JPH03170634A - Wear-resistant aluminum alloy for plastic working excellent in heat treating property - Google Patents

Wear-resistant aluminum alloy for plastic working excellent in heat treating property

Info

Publication number
JPH03170634A
JPH03170634A JP30663189A JP30663189A JPH03170634A JP H03170634 A JPH03170634 A JP H03170634A JP 30663189 A JP30663189 A JP 30663189A JP 30663189 A JP30663189 A JP 30663189A JP H03170634 A JPH03170634 A JP H03170634A
Authority
JP
Japan
Prior art keywords
treatment
wear
primary
plastic working
heat treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30663189A
Other languages
Japanese (ja)
Other versions
JP2868156B2 (en
Inventor
Masabumi Kato
正文 加藤
Futoshi Sakata
太 坂田
Shigeru Yanagimoto
茂 柳本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIYOUTEITSUKU KK
Toyota Industries Corp
Resonac Holdings Corp
Original Assignee
SHIYOUTEITSUKU KK
Showa Denko KK
Toyoda Automatic Loom Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIYOUTEITSUKU KK, Showa Denko KK, Toyoda Automatic Loom Works Ltd filed Critical SHIYOUTEITSUKU KK
Priority to JP30663189A priority Critical patent/JP2868156B2/en
Publication of JPH03170634A publication Critical patent/JPH03170634A/en
Application granted granted Critical
Publication of JP2868156B2 publication Critical patent/JP2868156B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture the wear-resistant Al alloy for plastic working improved in heat treating properties by preparing an Al alloy contg. specified ratios of Si, Cu, Mg, Zn and P and having specified grain size of Si primary crystals and their occupying rate. CONSTITUTION:An Al alloy contg., by weight, >13 to 25% Si, >3.5 to 8% Cu, >0.3 to 5% Mg, >0.5 to 10% Zn, >0.001 to 0.05% P and the balance Al with inevitable impurties and in which >=90% of Si primary crystals in the ones having <=80mu grain size, the average grain size of the Si primary crystals is regulated to <=40mu and the areal occupying rate of the Si primary crystals is regulated to >=1% is prepd. In this way, the wear-resistant Al alloy for plastic working maintaining plastic workability and wear resistance almost equally to those of conventional ones and in which heat treating conditions are relaxed or a part or the whole of the heat treatment is obviatable can be obtd.

