置により得られた箇像は画像
処理され、穴だけが認識され、その図芯点から穴中心位
置が計測される。
<Function> (1) The member to be measured is imaged by the imaging device, and is also illuminated in a ring shape by ring illumination to obtain uniform illuminance. The image obtained by the imaging device is subjected to image processing, only the hole is recognized, and the hole center position is measured from the center point of the hole.

■穴のピッチは複数個の穴を認識した結果によ,り、そ
の中心間距離を計測して求められる。同時に、穴の配置
、方向も求められる。
■The pitch of the holes is determined based on the results of recognizing multiple holes, and by measuring the distance between their centers. At the same time, the placement and direction of the holes are also required.

■穴と部材端部の距離等は、スリット光源から照射され
るスリット光の長さを測定して求められる。
(2) The distance between the hole and the end of the member is determined by measuring the length of the slit light emitted from the slit light source.

■部材の反り、傾きは四点式光変位計により、部材まで
の距離を計測することで求められる。
■The warpage and inclination of a component can be determined by measuring the distance to the component using a four-point optical displacement meter.

■多機能センサヘッドを旋回、首振り、転回の各機能を
有する3軸位置決めアームにより支持したので、多機能
センサヘッドは測定点まで柔軟且つ高精度で、しかも高
速に移動されることこととなる。
■The multifunctional sensor head is supported by a 3-axis positioning arm that has the functions of swivel, swing, and turn, allowing the multifunctional sensor head to be moved to the measurement point flexibly, with high precision, and at high speed. .

■3軸位置決めアームは走査装置により相互に直交する
方向に移動できるので、広範囲な寸法計測が可能となる
■Since the 3-axis positioning arms can be moved in mutually orthogonal directions by the scanning device, it is possible to measure dimensions over a wide range.

■三次元位置測定装置が追尾用ターゲットを常に追跡し
、追尾用ターゲットまでの距離を測定するので、多機能
センサヘッドの三次元的位置が高精度で検出することが
出来る。
■Since the three-dimensional position measuring device constantly tracks the tracking target and measures the distance to the tracking target, the three-dimensional position of the multifunctional sensor head can be detected with high precision.

〈実施例〉 以下、本発明を図面に示す実施例に基づいて詳細に説明
する。
<Example> Hereinafter, the present invention will be described in detail based on an example shown in the drawings.

第l図〜第6図に本発明の一実施例を示す。An embodiment of the present invention is shown in FIGS. 1 to 6.

同図に示すように橋梁の桁鋼1には部材寸法計測を必要
とするボルト穴2が設けられている。
As shown in the figure, bolt holes 2 are provided in the girder steel 1 of a bridge, which require measurement of member dimensions.