Description

【発明の詳細な説明】 【産業上の利用分野】 本発明は塑性加工用耐摩耗性アルミニウム合金に関する
ものであり、さらに詳しく述べるならば、熱処理特性を
改良した塑性加工用耐摩耗性アルミニウム合金に関する
ものである。 〔従来の技術〕 熱間・冷間鍛造、押出などの塑性加工が施され、すぐれ
た耐摩耗性を有するアルミニウム合金の代表的なものと
してA390合金がある。A390合金は5初晶Siに
よりすぐれた耐摩耗性がもたらされるが、一層の耐摩耗
性を発揮するために、溶体化処理と人工時効を行ない、
Al−Cu系、Mg−SL系などの析出物などを析出さ
せるT,処理が行なわれている。このT.処理は例えば
490℃に2.5時間保持して水焼入れを行ない、次に
200℃に2時間保持する熱処理である。この結果、H
Rl180程度の高い硬度のものが得られる。 塑性加工用耐摩耗性アルミニウム合金の塑性加工性改善
に関する発明として、特開昭62−109,944号に
て公開された、Si4〜20%,FeO.L〜1.0%
,Cu2.0〜6.0%MnO.  Of 〜1.  
0%、 Mg0.2〜2.0%,Cr0.01〜l 、
 0%、 Zn0.01 〜2.0%、必要に応じてN
i0.01〜2.5%を含有するアルミニウム合金があ
る。その説明によるとZnは塑性加工性を改善する作用
があるとされる。この発明の実施例におけるT6処理と
しては、430℃,1時間保持の溶体化処理後、170
℃,10時間保持の時効処理を行う実施例が示されてい
る。 以上のような組成系の合金のT,処理条件は他の特許公
報や工業規格にも多数示されているが、ほぼ同様な保持
温度・時間になっている。 〔発明が解決しようとする課題] しかしながら、このようなT6熱処理は、溶体化処理と
戻し処理の合計が4時間以上、長い場合は10時間以上
と、時間がかかりすぎるために、量産のためには熱処理
炉の処理容量を大きくする必要があり、これが製品のコ
スト上昇の原男になっている。さらに、従来は必ず行わ
れる溶体化処理や高温での戻し処理の一方または両方を
省略することができると、製品の大幅なコストダウンが
可能になる。 よって、本発明は塑性加工性及び耐摩耗性を従来とほぼ
同等に維持しつつ、熱処理条件を緩和するかあるいは熱
処理の一部または全部を省略することができる塑性加工
用耐摩耗性アルミニウム合金を提供することを目的とす
る。 〔課題を解決するための千段〕 本発明は、Si :l3%を超え25%迄Cu:3.5
%を超え8%迄 Mg:0.3%を超え5%迄 Zn:0.5%を超えlO%迄 P:0.OO1%を超え0.05 %迄を含み、残部は不可避的不純物から成る組成を有し
、初晶Siの90%(個数割合の%)が80μm以下、
初晶Siの平均粒子径が40μm以下、かつ初晶Siの
面積占有率が1%(面積%)以上であることを特徴とす
る熱処理特性にすぐれた塑性加工用耐摩耗性アルミニウ
ム合金を提供するものである。 さらに、本発明は上記組成に、(イ)Mn,Cr,Zr
の1種又は2種以上を0.05%を超え2%迄、(ロ)
Pb,Sn,Biの1種又は2種以上を0.1%を超え
3%迄、(ハ)NLを0.5%を超え3%迄、(二)N
a,Sr,Sbのl種又は2種以上を0.001%を超
え0.5%迄、(ホ)Feを0.2%を超え2%迄の何
れか一つ以上を添加した熱処理特性にすぐれた塑性加工
用耐摩耗性アルミニウム合金も提供する。 以下、本発明における組成および組織の限定理由を説明
する。 Siは初晶Siおよび共晶Siを生成して、耐摩耗性を
向上させる戊分であり、その含有量が13%(百分率は
、特記しない限り重量%である)以下では耐摩耗性が不
十分である。一方Si含有量が25%以上では塑性加工
性が阻害される。 Cuは熱処理性を発現させ、アルミニウム基地の強度を
高める効果があって、その含有量が3.5%以下では熱
処理による時効硬化が不十分である。一方、Cu含有量
が8%を超えると塑性加工性が阻害される。 MgはCu,SLと共存して熱処理性を発現させる成分
であり、その含有量が0.3%未満では熱処理による時
効硬化が不十分である。一方、Mg含有量が5%を越え
ると塑性加工性が阻害される。 ZnはMgと共存して熱処理性を発現させる成分であり
、熱処理における保持時間を短かくし、溶体化処理およ
び/または高温時効処理を省略することに有用な成分で
ある。また、部品使用中に摩擦熱が発生し、部材は高温
にさらされることになるが、この時の機械的特性の低下
度はZnが含有されないものよりも少なくて済む。 Znの含有量が0.5%以下では、このような効果がな
く、一方10%を超えると塑性加工性が阻害される。 Pは初晶Siを微細化するために必要な元素である。P
の含有量がo.oot%未満ではその効果がなく、0.
05%を超えると過剰になり、それ以上の効果は期待で
きない。なおPは、酸不溶性のPと酸可溶性Pの形態で
本発明の合金中に存在し、初晶Siの微細化には酸不溶
性Pが役立っているものとされている。 Mn,Cr,Zrは耐熱強度を向上させるとともに塑性
加工中の再結晶による結晶粒の粗大化を防止する上で好
ましい添加成分である。その含有量(2種以上含有させ
たときは合計量)が0.05%以下では、このような効
果がなく、一方2%を超えると塑性加工性が阻害される
。 Pb,Sn,Biは快削性を向上させる上で好ましい添
加成分である。その含有量が0.1%以下ではこのよう
な効果がなく、一方3%を超えると塑性加工性が阻害さ
れる。 Niは耐熱強度を向上させる上で好ましい添加成分であ
る。その含有量が0.5%以下では耐熱強度向上の効果
がなく、一方3%を超えると塑性加工性が阻害される。 Na,Sr,Sbは共晶Siを微細化して鍛造性を向上
させるうえで好ましい添加成分である。 その含有量が0.001%以下では、この効果がなく、
一方0.5%を超えると過剰になりそれ以上の効果は期
待できない。 Feは耐摩耗性を向上するうえで好ましい添加或分であ
る。その含有量が0.2%以下ではその効果がなく、一
方2%を超えると耐食性を低下させる。 上述のように、Pにより初晶Siを微細にすることが本
発明合金の一つの特徴であるが、具体的には微細初晶S
iは次の要件を満たすことが必要である。 ■初晶Si粒子の90%以上が粒径80μm以下である
こと。粒径が80μmを超える初晶Siは塑性加工中に
極めて割れ易く、割れによって生じたSL小片を有する
アルミニウム合金が、製品として相手材と摩擦するとき
に、摩擦面に露出したSi小片は脱落して、相手材を疵
つける。このような事を防止するために80μmを超え
る粒径の初晶S1粒子の数を規制する必要がある。上記
■のようにすると80μmを超える粒径の初晶Siは全
体の個数の10%未満となり、上記した割れが起こって
も相手材の摩耗を著しく促進することはない。 @初晶Siの平均粒子径が40μm以下であること。平
均粒子径は初晶Siの全粒子について上記粒径を測定し
、それらを平均した値である。初晶Siは寸法が大きい
ほど割れ易いために、平均粒子径を一定以下の値に規制
する必要がある。 AJ2−Si系合金では共晶Siの存在によって耐摩耗
性の向上がはかられるが、耐摩耗性を向上させるために
は初晶Siは一定量以上存在することが必要である.そ
の量はSi含有量によりおよそ決定されるが、初晶Si
の成長速度、α一Aβ中のSi固溶量などによってもか
なり変化するため、初晶Siの量を直接定める必要があ
る。初晶S1の量の測定方法は合金材の任意方向の断面
または表面で、当該初晶Siが当該面に対して面積占有
率として何%(面積%)占有するかを測定する方法によ
る。このようにし測定した面積が1%未満であると、耐
摩耗性はすぐれない。よって、本発明においては初晶S
iはl%以上とした。 以上のような初晶Si組織はPによる微細化効果と鋳造
時の急冷により得られる。しかも、過共晶系Si合金で
は、初晶Siの鋳塊中の分布の状況も部材として使用さ
れる部品の耐摩耗性に大きく影響を与える。すなわち、
鋳塊内に偏析を起こした初晶Siが存在すると,初晶S
iが粗な部分での耐摩耗性が劣ることになり、一方密な
部分では鍛造時に割れを起こしやすく、使用時に初晶S
iが破砕脱落しやすくなる。良好な初晶Si組織を得る
ためには、鋳塊の製造法が非常に重要であって、従来一
般に行われているフロート鋳造法では、その本質的な鋳
造機構に起因して均一な初晶Siの分布をもった鋳塊が
得られにくい。また、金型鋳造法や砂型鋳造法では均一
な初晶Si分布を呈する鋳塊を得ることはさらに困難で
ある。これに対して、例えば、アルミニウム合金溶湯を
冷却速度1℃/ s e c以上の下で気体加圧式半連
続鋳造法(特公昭54−42847号公報)を用いて鋳
造することが上記組織を有する鋳塊を得る方法として推
奨される。 また、一対のロール間に溶湯な注入する連続鋳造法によ
っても上記組織を有するアルミニウム合金は提供される
。これらの方法により得られた鋳塊または板をさらに鍛
造、押出しなどの塑性加工を施すことにより所望の形状
を得る。 [作用] 本発明合金によって熱処理特性が改良され、次のような
A−Cパターンの熱処理が可能になる。 なお、パターンDは一般に行われている熱処理工程に該
当するが、本発明合金をパターンDで熱処理しても、十
分な特性が確保されることは当然である。 パターンA(熱間鍛造→常温時効処理):熱間鍛造一水
焼入れ→常温時効 パターンB(短時間溶体化処理一常温時効処理); 熱間鍛造一短時間溶体化処理→水焼入れ→常温時効 パターンC(短時間T.処理): 熱間鍛造一短時間溶体化処理→水焼入れ一短時間戻し処
理 パターンD(従来工程T6処理): 熱間鍛造一通常の溶体化処理一水焼入れ一通常の戻し処
理 上記各パターンの熱間鍛造を冷間鍛造→溶体化処理のた
めの加熱に代えてもよく、熱間鍛造を熱間押出、あるい
は熱間の回転加工等その他の加工法に代えてもよい。 パターンAは鍛造終了時材料が保有する温度で溶体化処
理を行ない、水焼入れによる過飽和固溶体を常温時効す
るだけで高強度を得ることが可能であり、溶体化処理炉
の使用と、高温での戻し処理を不要とした例である。こ
の例では、鍛造終了後の温度は380〜470℃の温度
とし、鍛造終了後直ちに水焼入れを行ない、その後5時
間以上の常温時効処理を行なう。 このパターンAにおいて、常温時効を高温での戻し処理
に代えれば従来法のT6処理より短かい熱処理時間で所
定の硬度を得ることができる。しかし、このパターンA
は熱処理のための使用エネルギーを最小にすることを目
的として、常温時効を採用している.パターンA以外の
パターンB,Cでも使用エネルギーを最小にすることが
目的となっており、換言すれば熱処理エネルギー最小だ
けではなく熱処理時間を最小にするような熱処理方法・
条件の変更もこれらのパターンで可能である。 パターンBは溶体化時間を例えば1〜60分の短時間と
し、その後常温時効を行なう短時間溶体化処理例である
。このパターンは連続熱処理式溶体化炉で短時間溶体化
処理を行い、量産性を高めるのに好適である, パターンCはパターンBと同様に短時間溶体化処理を行
なうが、戻しは150〜250℃で、時間は従来法より
短い5〜180分の短時間人工時効処理を行なうか、あ
るいはより低温(但し室温以上でより長時間)、例えば
50〜150℃の人工時効処理を行なう例である。 パターンDは通常のT,処理工程であって5400〜5
20℃で2〜6時間溶体化処理を行なった後に150〜
250℃、2〜24時間の人工時効処理を行なう例であ
る。 さらには、A,B,Cのいずれかを組み合わせ、1週間
程度の常温時効と、その後のT6処理の2段時効処理も
可能であり、これにより材料の強度向上をさらに確かな
ものにすることができる。短時間T6処理の条件として
は100〜250℃程度で5〜180分の保持時間が挙
げられる。これらの熱処理パターンは求める利点(例え
ば短時間処理等)と合金組成上の特長(固溶の容易さ、
析出進行の遅速等)により適宜選択される。 [実施例] 以下、実施例によりさらに詳しく本発明を
説明する。 第1表に本発明合金並びに比較合金の化学組成を示す。 これらの化学組成の合金を溶製し、冷却速度15℃/ 
s e c以上の速度にて直径67mmおよび5℃/ 
s e c以上の速度で直径156mmの連続鋳造鋳塊
となした後に460℃で均質化処理及び390℃でO材
処理を実施した. これより各種確性試験を行い、材料特性を評価した。 試験方法は以下の通りである. l5Si1 チ の“1 試料を研磨機により鏡面仕上げした後に、金属顕微鏡に
接続した画像解析処理装置(ニレコ社製ルーゼックス、
5000)により画像解析を行い初晶Si粒子面積を面
積等価の円に置き換えて、その円を直径の代表として、
初晶Si粒子径とする円相当径法にて粒子径分布を求め
た。これより平均粒子径及び初晶Siの面積占有率を測
定した.初晶Siの観察倍率は個々の初晶Siの大きさ
に合わせ50〜200倍とした.初晶Siの粒子径分布
は粒径のヒストグラムを描き、粒径のOからの存在割合
を求め、90%に達した時の粒径を「粒子90%の粒径
」とした。 S i 1    ノ   の 初晶S工粒子形状の測定と同じ要領にて測定を行った.
但し,顕微鏡観察倍率はiooo倍とし、平均粒径のみ
を求めた。 匿Δ藍孟羞 第1図に示す据込鍛造性試験装置を用いてテストを行っ
た. 図中、lは上パンチ、2は下パッチ、3は試験片、4は
プレスペースである。 試験片は形状が20mmφX20mmhの円柱棒であり
、その上下1mmはそれぞれ上バンチlと下バンチ2に
拘束するようにした。試験片3を図示のようにセットし
た状態で4 3 0’CX 3 0分の加熱を行い、上
バンチ1にて圧縮し、自由変形面に微小割れが発生した
時に圧縮を停止し、その時の据込率を、 により求めた。すなわち、据込鍛造性の難易度を据込率
により求めた. 熱間据込み鍛造性評価基準は以下のとおりとした. O:据込み鍛造性良好 据込み率50%以上×:〃  
  不良     50%未満紅産且1 大越式摩耗試験機を用いて、供試材の比摩耗量を測定し
て、摩耗性を評価した. 測定条件は以下のとおりである。 潤滑条件    無潤滑 相手材     ベアリング鋼(SUJ−2)〃 硬度
   HRC55 摩擦速度    3.62m/sec 最終荷重    2.13kg 摩擦距離    600m 耐摩耗性の評価基準は以下のとおりとした。 O:耐摩耗性に優れる 比摩耗量が5 X 1 0 −’*m”/kgm未満×
:耐摩耗性に劣る. 比摩耗量が5 X 1 0 −’mm”/kgm以上熱
1lむ主立 熱処理特性の評価基準は以下のとおりとした。 0:熱間鍛造後水焼入れし、常温にて24時間放置後に
ロックウェルBスケール硬度(HRB)が80を超える
。 ○:熱間鍛造後、短時間溶体化処理を行ない常温にて2
4時間放置後にH R Bが80を超える。 △;熱間鍛造後、短時間溶体化処理を行ない、更に、短
時間戻し処理を行うことによってHRBが80を超える
。 ×:通常のT,処理(溶体化、人工時効処理)によりH
RBが80を超えるかあるいは80に達しない。この処
理に長時間を要する。 これらの各項目の評価結果、その総合判断を第2表に示
す。 (以下余白) 本発明合金弘1は490℃×10分の短時間溶体化処理
と、水冷後に、190℃X20分の短時間戻し処理のい
わゆる短時間T.処理(パタ一一ンC)を施こすことに
よって、HRB硬度80を得ることができたが、Znを
除いてその他の組成がほぼ等しい比較合金FJctl2
,No.13では、同一の硬化を得るには、490℃、
2時間の溶体化と、190℃、2時間の戻し処理の合計
4時間の長時間T.処理(パターンD)を行う必要があ
ったので、本発明合金が短時間で人工時効処理を完了で
きることが明らかである.この時、短時間熱処理によっ
て得られる硬度をはじめとする材料の機械的特性は比較
合金のものと変らない.本発明合金Na2は、490℃
X20分の短時間溶体化処理と、24時間の常温時効処
理によってHRB82を得ており、戻し処理のための加
熱、保持工程を省略することができる. 本発明合金NllL3は450℃にて熱間鍛造し、その
直後に水焼入れし、その後24時間の常温時効処理にて
HRB硬度81を得ており、溶体化、戻し工程を完全に
省くことができる。すなわち熱間鍛造後の水焼入れと1
日間の放置によって、硬度の高い材料を得ることができ
る。 本発明合金弘4,7はMn又はNiを含む。比較例17
.18に見られるようにMn又はNiが含有されると、
人工時効特性が高温、長時間側にずれる性質がある。し
かし、本発明の合金胤4,7ではZnの添加により、溶
体化、戻し時間ともに短縮することができる。 本発明の合金No.10は冷間鍛造を実施したもので、
冷間鍛造後500℃、20分の溶体化処理と、210℃
、20分の戻し処理(パターンC)にてHRB80の高
度を得ることができる。 本発明の合金Nll〜11の初晶S1粒子径は、その9
0%が80μm以下であり、その平均粒子径は40um
以下であって据込み鍛造性、耐摩耗性ともに良好であっ
た。 一方比較合金NCLl2,16は初晶Si粒子の90%
が95μ国、85μmであって、熱間の据込み鍛造性が
劣った。 比較合金No.12.13.17,19,20.21は
Znが添加されていないために、短時間T.処理ができ
ず、熱処理特性が劣った。この中でNo.19は冷間鍛
造を行ったものであるが、パターンDの熱処理が必要で
あり、長時間T6処理が必要となった。 比較合金Nal4はZnの添加効果により短時間T6処
理が可能であったが、初晶Siが存在しないために耐摩
耗性が劣った。比較合金Nal5はMg含有量が少ない
ため、短時間戻しはできず、熱処理特性が劣った。一方
比較合金No.18はMgが多すぎて“熱間鍛造性が劣
った。比較合金No.20は直径が156mmの太い鋳
塊であり、初晶S1の粒径が細径棒よりも大きいうえに
、共晶Siが粗大であったために、熱間鍛造性が劣った
。 〔発明の効果〕 上記のように、本発明によれば、熱処理特性に優れ、熱
処理工程を省略するか、熱処理を行う場合でも短時間熱
処理を可能となし、塑性加工性及び耐摩耗性は従来合金
と同等の塑性加工用耐摩耗性アルミニウム合金を提供す
る。したがって、本発明は、低コストのコンブレッサ一
部品、自動車部品、機械部品、電気機器部品等を提供で
き、これらの産業に大いに貢献する。 請求項2は塑性加工後の熱処理による再結晶を防止して
、機械特性が高く、請求項3記載の発明はさらに快削性
がすぐれ、請求項4の発明はさらに耐熱性を高め、請求
項5の発明は共晶Siの微細化により鍛造性を高め、請
求項6の発明は耐摩耗性を高めるために、上記部品とし
て一層好適な合金を提供することができる.
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a wear-resistant aluminum alloy for plastic working, and more specifically, to a wear-resistant aluminum alloy for plastic working with improved heat treatment properties. It is something. [Prior Art] A390 alloy is a typical aluminum alloy that has been subjected to plastic working such as hot/cold forging and extrusion and has excellent wear resistance. A390 alloy has excellent wear resistance due to 5 primary crystal Si, but in order to exhibit even more wear resistance, it is subjected to solution treatment and artificial aging.
T treatment is performed to precipitate Al-Cu type, Mg-SL type, etc. precipitates. This T. The treatment is, for example, water quenching at 490°C for 2.5 hours, followed by heat treatment at 200°C for 2 hours. As a result, H
A product with a high hardness of about 180 Rl can be obtained. As an invention related to improving the plastic workability of wear-resistant aluminum alloys for plastic working, Si4-20%, FeO. L~1.0%
, Cu2.0-6.0%MnO. Of ~1.
0%, Mg0.2~2.0%, Cr0.01~l,
0%, Zn0.01~2.0%, N as necessary
There are aluminum alloys containing 0.01 to 2.5% i. According to the explanation, Zn is said to have the effect of improving plastic workability. The T6 treatment in the examples of this invention includes solution treatment at 430°C for 1 hour, followed by 170°C.
An example is shown in which aging treatment is carried out at 10°C for 10 hours. The T and processing conditions for alloys with the above compositions are shown in many other patent publications and industrial standards, and the holding temperatures and times are almost the same. [Problems to be Solved by the Invention] However, such T6 heat treatment requires too much time, requiring a total of 4 hours or more for solution treatment and return treatment, and in some cases 10 hours or more. It is necessary to increase the processing capacity of the heat treatment furnace, which is the cause of the increase in product costs. Furthermore, if one or both of solution treatment and high-temperature return treatment, which are conventionally always performed, can be omitted, the cost of the product can be significantly reduced. Therefore, the present invention provides a wear-resistant aluminum alloy for plastic working that can relax heat treatment conditions or omit part or all of heat treatment while maintaining plastic workability and wear resistance almost the same as conventional ones. The purpose is to provide. [A Thousand Steps to Solve the Problems] The present invention provides Si: more than 3% and Cu: 3.5% up to 25%.
% up to 8% Mg: over 0.3% up to 5% Zn: over 0.5% up to 1O% P: 0. It has a composition in which it contains more than 1% OO and up to 0.05%, with the remainder consisting of unavoidable impurities, and 90% (number percentage) of primary Si is 80 μm or less,
To provide a wear-resistant aluminum alloy for plastic working with excellent heat treatment properties, characterized in that the average particle diameter of primary Si is 40 μm or less, and the area occupation rate of primary Si is 1% (area %) or more. It is something. Furthermore, the present invention adds (a) Mn, Cr, Zr to the above composition.
Exceeding 0.05% and up to 2% of one or more of the following: (b)
One or more of Pb, Sn, and Bi in an amount exceeding 0.1% and up to 3%, (c) NL in an amount exceeding 0.5% and up to 3%, (ii) N