床面にはレール14bが桁鋼1に沿って図中Y軸方向に
敷設されており、このレール14b上に三次元直交座標
形走査機構14aを介して走査装置14が摺動自在に設
置されている。走査装置l4には、高精度3軸位置決め
アーム15が図中XY軸方向に可動自在に取り付けられ
、その先端には多機能センサヘッド16が搭載されてい
る。高精度3軸位置決めアーム15は、第2図に示すよ
うに三つの関節を有しα軸旋回、β軸首振り、γ軸転回
が可能であり、傾斜計23、追尾用ターゲット(姿勢制
御装置保有)l7が装着されている。傾斜計23は2軸
(第1図中YZ方向)の傾斜を測定するものであり、高
精度3軸位置決めアームl5の独立した高精度位置決め
機能を保証するため駆動原点の水準を計測している。追
尾用ターゲットl7は駆動原点として設けられ、高精度
3軸位置決めアーム15の移動にともなって三次元位置
測定装置l8により追尾される標的となる。第1図に示
すように三次元位置測定装置18はθ軸φ軸の2軸に関
して回動自在に高精度位置決め装置20に搭載されてい
る。従って、レール14b上を走査装置14が移動して
も、追尾用ターゲット17の位置を正確に捕らえること
が出来るので、高精度3軸位置決めアームl5、多機能
センサヘッド16は走査装114に関係なく、部材寸法
を測定しながら動くことが可能となる。
A rail 14b is laid on the floor along the girder steel 1 in the Y-axis direction in the figure, and a scanning device 14 is slidably installed on this rail 14b via a three-dimensional orthogonal coordinate type scanning mechanism 14a. ing. A highly accurate three-axis positioning arm 15 is attached to the scanning device l4 so as to be movable in the XY axis directions in the figure, and a multifunctional sensor head 16 is mounted on the tip of the arm 15. The high-precision 3-axis positioning arm 15 has three joints as shown in FIG. Owned) l7 is installed. The inclinometer 23 measures the inclination of two axes (YZ direction in FIG. 1), and measures the level of the drive origin in order to guarantee the independent high-precision positioning function of the high-precision 3-axis positioning arm l5. . The tracking target l7 is provided as a drive origin, and becomes a target tracked by the three-dimensional position measuring device l8 as the high-precision three-axis positioning arm 15 moves. As shown in FIG. 1, the three-dimensional position measuring device 18 is mounted on a high-precision positioning device 20 so as to be rotatable about two axes, the θ axis and the φ axis. Therefore, even if the scanning device 14 moves on the rail 14b, the position of the tracking target 17 can be accurately captured. , it becomes possible to move while measuring component dimensions.

つまり、走査装置l1は水準が保証されていれば、誤差
を持たないのである。
In other words, the scanning device l1 has no error if the level is guaranteed.

追尾用ターゲットl7と三次元測定装置18等の構成を
第3図(a)に示す。同図に示すように、追尾用ターゲ
ットl7は、レーザ側長用のコーナーキューブ17aと
円形光源17bとを同軸に組み合わせたものであり、θ
′旋回、φ′首振りにより三次元位置測定装置l8のθ
軸、φ軸にトラッキングできる機能を有している。この
為、走査装置l4が移動しても、追尾用ターゲットl7
と三次元測定装置18とは常に光学的計測軸l9を挟ん
で向かい合うことが可能となる。
The configuration of the tracking target l7, three-dimensional measuring device 18, etc. is shown in FIG. 3(a). As shown in the figure, the tracking target l7 is a coaxial combination of a corner cube 17a for the laser side length and a circular light source 17b, and
θ of the three-dimensional position measuring device l8 by turning and swinging φ
It has the function of tracking along the axis and φ axis. Therefore, even if the scanning device l4 moves, the tracking target l7
and the three-dimensional measuring device 18 can always face each other across the optical measurement axis l9.

次に、自動追尾及び位置決め方法について説明する。円
形光源17bから光を出射して光源光19aとして視覚
センサ18fで観察すると、モニタテレビ25上では円
形図形が得られる。
Next, an automatic tracking and positioning method will be explained. When light is emitted from the circular light source 17b and observed as light source light 19a by the visual sensor 18f, a circular shape is obtained on the monitor television 25.

この円形図形は追尾用ターゲット17の中心は、一般に
は光学的計測軸l9の光軸中心dxo,dy0と一致せ
ず、それらのからのズレ量がdx,dyであるとする。
In this circular figure, it is assumed that the center of the tracking target 17 generally does not coincide with the optical axis center dxo, dy0 of the optical measurement axis l9, and the amount of deviation from them is dx, dy.

とすれば、そのズレJt d x +dyが小さくなる
ように円形光源17bを視覚センサ187で追尾し、θ
=−θ′ φ=一φ′となるように制御すれば、自動追
尾位置決めができることになる。
Then, the circular light source 17b is tracked by the visual sensor 187 so that the deviation Jt d x +dy becomes small, and θ
If control is performed so that = -θ' φ = -φ', automatic tracking positioning will be possible.