Heat treatment characteristics when one or more of a, Sr, and Sb types or two or more are added in an amount exceeding 0.001% to 0.5%, and (e) Fe is added in an amount exceeding 0.2% and up to 2%. We also provide aluminum alloys with excellent wear resistance for plastic working. The reasons for limiting the composition and structure in the present invention will be explained below. Si is a component that improves wear resistance by forming primary Si and eutectic Si, and if its content is less than 13% (percentages are by weight unless otherwise specified), wear resistance is poor. It is enough. On the other hand, if the Si content is 25% or more, plastic workability is inhibited. Cu exhibits heat treatability and has the effect of increasing the strength of the aluminum base, and if its content is less than 3.5%, age hardening due to heat treatment is insufficient. On the other hand, when the Cu content exceeds 8%, plastic workability is inhibited. Mg is a component that coexists with Cu and SL to exhibit heat treatability, and if its content is less than 0.3%, age hardening by heat treatment is insufficient. On the other hand, when the Mg content exceeds 5%, plastic workability is inhibited. Zn is a component that coexists with Mg and exhibits heat treatability, and is a component useful for shortening the holding time in heat treatment and omitting solution treatment and/or high temperature aging treatment. Furthermore, although frictional heat is generated during use of the part and the member is exposed to high temperatures, the degree of deterioration of mechanical properties at this time is less than that of a product that does not contain Zn. If the Zn content is 0.5% or less, no such effect is produced, while if it exceeds 10%, plastic workability is inhibited. P is an element necessary to refine primary Si. P
The content of o. If it is less than oot%, there is no effect, and if it is less than 0.0%.
If it exceeds 0.05%, it becomes excessive and no further effect can be expected. Note that P is present in the alloy of the present invention in the form of acid-insoluble P and acid-soluble P, and it is believed that the acid-insoluble P is useful for refining primary crystal Si. Mn, Cr, and Zr are preferable additive components for improving heat resistance strength and preventing coarsening of crystal grains due to recrystallization during plastic working. If the content (total amount when two or more types are contained) is 0.05% or less, no such effect is obtained, while if it exceeds 2%, plastic workability is inhibited. Pb, Sn, and Bi are preferable additive components for improving free machinability. If the content is 0.1% or less, no such effect will be obtained, while if it exceeds 3%, plastic workability will be inhibited. Ni is a preferable additive component for improving heat resistance strength. If the content is less than 0.5%, there is no effect of improving heat resistance strength, while if it exceeds 3%, plastic workability will be inhibited. Na, Sr, and Sb are preferable additive components for refining eutectic Si and improving forgeability. If the content is less than 0.001%, this effect is absent,
On the other hand, if it exceeds 0.5%, it becomes excessive and no further effects can be expected. Fe is a preferable addition for improving wear resistance. If its content is less than 0.2%, it has no effect, while if it exceeds 2%, it reduces corrosion resistance. As mentioned above, one of the characteristics of the alloy of the present invention is that the primary crystal Si is made fine by P.
i must satisfy the following requirements. (2) 90% or more of the primary Si particles have a particle size of 80 μm or less. Primary Si with a grain size exceeding 80 μm is extremely susceptible to cracking during plastic working, and when the aluminum alloy with SL small pieces produced by the cracks rubs against a mating material as a product, the Si pieces exposed on the friction surface fall off. and damage the other material. In order to prevent this, it is necessary to control the number of primary S1 particles having a particle size exceeding 80 μm. If the method described in (2) above is used, the primary crystal Si having a particle size exceeding 80 μm will be less than 10% of the total number, and even if the above-mentioned cracks occur, the wear of the mating material will not be significantly accelerated. @The average particle diameter of primary crystal Si is 40 μm or less. The average particle diameter is a value obtained by measuring the above particle diameters of all primary Si particles and averaging them. The larger the size of primary crystal Si, the more likely it is to break, so it is necessary to regulate the average particle size to a certain value or less. In AJ2-Si alloys, wear resistance is improved by the presence of eutectic Si, but in order to improve wear resistance, primary Si must be present in a certain amount or more. The amount is approximately determined by the Si content, but primary Si
It is necessary to directly determine the amount of primary Si because it varies considerably depending on the growth rate of α-Aβ, the amount of Si solid solution in α-Aβ, etc. The method for measuring the amount of primary crystal S1 is based on the method of measuring the area occupation rate (area %) of the primary crystal Si on the cross section or surface of the alloy material in any direction. If the area measured in this manner is less than 1%, the wear resistance will not be excellent. Therefore, in the present invention, primary S
i was set to be 1% or more. The primary Si structure as described above is obtained by the refinement effect of P and rapid cooling during casting. Moreover, in hypereutectic Si alloys, the distribution of primary Si in the ingot also greatly affects the wear resistance of parts used as members. That is,
If there is primary Si that has segregated in the ingot, primary S
Wear resistance is poor in areas where i is rough, while in dense areas it is easy to crack during forging, and primary crystal S during use.
i is likely to break off and fall off. In order to obtain a good primary Si structure, the manufacturing method of the ingot is very important. It is difficult to obtain an ingot with Si distribution. Furthermore, it is even more difficult to obtain an ingot exhibiting a uniform primary Si distribution using the metal mold casting method or the sand mold casting method. On the other hand, for example, casting a molten aluminum alloy using a gas pressurized semi-continuous casting method (Japanese Patent Publication No. 54-42847) at a cooling rate of 1° C./sec or more results in the above-mentioned structure. Recommended method for obtaining ingots. Furthermore, an aluminum alloy having the above structure can also be provided by a continuous casting method in which molten metal is poured between a pair of rolls. A desired shape is obtained by further subjecting the ingot or plate obtained by these methods to plastic working such as