追尾用ターゲット17と三次元測定装置l8との距離D
+sは次のように測定される。即ち、半導体レーザ変調
光学系18aで2種、例えば670m++と830mn
の波長を有する2種の半導体レーザを変調して、シング
ルモードファイバ18b,コリメー夕ヘッド18cを介
してビームスブリッタ18dで同一光路に軸合せし、ミ
ラー18dで分岐し光センサ18gで基準点信号Rとし
て検知する一方、受光レンズ18i、ミラー18jを介
してコーナーキューブ17aとの往路を経たレーザ測長
光19bを光センサ18hで測定し測定信号Mを得る。
Distance D between the tracking target 17 and the three-dimensional measuring device l8
+s is measured as follows. That is, the semiconductor laser modulation optical system 18a has two types, for example, 670m++ and 830mn.
The beam splitter 18d modulates two types of semiconductor lasers having a wavelength of On the other hand, the optical sensor 18h measures the laser length measurement light 19b that has passed through the light receiving lens 18i and the mirror 18j to reach the corner cube 17a, thereby obtaining a measurement signal M.

これにより、基準信号Rと測定信号Mどの位相差ΔPを
算出し、次のように距離D I1を求める。
As a result, the phase difference ΔP between the reference signal R and the measurement signal M is calculated, and the distance DI1 is determined as follows.

D13=一工一・」J一・・・(1) 2fn  360 但し、Cは光速(3XIO”m)、fは変調周波数、Δ
Pは測定位相、nは媒体の屈折率である。また、図中、
18e.18f,18j.18kはレーザの波長等を考
慮したフィルター的特性をもつミラーである。
D13 = 1 work 1.''J1... (1) 2fn 360 However, C is the speed of light (3XIO''m), f is the modulation frequency, Δ
P is the measurement phase and n is the refractive index of the medium. Also, in the figure,
18e. 18f, 18j. 18k is a mirror having filter-like characteristics in consideration of the laser wavelength, etc.

このように、三次元位置測定装置l8では、半導体レー
ザに可変変調を加えて任意の長さを゛測定出来るだけで
なく、2種類の波長を用いることに特徴がある。つまり
、光学的計測軸l9は測定環境により変化、具体的には
温度、湿度、気圧の変化により、その屈折率が増減する
ため、環境補償して真の距離D +s。を求める必要が
ある。そこで、三次元位置測定装置l8ではこれを2種
類の波長を用いて次のように求め直すことで精度を維持
している。
In this way, the three-dimensional position measuring device 18 is characterized by not only being able to measure any length by applying variable modulation to the semiconductor laser, but also using two types of wavelengths. In other words, the refractive index of the optical measurement axis l9 changes depending on the measurement environment, specifically, changes in temperature, humidity, and atmospheric pressure, so the true distance D + s is obtained by compensating for the environment. It is necessary to ask for Therefore, the three-dimensional position measuring device l8 maintains accuracy by recalculating this using two types of wavelengths as follows.

このように、三次元位置測定装置l8のθ軸φ軸の2軸
の情報及び追尾用ターゲットl7と三次元測定装11g
との真の距離D.。とから、追尾用ターゲット17の三
次元座標(xt,yt,ZT)が容易に求められる。つ
まり、走査装置l4の広範囲な移動に伴う寸法計測の三
次元位置計測が高精度に実施できる。
In this way, the two-axis information of the θ axis and φ axis of the three-dimensional position measuring device l8, the tracking target l7, and the three-dimensional measuring device 11g
The true distance between D. . From this, the three-dimensional coordinates (xt, yt, ZT) of the tracking target 17 can be easily obtained. In other words, three-dimensional position measurement for dimension measurement can be performed with high precision as the scanning device l4 moves over a wide range.

次に、多機能センサ16による寸法計測方法について第
4図を参照して説明する。
Next, a method for measuring dimensions using the multifunctional sensor 16 will be explained with reference to FIG.