forging and extrusion. [Function] The heat treatment characteristics are improved by the alloy of the present invention, and the following A-C pattern heat treatment becomes possible. Note that pattern D corresponds to a heat treatment process that is generally performed, but it goes without saying that sufficient characteristics can be ensured even if the alloy of the present invention is heat treated in pattern D. Pattern A (hot forging → room temperature aging treatment): Hot forging, one water quenching → room temperature aging Pattern B (short time solution treatment, one room temperature aging treatment); Hot forging, one short time solution treatment → water quenching → room temperature aging Pattern C (short time T. treatment): Hot forging, short time solution treatment → water quenching, short time reversal treatment Pattern D (conventional process T6 treatment): Hot forging, normal solution treatment, water quenching, normal Hot forging in each of the above patterns may be replaced with cold forging → heating for solution treatment, or hot forging may be replaced with other processing methods such as hot extrusion or hot rotation processing. Good too. In pattern A, it is possible to obtain high strength simply by performing solution treatment at the temperature of the material at the end of forging and aging the supersaturated solid solution by water quenching at room temperature. This is an example that does not require return processing. In this example, the temperature after forging is 380 to 470°C, water quenching is performed immediately after forging, and then room temperature aging treatment is performed for 5 hours or more. In this pattern A, if normal temperature aging is replaced with high temperature return treatment, the desired hardness can be obtained in a shorter heat treatment time than the conventional T6 treatment. However, this pattern A
uses normal temperature aging to minimize the energy used for heat treatment. The purpose of patterns B and C other than pattern A is to minimize the energy used. In other words, the heat treatment method and method are designed to not only minimize heat treatment energy but also minimize heat treatment time.
Conditions can also be changed using these patterns. Pattern B is an example of short-time solution treatment in which the solution treatment time is short, for example, 1 to 60 minutes, and then room temperature aging is performed. This pattern performs short-time solution treatment in a continuous heat treatment type solution treatment furnace, and is suitable for increasing mass productivity. Pattern C performs short-time solution treatment in the same way as pattern B, but returns 150 to 250 Examples include short-time artificial aging treatment at 5 to 180 minutes, which is shorter than the conventional method, or artificial aging treatment at a lower temperature (but longer at room temperature or higher), for example, 50 to 150 degrees Celsius. . Pattern D is a normal T, processing process, and is 5400-5
After solution treatment at 20℃ for 2 to 6 hours,
This is an example in which artificial aging treatment is performed at 250°C for 2 to 24 hours. Furthermore, it is also possible to combine any of A, B, and C and perform a two-stage aging treatment of room temperature aging for about one week and subsequent T6 treatment, which further ensures the improvement in the strength of the material. Can be done. Conditions for the short-time T6 treatment include a holding time of 5 to 180 minutes at about 100 to 250°C. These heat treatment patterns are based on the desired advantages (for example, short processing time) and alloy compositional features (ease of solid solution, etc.).
(slow rate of precipitation, etc.) is selected as appropriate. [Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples. Table 1 shows the chemical compositions of the alloys of the present invention and comparative alloys. Alloys with these chemical compositions are melted and cooled at a cooling rate of 15℃/
Diameter 67mm and 5℃/at a speed of sec or higher
After continuously casting an ingot with a diameter of 156 mm at a speed higher than sec, homogenization treatment was performed at 460°C and O material treatment at 390°C. From this, various accuracy tests were conducted to evaluate the material properties. The test method is as follows. After polishing the sample to a mirror finish using a polishing machine, an image analysis processing device (Luzex manufactured by Nireco Co., Ltd.,
5000) to replace the primary Si particle area with a circle with an equivalent area, and use that circle as a representative of the diameter.
The particle size distribution was determined by the equivalent circle diameter method using the primary Si particle size. From this, the average particle diameter and the area occupation rate of primary Si were measured. The observation magnification of primary Si was set to 50 to 200 times, depending on the size of each primary Si. For the particle size distribution of primary Si, a histogram of particle sizes was drawn, the abundance ratio of the particle size from O was determined, and the particle size when it reached 90% was defined as the "particle size of 90% of the particles". The measurement was carried out in the same manner as the measurement of the shape of the primary S particles of Si 1.
However, the microscope observation magnification was set to iooo times, and only the average particle size was determined. Tests were conducted using the upsetting forgeability testing device shown in Figure 1. In the figure, l is the upper punch, 2 is the lower patch, 3 is the test piece, and 4 is the press space. The test piece was a cylindrical rod with a shape of 20 mmφ x 20 mmh, and its upper and lower 1 mm were restrained by the upper bunch 1 and the lower bunch 2, respectively. With the test piece 3 set as shown in the figure, it was heated for 4 3 0'CX 30 minutes and compressed with the upper bunch 1. When micro-cracks occurred on the free deformation surface, the compression was stopped and the The upsetting rate was calculated as follows. In other words, the degree of difficulty in upsetting forging was determined by the upsetting rate. The hot upsetting forgeability evaluation criteria were as follows. O: Good upsetting forging property Upsetting rate 50% or more ×:〃
Defective Less than 50% red and 1 Using an Okoshi type abrasion tester, the specific wear amount of the sample material was measured to evaluate the abrasion properties. The measurement conditions are as follows. Lubrication conditions Non-lubricated mating material Bearing steel (SUJ-2) Hardness HRC55 Friction speed 3.62 m/sec Final load 2.13 kg Friction distance 600 m The evaluation criteria for wear resistance were as follows. O: Excellent wear resistance, specific wear amount less than 5 x 10 -'*m''/kgm
: Poor wear resistance. Specific wear amount is 5 x 10 -'mm"/kgm or more. The evaluation criteria for the main heat treatment characteristics under heat of 1 l were as follows: 0: Water quenched after hot forging, locked after being left at room temperature for 24 hours. Well B scale hardness (HRB) exceeds 80. ○: After hot forging, a short time solution treatment is performed and the hardness is 2 at room temperature.
H R B exceeds 80 after being left for 4 hours. Δ: HRB exceeds 80 by performing short-time solution treatment and further short-time return treatment after hot forging. ×: Normal T, H due to treatment (solution treatment, artificial aging treatment)
RB exceeds 80 or does not reach 80. This process takes a long time. Table 2 shows the evaluation results for each of these items and the overall judgment. (Left below) The present invention alloy Ko 1 was subjected to a short-time solution treatment at 490°C for 10 minutes, and after water cooling, a short-time return treatment at 190°C for 20 minutes. By applying the treatment (pattern C), an HRB hardness of 80 could be obtained, but compared to the comparative alloy FJctl2, which has almost the same composition except for Zn.
, No. 13, to obtain the same cure, 490°C,
Long-term T.I. treatment for a total of 4 hours including solution treatment for 2 hours and return treatment at 190°C for 2 hours. Since it was necessary to perform the treatment (pattern D), it is clear that the alloy of the present invention can complete the artificial aging treatment in a short time. At this time, the mechanical properties of the material, including hardness, obtained by short-term heat treatment are the same as those of the comparative alloy. The alloy of the present invention Na2 is 490℃
HRB82 is obtained by a short-time solution treatment of 20 minutes and an aging treatment at room temperature for 24 hours, making it possible to omit the heating and holding steps for return treatment. The alloy NllL3 of the present invention is hot forged at 450°C, immediately water quenched, and then aged at room temperature for 24 hours to obtain an HRB hardness of 81, making it possible to completely eliminate the solution treatment and return processes. . In other words, water quenching after hot forging and 1
A material with high hardness can be obtained by leaving it for several days. Alloys 4 and 7 of the present invention contain Mn or Ni. Comparative example 17
.. When Mn or Ni is contained as seen in 18,
Artificial aging characteristics tend to shift toward higher temperatures and longer times. However, in alloy seeds 4 and 7 of the present invention, both the solution treatment time and the return time can be shortened by adding Zn. Alloy No. of the present invention. 10 was cold forged,
After cold forging, solution treatment at 500℃ for 20 minutes and 210℃
, an altitude of HRB80 can be obtained with a 20-minute return process (pattern C). The primary crystal S1 particle size of the alloy Nll-11 of the present invention is 9
0% is 80 μm or less, and the average particle size is 40 μm
The upsetting forgeability and wear resistance were both good. On the other hand, comparative alloy NCL12,16 has 90% of primary Si particles.
was 95 μm and 85 μm, and the hot upsetting forging properties were poor. Comparative alloy No. Nos. 12, 13, 17, 19, and 20.21 do not contain Zn, so the T. It could not be processed and the heat treatment properties were poor. Among these, No. No. 19 was cold forged, but required heat treatment of pattern D, and required long T6 treatment. Comparative alloy Nal4 could be subjected to T6 treatment for a short time due to the effect of adding Zn, but its wear resistance was poor due to the absence of primary Si. Comparative alloy Nal5 had a low Mg content, so it could not be returned for a short time and its heat treatment properties were poor. On the other hand, comparative alloy No. Comparative alloy No. 18 had too much Mg and had poor hot forgeability. Comparative alloy No. 20 was a thick ingot with a diameter of 156 mm, and the grain size of the primary crystal S1 was larger than that of the thin rod, and the eutectic Because Si was coarse, hot forgeability was poor. [Effects of the Invention] As described above, according to the present invention, the heat treatment properties are excellent, and the heat treatment process can be omitted or even when heat treatment is performed, it is short. The present invention provides a wear-resistant aluminum alloy for plastic working, which enables time-long heat treatment and has plastic workability and wear resistance equivalent to conventional alloys.Therefore, the present invention provides low-cost compressor parts, automobile parts, and machine parts. , electrical equipment parts, etc., and greatly contributes to these industries.The invention according to claim 2 prevents recrystallization due to heat treatment after plastic working and has high mechanical properties, and the invention according to claim 3 further improves free machinability. The invention of claim 4 further improves the heat resistance, the invention of claim 5 improves forgeability by making the eutectic Si finer, and the invention of claim 6 further improves the forgeability by improving wear resistance. A more suitable alloy can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は据込鍛造性試験の説明図である。 1・・・上バンチ 2・・・下バンチ 3・・・供試材 4・・・プレスペース FIG. 1 is an explanatory diagram of the upsetting forgeability test. 1...Top bunch 2...Lower bunch 3... Test material 4...Pre-space