第4図(a)に示すように、多機能センサl6には、超
小型テレビカメラ26、スリット光源27、光変位計2
8、リング照明29が装備されている。穴位置計測は、
同図(blに示すようにリング照明29により超小型テ
レビカメラ26の視野3lを均一に照明し、視野31内
の画像を画像処理により二値化して図形的特徴のあるボ
ルト穴2を認識することにより行う。また、穴間ビッチ
、部材端33と穴端間距離は、同図(C)に示すように
視野3lにスリット光源27からスリット光27aを加
えて、光切断法による画像処理により認識測定する。そ
の他の部材の反り、傾きは同図(d)に示すように四点
配置された光変位# 2 8で部材35までの距離を測
定することにより、その三次元的配置を簡単に測定する
ことができる。
As shown in FIG. 4(a), the multifunctional sensor l6 includes an ultra-small television camera 26, a slit light source 27, and an optical displacement meter 2.
8. Equipped with ring lighting 29. Hole position measurement is
As shown in the same figure (bl), the field of view 3l of the ultra-compact television camera 26 is uniformly illuminated by the ring illumination 29, and the image within the field of view 31 is binarized by image processing to recognize the bolt hole 2 with graphical characteristics. In addition, the pitch between the holes and the distance between the member end 33 and the hole end are determined by applying the slit light 27a from the slit light source 27 to the field of view 3l and performing image processing using the light cutting method, as shown in FIG. Recognize and measure the warpage and inclination of other members by measuring the distance to the member 35 at optical displacement #28 arranged at four points as shown in Figure (d) to easily determine their three-dimensional arrangement. can be measured.

このような穴位置計測、大間ピッチ、部材端33と穴端
間距離、その他の部材の反り、傾きは、部材寸法を精度
良く測定出来るように適宜組み合わせて適用される。
Such hole position measurement, large pitch, distance between the member end 33 and hole end, and other member warpage and inclination are applied in appropriate combinations so that member dimensions can be measured with high accuracy.

尚、これら走査装置l4、高精度3軸位置決めアームl
5・及び多機能センサヘッド16は制御ケーブル21を
介して部材寸法計測装置12に接続され、又、これら三
次元位置厠定装置18及びθ軸φ軸の高精度位置決め装
置20は制御ケーブル22を介して部材寸法計測装置1
2に接続されている。部材寸法計測装置l2は通信回線
l3を介して数値仮組立シュミレーションシステム11
に接続されている。つまり、本実施例の構成のシステム
ブロックは第5図に示すものとなる。
In addition, these scanning devices l4, high-precision 3-axis positioning arm l
5 and the multifunctional sensor head 16 are connected to the member dimension measuring device 12 via a control cable 21, and the three-dimensional positioning device 18 and the high precision positioning device 20 for the θ and φ axes are connected to the control cable 22. Via the member dimension measuring device 1
Connected to 2. The component dimension measuring device l2 connects to the numerical temporary assembly simulation system 11 via the communication line l3.
It is connected to the. In other words, the system block of the configuration of this embodiment is as shown in FIG.

上記構成を有する本実施例において、数値仮組立てを行
う場合の動作について、第6図(a.) (b)のフロ
ーチャートを参照して説明する。
In this embodiment having the above configuration, the operation when performing numerical temporary assembly will be explained with reference to the flowcharts in FIGS. 6(a) and 6(b).

まず、第6図(a)に示すように仮組立部となる部材、
例えばボルト穴等を数値仮組立シュミレーションシステ
ム11が選択し、それを通信回線13を介して部材寸法
計測装置12に通信する。部材寸法計測装置12では、
測定点が指示されると、第6図(b)に示されるように
走査装置14を制御してXYZ軸方向に移動させると共
に高精度3軸位置決めアーム15を制御して旋回等の機
能により移動させ、多機能センサヘッド16を測定点の
近傍まで移動させる。多機能センサヘッド16は測定点
となる部材の寸法計測を行う。例えば、前述したように
穴位置、穴配置、板反り、傾き等を測定する。同時に、
三次元位置測定装置l8をθ軸φ軸廻りに旋回させて、
追尾用ターゲット17を自動追尾すると共に追尾用ター
ゲッ.ト17と三次元測定装置I8との真の距離D I
9。を算出し、追尾用ターゲットl7の三次元座標(X
v,3’t.Zt)を求める。このような測定結果は、
通信回線13により数値仮組立シュミレーションシステ
ム11に出力される。そして、第6図(b)に示すよう
にこれらの測定結果を基に数値仮組立シュミレーション
が下式にしたがって行われる。
First, as shown in FIG. 6(a), the members that will become the temporary assembly part,
For example, the numerical temporary assembly simulation system 11 selects bolt holes, etc., and communicates the selection to the member dimension measuring device 12 via the communication line 13. In the member dimension measuring device 12,
When a measurement point is designated, as shown in FIG. 6(b), the scanning device 14 is controlled to move in the XYZ-axis directions, and the high-precision 3-axis positioning arm 15 is controlled to move by functions such as rotation. and move the multifunctional sensor head 16 to the vicinity of the measurement point. The multifunctional sensor head 16 measures the dimensions of a member serving as a measurement point. For example, as described above, hole positions, hole arrangement, board warpage, inclination, etc. are measured. at the same time,
Rotate the three-dimensional position measuring device l8 around the θ and φ axes,
The tracking target 17 is automatically tracked and the tracking target 17 is automatically tracked. True distance DI between point 17 and three-dimensional measuring device I8
9. is calculated, and the three-dimensional coordinates (X
v, 3't. Find Zt). Such measurement results are
It is output to the numerical temporary assembly simulation system 11 via the communication line 13. Then, as shown in FIG. 6(b), numerical preliminary assembly simulation is performed based on these measurement results according to the following formula.

・・・(3) 但し、(X,Y,Z)は測定点の三次元座標、(ΔX,
Δy,Δ2)は多機能センサヘッド測定座標であり、Δ
X,Δyは視覚センサ181?より測定され、ΔZは光
変位計28により測定される。(xy,y■,z.t)
は追尾用ターゲット17の三次元座標、( R x. 
R v. R z)は、傾斜計23の測定値による座標
回転変換行列、(A1,A2,A!)は追尾用ターゲッ
ト17から見た多機能センサヘッド基準点の位置姿勢を
表す変換行列である。この変換行列には次の関係がある
...(3) However, (X, Y, Z) are the three-dimensional coordinates of the measurement point, (ΔX,
Δy, Δ2) are the multifunctional sensor head measurement coordinates, and Δ
Is X and Δy the visual sensor 181? ΔZ is measured by the optical displacement meter 28. (xy, y■, z.t)
is the three-dimensional coordinate of the tracking target 17, (R x.
R v. Rz) is a coordinate rotation transformation matrix based on the measured value of the inclinometer 23, and (A1, A2, A!) is a transformation matrix representing the position and orientation of the multifunctional sensor head reference point as seen from the tracking target 17. This transformation matrix has the following relationship.