Claims (1)

【特許請求の範囲】 1、Si:13%を超え25%迄 Cu:3.5%を超え8%迄 Mg:0.3%を超え5%迄 Zn:0.5%を超え10%迄 P:0.001%を超え0.05%迄を 含み、残部は不可避的不純物から成る組成を有し、初晶
Siの90%以上が粒径80μm以下、初晶Siの平均
粒子径が40μm以下、かつ初晶Siの面積占有率が1
%以上であることを特徴とする熱処理特性にすぐれた塑
性加工用耐摩耗性アルミニウム合金。 2、Mn、Cr、Zrの1種又は2種以上を0.05%
を超え2%迄さらに含有することを特徴とする請求項1
記載の熱処理特性にすぐれた塑性加工用耐摩耗性アルミ
ニウム合金。 3、Pb、Sn、Biの1種又は2種以上を0.1%を
超え3%迄さらに含有することを特徴とする請求項1又
は2記載の熱処理特性にすぐれた塑性加工用耐摩耗性ア
ルミニウム合金。 4、Niを0.5%を超え3%迄さらに含有することを
特徴とする請求項1から3迄の何れか1項に記載の熱処
理特性にすぐれた塑性加工用耐摩耗性アルミニウム合金
。 5、Na、Sr、Sbの1種または2種以上を0.00
1%を超え0.5%迄さらに含有することを特徴とする
請求項1から4までのいずれか1項に記載の熱処理特性
にすぐれた塑性加工用耐摩耗性アルミニウム合金。 6、Feを0.2%を超え2%迄をさらに含有すること
を特徴とする請求項1から5までのいずれか1項に記載
の熱処理特性にすぐれた塑性加工用耐摩耗性アルミニウ
ム合金。
[Claims] 1. Si: More than 13% and up to 25% Cu: More than 3.5% and up to 8% Mg: More than 0.3% and up to 5% Zn: More than 0.5% and up to 10% P: Contains more than 0.001% and up to 0.05%, with the remainder consisting of unavoidable impurities, 90% or more of the primary Si crystals have a particle size of 80 μm or less, and the average particle size of the primary Si crystals is 40 μm. or less, and the area occupancy rate of primary Si is 1
% or more, a wear-resistant aluminum alloy for plastic working with excellent heat treatment properties. 2. 0.05% of one or more of Mn, Cr, and Zr
Claim 1 characterized in that it further contains more than 2% of
A wear-resistant aluminum alloy for plastic working with excellent heat treatment properties. 3. Abrasion resistance for plastic working with excellent heat treatment properties according to claim 1 or 2, further containing one or more of Pb, Sn, and Bi in an amount exceeding 0.1% and up to 3%. Aluminum alloy. 4. The wear-resistant aluminum alloy for plastic working with excellent heat treatment properties according to any one of claims 1 to 3, further comprising more than 0.5% and up to 3% Ni. 5. 0.00 of one or more of Na, Sr, and Sb
The wear-resistant aluminum alloy for plastic working with excellent heat treatment properties according to any one of claims 1 to 4, further comprising more than 1% and up to 0.5%. 6. The wear-resistant aluminum alloy for plastic working with excellent heat treatment properties according to any one of claims 1 to 5, further comprising more than 0.2% and up to 2% Fe.
JP30663189A 1989-11-28 1989-11-28 Wear resistant aluminum alloy for plastic working with excellent heat treatment characteristics Expired - Fee Related JP2868156B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30663189A JP2868156B2 (en) 1989-11-28 1989-11-28 Wear resistant aluminum alloy for plastic working with excellent heat treatment characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30663189A JP2868156B2 (en) 1989-11-28 1989-11-28 Wear resistant aluminum alloy for plastic working with excellent heat treatment characteristics