〈発明の効果〉 以上、実施例に基づいて、具体的に説明したように本発
明は、数値仮組立てに必要となる部材寸法として穴位置
、穴ピッチ、穴と端部距離、配置又部材の反りや傾き等
を高精度に測定することの出来る多機能センサを実現す
ることかできると共にこのセンサを部材に接近させ、柔
軟且高精度な位置決めで死角なしで必要な部位の部材寸
法を計測できる手段として3軸位置決めアームを実現す
ることができ、また、広範囲な計測範囲を高精度に計測
できる手段として走査機構を実現することができた。更
には、本発明を数値仮組立てに応用すれば、その実用性
を改善することが可能となる。
<Effects of the Invention> As specifically explained above based on the embodiments, the present invention has the following features: hole position, hole pitch, distance between holes and ends, arrangement, and member dimensions required for numerical temporary assembly. It is possible to realize a multi-functional sensor that can measure warpage, inclination, etc. with high precision, and by bringing this sensor close to the member, it is possible to measure the dimensions of the required part without blind spots with flexible and highly accurate positioning. A three-axis positioning arm could be realized as a means, and a scanning mechanism could be realized as a means capable of measuring a wide measurement range with high precision. Furthermore, if the present invention is applied to numerical temporary assembly, its practicality can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す全体斜視図、第2図は
高精度3軸位置決めアームの構成図、第3図(a)は追
尾用ターゲット及び三次元位置決め装置の構成図、第3
図(b)は基準信号及び測定信号を示すグラフ、第4図
は多機能センサヘッドにかかり、同図(a)はその外観
斜視図、同図(b)はリング照明による穴位置測定を示
す説明図、同図(C)はスリット光による穴配置測定を
示す説明図、同図(d)は光変位計による部材の反り、
傾き測定を示す説明図、第5図は本発明の一実施例にか
かるシステムブロックの説明図、第6図(a) (b)
はそれぞれ本発明の一実施例にかかるフローチャート、
第7図は従来の数値仮組立てを示す説明図である。 図面中、 lは桁鋼、 2はボルト穴、 3は球光源、 4a,4bはテレビカメラ、 5はテレビカメラの視野、 6は搬送台車、 ?−a,7bはモニタテレビ、 8.9はテレビカメラ画像、 10は画像処理装置、 1lは数値仮組立シュミレーションシステム、l2は部
材寸法計測装置、 l3は通信回線、 l4は走査装置、 15は高精度3軸位置決めアーム、 16は多機能センサヘッド、 l7は追尾用ターゲット、 18は三次元位置測定装置、 19は光学的計測軸、 20は高精度位置決め装置、 21.22は制御ケーブル、 23は傾斜計、 6は超小型テレビカメラ、 7はスリット光源、 8は光変位計、 9はリング照明である。
FIG. 1 is an overall perspective view showing an embodiment of the present invention, FIG. 2 is a configuration diagram of a high-precision three-axis positioning arm, FIG. 3(a) is a configuration diagram of a tracking target and a three-dimensional positioning device, and FIG. 3
Figure (b) is a graph showing the reference signal and measurement signal, Figure 4 shows the multifunctional sensor head, Figure (a) is its external perspective view, Figure (b) shows hole position measurement using ring illumination. An explanatory diagram, (C) is an explanatory diagram showing hole arrangement measurement using a slit light, and (d) is an explanatory diagram showing the warpage of a member using an optical displacement meter.
An explanatory diagram showing inclination measurement; FIG. 5 is an explanatory diagram of a system block according to an embodiment of the present invention; FIGS. 6(a) (b)
are a flowchart according to an embodiment of the present invention, and
FIG. 7 is an explanatory diagram showing conventional numerical temporary assembly. In the drawing, l is the girder steel, 2 is the bolt hole, 3 is the bulb light source, 4a, 4b are the TV cameras, 5 is the field of view of the TV camera, 6 is the transport vehicle, ? -a and 7b are monitor TVs, 8.9 is a TV camera image, 10 is an image processing device, 1l is a numerical temporary assembly simulation system, 12 is a component dimension measuring device, 13 is a communication line, 14 is a scanning device, 15 is a height 3-axis precision positioning arm, 16 is a multifunctional sensor head, 17 is a tracking target, 18 is a three-dimensional position measuring device, 19 is an optical measurement axis, 20 is a high-precision positioning device, 21 and 22 are control cables, 23 is a 6 is an ultra-small television camera, 7 is a slit light source, 8 is an optical displacement meter, and 9 is a ring illumination.

Claims (1)

【特許請求の範囲】[Claims] 部材寸法として穴位置、穴ピッチ、穴と部材端部距離及
び配置を測定する撮像装置、リング照明、スリット光源
及び部材の反り、傾きを測定する4点式の光変位計を持
つ多機能センサヘッドと、前記多機能センサヘッドを支
持して旋回、首振り、転回の各機能により測定点に接近
させる3軸位置決めアームと、前記3軸位置決めアーム
を相互に直交する3方向に走査する走査装置と、前記多
機能センサヘッドに駆動原点として設けられる追尾用タ
ーゲットと、前記3軸位置決めアーム及び前記走査装置
の動きに追従して前記追尾用ターゲットを追尾すると共
に前記追尾用ターゲットまでの距離をレーザ光を利用し
て測定する三次元位置測定装置とを具備することを特徴
とする構造物部材の寸法計測装置。
A multifunctional sensor head with an imaging device, ring illumination, slit light source, and a 4-point optical displacement meter that measures the warpage and inclination of the component, which measures the hole position, hole pitch, distance and arrangement between the hole and the end of the component as component dimensions. a 3-axis positioning arm that supports the multi-functional sensor head and causes it to approach a measurement point by rotating, swinging, and rotating functions; and a scanning device that scans the 3-axis positioning arm in three mutually orthogonal directions. , a tracking target provided as a drive origin on the multifunctional sensor head, and tracking the tracking target by following the movements of the three-axis positioning arm and the scanning device, and measuring the distance to the tracking target with a laser beam. 1. A dimension measuring device for a structural member, comprising: a three-dimensional position measuring device that measures using a three-dimensional position measuring device.
JP30898689A 1989-11-30 1989-11-30 Dimension measurement device for structural members Expired - Lifetime JP2738964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30898689A JP2738964B2 (en) 1989-11-30 1989-11-30 Dimension measurement device for structural members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30898689A JP2738964B2 (en) 1989-11-30 1989-11-30 Dimension measurement device for structural members

Publications (2)

Publication Number Publication Date
JPH03170812A true JPH03170812A (en) 1991-07-24
JP2738964B2 JP2738964B2 (en) 1998-04-08

Family

ID=17987575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30898689A Expired - Lifetime JP2738964B2 (en) 1989-11-30 1989-11-30 Dimension measurement device for structural members

Country Status (1)

Country Link
JP (1) JP2738964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1163988A (en) * 1997-08-22 1999-03-05 Oojisu Soken:Kk Structure measuring system
US5983166A (en) * 1995-09-28 1999-11-09 Komatsu Ltd. Structure measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5983166A (en) * 1995-09-28 1999-11-09 Komatsu Ltd. Structure measurement system
JPH1163988A (en) * 1997-08-22 1999-03-05 Oojisu Soken:Kk Structure measuring system

Also Published As

Publication number Publication date
JP2738964B2 (en) 1998-04-08

Similar Documents

Publication Publication Date Title
US20190079522A1 (en) Unmanned aerial vehicle having a projector and being tracked by a laser tracker
US10665012B2 (en) Augmented reality camera for use with 3D metrology equipment in forming 3D images from 2D camera images
US7576847B2 (en) Camera based six degree-of-freedom target measuring and target tracking device with rotatable mirror
US10574963B2 (en) Triangulation scanner and camera for augmented reality
US7576836B2 (en) Camera based six degree-of-freedom target measuring and target tracking device
US7145647B2 (en) Measurement of spatial coordinates
US20120057174A1 (en) Laser scanner or laser tracker having a projector
JP2004340856A (en) Laser measuring device
US20070058175A1 (en) Method and apparatus for 3-dimensional measurement of the surface of an object
JP2001066138A (en) Measuring system, and prism-type optical path control used for it
US10655946B2 (en) Automated rotation mechanism for spherically mounted retroreflector
JPH03170812A (en) Measuring apparatus for dimension of structural member
US20220179052A1 (en) System and method for positioning of a laser projection system
JPH1089957A (en) Three-dimensional measuring method for structure member
JPH0886631A (en) Instrument and method for measuring attitude of object, attitude controller, and device for inspecting surface of object
JPH03167404A (en) Method for measuring size of large object
Shortis et al. State of the art of 3D measurement systems for industrial and engineering applications
CN114967767A (en) Combined rotating mirror-based composite axis coarse and fine tracking device and method
JPS6358106A (en) Straightness measuring apparatus for feed table
JPH05272934A (en) Shape measuring method
JPH0283410A (en) Three-dimensional position measuring apparatus
Sherman et al. Stereo optical tracker for standoff monitoring of position and orientation
JPH06167316A (en) Measuring method for shape