Publications (2)

Publication Number Publication Date
JPH03170634A true JPH03170634A (en) 1991-07-24
JP2868156B2 JP2868156B2 (en) 1999-03-10

Family

ID=17959417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30663189A Expired - Fee Related JP2868156B2 (en) 1989-11-28 1989-11-28 Wear resistant aluminum alloy for plastic working with excellent heat treatment characteristics

Country Status (1)

Country Link
JP (1) JP2868156B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578770A (en) * 1991-09-20 1993-03-30 Nippon Light Metal Co Ltd Cast aluminum alloy having excellent wear resistance
EP1253210A1 (en) * 2001-03-28 2002-10-30 Honda Giken Kogyo Kabushiki Kaisha Heat resistant Al die cast material
CN105970034A (en) * 2016-07-11 2016-09-28 常州大学 Aluminium alloy elevator brake disc and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0578770A (en) * 1991-09-20 1993-03-30 Nippon Light Metal Co Ltd Cast aluminum alloy having excellent wear resistance
EP1253210A1 (en) * 2001-03-28 2002-10-30 Honda Giken Kogyo Kabushiki Kaisha Heat resistant Al die cast material
CN105970034A (en) * 2016-07-11 2016-09-28 常州大学 Aluminium alloy elevator brake disc and preparation method thereof

Also Published As

Publication number Publication date
JP2868156B2 (en) 1999-03-10

Similar Documents

Publication Publication Date Title
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
RU2695852C2 (en) α-β TITANIUM ALLOY
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
US4963322A (en) Process for the production of good fatigue strength aluminum alloy components
WO2009082695A1 (en) Copper-nickel-silicon alloys
JP2003027171A (en) Wear resistant aluminum alloy long-length body, production method therefor and piston for car air conditioner
CN111349827B (en) Aluminum alloy for compressor sliding member, forged product of compressor sliding member, and method for producing forged product of compressor sliding member
JPH06293933A (en) Wear resistant aluminum alloy and its production
US5993576A (en) Wear resistant wrought aluminum alloy and scroll of wear-resistant wrought aluminum alloy
JPH0617550B2 (en) Method for producing aluminum alloy materials with improved fatigue strength, especially bar stock
JPS6383251A (en) Manufacture of high strength and high elasticity aluminum alloy
JPH07197165A (en) High wear resistant free cutting aluminum alloy and its production
JPH03170634A (en) Wear-resistant aluminum alloy for plastic working excellent in heat treating property
JP2022513692A (en) 6XXX aluminum alloy
JPS62149839A (en) Wear resistant aluminum alloy for working excellent in strength
JPH07197164A (en) Aluminum alloy having high strength and high workability and its production
JPH09209069A (en) Wear resistant al alloy for elongation, scroll made of this wear resistant al alloy for elongation, and their production
EA034631B1 (en) Heat resistant ultrafine-grain aluminium conductor alloy and method of production thereof
Adeosun et al. Pouring temperature effects on mechanical and electrical responses of cast 6063 aluminum alloy
JPH083701A (en) Production of wear resistant aluminum alloy extruded material excellent in strength and machinability
JP7318281B2 (en) Aluminum alloys for compressor sliding parts and forgings for compressor sliding parts
JPS6227543A (en) Wear-resisting aluminum alloy stock
JPS62109944A (en) Highly wear resistant aluminum alloy
JPS63307240A (en) High strength wear resistant al-si alloy forged member having low thermal expansion coefficient and its production
JPH0341540B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees