JPH03170509A - Production of reactive polymer - Google Patents

Production of reactive polymer

Info

Publication number
JPH03170509A
JPH03170509A JP31145189A JP31145189A JPH03170509A JP H03170509 A JPH03170509 A JP H03170509A JP 31145189 A JP31145189 A JP 31145189A JP 31145189 A JP31145189 A JP 31145189A JP H03170509 A JPH03170509 A JP H03170509A
Authority
JP
Japan
Prior art keywords
acid
methylstyrene
catalyst
derivative
glycidyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31145189A
Other languages
Japanese (ja)
Other versions
JP2745743B2 (en
Inventor
Toshinobu Higashimura
東村 敏延
Mitsuo Sawamoto
光男 澤本
Tamotsu Hashimoto
保 橋本
Yoshiyuki Sano
佐野 嘉行
Noriaki Saito
憲明 斉藤
Shuichi Kanekawa
金川 修一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP31145189A priority Critical patent/JP2745743B2/en
Publication of JPH03170509A publication Critical patent/JPH03170509A/en
Application granted granted Critical
Publication of JP2745743B2 publication Critical patent/JP2745743B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To produce a reactive high purity polymer useful for a coating material, adhesive, resin modifier, etc., by polymerizing an epoxidized alpha-methylstyrene deriv. in the presence of a specific catalyst. CONSTITUTION:An epoxidized alpha-methylstyrene deriv. (e.g. p-isopropenylphenyl glycidyl ether) is polymerized in the presence of a catalyst comprising acetic acid or deriv. thereof (e.g. acetic acid, trifluoroacetic acid, or monochloroacetic acid) and a divalent metal halide (e.g. ZnI2 or SnCl2) or in the presence of a catalyst comprising a sulfonate (e.g. a salt of methanesulfonic acid or trifluoromethanesulfonic acid). As being able to be purified by a conventional method such as rectification or recrystallization, the epoxidized alpha-methylstyrene deriv. has a high purity. Moreover, the formation of a halide derived from the catalyst in the polymn. is inhibited, thus giving a high purity polymer of the epoxidized alpha-methylstyrene deriv.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、エポキシ基を有する反応性高分子の製造方法
に関する. なかでも、コーティング材、接着剤、FRP (繊維強
化樹脂)用樹脂、樹脂の改質剤等の種々の用途で有用な
エポキシ基を有するα−メチルスチレン誘導体の重合体
の製法に関する.〈従来の技術〉 エポキシ基を有するα−メチルスチレン誘導体は、まず
、フェノール性水酸基を有するα−メチルスチレン誘導
体をカチオン触媒を用いて重合させ、ついでこれをエビ
クロルヒドリンでグリシジルエーテル化する方法で製造
されていた. 有機合威化学、26 (12) 、66 (1968)
には、ビニルフェニルグリシジルエーテルをラジカル重
合してポリ (ビニルフェニルグリシジルエーテル)を
得る方法が記載されている.しかしながら、エポキシ基
を有するα−メチルスチレン誘導体は、α−メチル置換
基の存在のためかラジカル重合はしない. 特開昭61−293209号公報、特開昭62−197
405号公報には、エポキシ基を有するα−メチルスチ
レン誘導体の一種の、ポリ (イソブロペニルフェニル
グリシジルエーテル)類を、グリシジル基を残してイソ
ブロベニル基のみを選択的にカチオン重合する方法とし
て、ヨウ化水素またはヨウ化水素/ヨウ素、ハロゲンを
触媒として用いる方法が開示されている. 〈発明が解決しようとする課題〉 フェノール性水酸基を有するα−メチルスチレン誘導体
の重合体を、エピクロルヒドリンでグリシジルエーテル
化する方法では、目的物のほかに、エビクロルヒドリン
に由来する種々の構造の塩素基を有する重合体、分子間
に−OCR !Cl(OH)−CH!Oからなる結合(
以下、ヒドロキシエーテル結合という)を有する重合体
、未反応の水酸基部分を有する重合体等が副生する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for producing a reactive polymer having an epoxy group. In particular, it relates to a method for producing a polymer of α-methylstyrene derivatives having an epoxy group, which is useful for various uses such as coating materials, adhesives, resins for FRP (fiber reinforced resin), and modifiers for resins. <Prior art> An α-methylstyrene derivative having an epoxy group is produced by first polymerizing an α-methylstyrene derivative having a phenolic hydroxyl group using a cationic catalyst, and then glycidyl etherifying this with shrimp chlorohydrin. It was manufactured in Organic Chemistry, 26 (12), 66 (1968)
describes a method for obtaining poly(vinylphenylglycidyl ether) by radical polymerization of vinylphenylglycidyl ether. However, α-methylstyrene derivatives having epoxy groups do not undergo radical polymerization, probably due to the presence of α-methyl substituents. JP-A-61-293209, JP-A-62-197
Publication No. 405 describes a method for selectively cationically polymerizing only isobrobenyl groups while leaving glycidyl groups in poly(isobropenylphenyl glycidyl ether), which is a type of α-methylstyrene derivative having epoxy groups. A method using hydrogen hydride or hydrogen iodide/iodine, or a halogen as a catalyst is disclosed. <Problems to be Solved by the Invention> In the method of glycidyl etherification of a polymer of α-methylstyrene derivative having a phenolic hydroxyl group with epichlorohydrin, in addition to the target product, various structures derived from shrimp chlorohydrin are Polymer with chlorine group, -OCR between molecules! Cl(OH)-CH! A bond consisting of O (
A polymer having a hydroxy ether bond (hereinafter referred to as a hydroxy ether bond), a polymer having an unreacted hydroxyl group, etc. are produced as by-products.

これらの副生物を含有していると、エポキシ樹脂として
用いるのに、加水分解性塩素が多い、架橋密度が低いこ
とから耐熱性の低い、耐水性が低い、などの問題がある
. また、特開昭61−293209号公報、特開昭62−
197405号公報の方法では、加水分解性ハロゲンを
含有する重合体となる. 本発明は、これらの欠点や問題点の起因となる威分がよ
り少ないエポキシ基を有するα−メチルスチレン誘導体
を製造するに有利な方法を提供するものである. く課題を解決するための手段〉 本発明は、エポキシ基を有するα−メチルスチレン誘導
体を、酢酸又は酢酸誘導体と二価の金属のハロゲン化物
とからなる触媒の存在下に、あるいは、触媒としてスル
ホン酸類の存在下に重合せしめる、反応性重合体の製造
方法である. 本発明の、エポキシ基を有するα−メチルスチレン誘導
体としては、その代表的な例として、核置換又は非置換
のイソブロベニルフェニルグリシジルエーテル類である
. これを、一般式では、 CH3 −C畳CHI R4      0   CH!   CH    C
Hx\。/ (式中、Rl,Rz 、Rs 及びR4 はそれぞれ 水素原子、ハロゲン原子、炭素数1〜4のアルキル基及
びフェニル基から選ばれた基である。〉で表わされる。
If these by-products are contained, there are problems when using the resin as an epoxy resin, such as a high amount of hydrolyzable chlorine, low heat resistance due to low crosslinking density, and low water resistance. Also, JP-A-61-293209, JP-A-62-
The method disclosed in Japanese Patent No. 197405 results in a polymer containing a hydrolyzable halogen. The present invention provides an advantageous method for producing an α-methylstyrene derivative having an epoxy group that has less of the force that causes these drawbacks and problems. Means for Solving the Problems> The present invention provides an epoxy group-containing α-methylstyrene derivative in the presence of a catalyst consisting of acetic acid or an acetic acid derivative and a halide of a divalent metal, or in the presence of a sulfone derivative as a catalyst. This is a method for producing reactive polymers that is polymerized in the presence of acids. Typical examples of the α-methylstyrene derivatives having an epoxy group of the present invention include nuclear-substituted or unsubstituted isobrobenylphenyl glycidyl ethers. In the general formula, this is CH3 -C tatami CHI R4 0 CH! CH C
Hx\. / (wherein Rl, Rz, Rs and R4 are each a group selected from a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, and a phenyl group).

該一般式で示されるイソプロペニルフェニルグリシジル
エーテル類としては、例えば0−イソブロペニルフェニ
ルグリシジルエーテル、m−イソブロペニルフェニルグ
リシジルエーテル、p−イソプロペニルフェニルグリシ
ジルエーテル、2.6−ジメチル−4−イソプロペニル
フェニルグリシジルエーテル、2.6−ジブロム−4−
イソプロペニルフェニルグリシジルエーテル、2−フェ
ニルー4−イソプロペニルフェニルグリシジルエーテル
等があげられる。
Isopropenylphenyl glycidyl ethers represented by the general formula include, for example, 0-isobropenylphenyl glycidyl ether, m-isobropenylphenyl glycidyl ether, p-isopropenylphenyl glycidyl ether, 2,6-dimethyl-4- Isopropenylphenyl glycidyl ether, 2,6-dibromo-4-
Examples include isopropenylphenyl glycidyl ether, 2-phenyl-4-isopropenylphenyl glycidyl ether, and the like.

なかでも、原料の入手し易いのは、p−イソプロペニル
フェニルグリシジルエーテルである.これらのイソブロ
ベニルフエニルグリシジルエーテル類は1種または2種
以上を混合して使用することができる. エポキシ基を有するα−メチルスチレン誘導体は、フェ
ノール性水酸基を有するα−メチルスチレン誘導体とエ
ビクロルヒドリンとを反応させる方法によって得られる
Among them, p-isopropenylphenyl glycidyl ether is the most readily available raw material. These isobrobenyl phenyl glycidyl ethers can be used alone or in combination of two or more. An α-methylstyrene derivative having an epoxy group can be obtained by a method of reacting an α-methylstyrene derivative having a phenolic hydroxyl group with shrimp chlorohydrin.

この方法は、例えば、特開昭58−189223号公報
に開示されているごとく、1価または多価フェノールか
ら該フェノールのグリシジルエーテルを製造する通常公
知の方法が通用できる.これらの方法で得られたエポキ
シ基を有するα−メチルスチレン誘導体はそのままでも
使用可能である。
For this method, a commonly known method for producing glycidyl ether of phenol from monohydric or polyhydric phenol can be used, for example, as disclosed in JP-A-58-189223. The epoxy group-containing α-methylstyrene derivatives obtained by these methods can be used as they are.

しかし、エポキシ樹脂の原料として用いる場合には副生
物が少ない方が望ましいので、さらに、グリシジルエー
テル類の周知、慣用の精製方法例えば精留または再結晶
により精製してもよい。
However, when used as a raw material for an epoxy resin, it is desirable to have fewer by-products, so it may be further purified by well-known and conventional purification methods for glycidyl ethers, such as rectification or recrystallization.

この精製により、オリゴマー或分及び副生ずる塩素含有
誘導体を任意の量まで除去できる.特に電子材料用エポ
キシ樹脂として用いる場合には、純度が98.7重量%
以上であり、塩素含有誘導体が0.8重量%以下が望ま
しい.純度が高い程、エポキシ樹脂として用いた場合に
耐熱性、耐水性が高く、塩素含有誘導体が少ない程、加
水分解性塩素が少なくて好ましいことは言うまでもない
ことである. エポキシ基を有するα−メチルスチレン誘導体の重合に
際して、その他の不飽和モノマーを共重合させても良い
。該不飽和モノマーは、カチオン重合性の少なくとも1
つの炭素一炭素二重結合をもつ化合物であり、例えば、
α−メチルスチレン、メトキシスチレン、ビニルトルエ
ン等のスチレン類;メチルビニルエーテル、エチルビニ
ルエーテル、イソブチルビニルエーテル、2−クロルエ
チルビニルエーテル、2−アセトキシエチルビニルエー
テル等のビニルエーテル類;フタジエン、イソブレン、
シクロペンタジエン等の共役ジエン類:インデン等の環
状不飽和化合物;イソブチレン等の脂肪族オレフィン類
等がある. 触媒として、一つには、酢酸又はその誘導体と二価の金
属のハロゲン化物の併用系が用いられる. 酢酸又はその誘導体は、カチオン源であり、具体的には
、酢酸、モノクロル酢酸、ジクロル酢酸、トリクロル酢
酸、イソブチロキシエチルアセテート(CHsCH(O
iBu)−0COCHs)から選ばれた少なくとも一種
である. その他カチオン源として、リン酸も使用出来る.二価の
金属のハロゲン化物としては、亜鉛またはスズのハロゲ
ン化物が好ましい。
Through this purification, a certain amount of oligomers and by-product chlorine-containing derivatives can be removed to any desired amount. Especially when used as an epoxy resin for electronic materials, the purity is 98.7% by weight.
The above is desirable, and the content of the chlorine-containing derivative is preferably 0.8% by weight or less. It goes without saying that the higher the purity, the higher the heat resistance and water resistance when used as an epoxy resin, and the lower the chlorine-containing derivative, the lower the amount of hydrolyzable chlorine, which is preferable. During the polymerization of the α-methylstyrene derivative having an epoxy group, other unsaturated monomers may be copolymerized. The unsaturated monomer has at least one cationically polymerizable monomer.
It is a compound with one carbon-carbon double bond, for example,
Styrenes such as α-methylstyrene, methoxystyrene, and vinyltoluene; Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, isobutyl vinyl ether, 2-chloroethyl vinyl ether, and 2-acetoxyethyl vinyl ether; phthadiene, isobrene,
Conjugated dienes such as cyclopentadiene; cyclic unsaturated compounds such as indene; and aliphatic olefins such as isobutylene. One type of catalyst used is a combination system of acetic acid or its derivatives and a divalent metal halide. Acetic acid or its derivatives are cation sources, specifically acetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, isobutyloxyethyl acetate (CHsCH(O
iBu)-0COCHs). Phosphoric acid can also be used as another cation source. As the divalent metal halide, zinc or tin halide is preferred.

なかでも、沃化亜鉛(Znlg)、臭化亜鉛(ZnBr
t)塩化亜鉛(ZnClt) 、塩化第一錫(SnC1
g)から選ばれた少なくとも一種である. 酢酸又はその誘導体の使用量は、モノマーの全モル数に
対して0.01モル%から20モル%である. 0.01モル%より少ないと重合反応が遅く、20モル
%より多いと多くした割にはその効果がなく、また副反
応が多くなって好ましくない.二価の金属のハロゲン化
物の使用量は、酢酸又はその誘導体の量に対して過剰で
も過少でもよいが、酢酸又はその誘導体と当モル程度の
量を用いるのが好ましく、また多くても4倍モルまでが
よい。
Among them, zinc iodide (Znlg), zinc bromide (ZnBr
t) Zinc chloride (ZnClt), stannous chloride (SnCl
At least one type selected from g). The amount of acetic acid or its derivative used is 0.01 mol% to 20 mol% based on the total number of moles of monomers. If it is less than 0.01 mol %, the polymerization reaction will be slow, and if it is more than 20 mol %, it will not be effective, and side reactions will increase, which is not preferable. The amount of divalent metal halide used may be in excess or in excess of the amount of acetic acid or its derivatives, but it is preferable to use an amount that is equivalent to the molar amount of acetic acid or its derivatives, and at most 4 times as much. It is good to have a mole.

これより二価の金属のハロゲン化物の量が多いと、副反
応が多くなり好ましくない.今一つの触媒として、スル
ホン酸類が用いられる. 具体的には、メタンスルホン酸、トリフルオロメタンス
ルホン酸、トルエンスルホン酸から選ばれた少なくとも
一種である. スルホン酸類の使用量は、モノマーの全モル数に対して
0.01モル%から20モル%である.0.01モル%
より少ないと重合反応が遅く、20モル%より多いと多
くした割にはその効果がなく、また副反応が多くなって
好ましくない。
If the amount of divalent metal halide is larger than this, side reactions will increase, which is not desirable. Sulfonic acids are used as another catalyst. Specifically, it is at least one selected from methanesulfonic acid, trifluoromethanesulfonic acid, and toluenesulfonic acid. The amount of sulfonic acids used is 0.01 mol% to 20 mol% based on the total number of moles of monomers. 0.01 mol%
If the amount is less, the polymerization reaction will be slow, and if it is more than 20 mol %, there will be no effect, and side reactions will increase, which is not preferable.

重合の際には、通常のカチオン重合で用いられる溶媒が
使用可能である. 例えば、芳香族炭化水素、ハロゲン化炭化水素、ニトロ
化炭化水素等があげられる.具体的には、ベンゼン、ト
ルエン、ジクロロメタン、1,2−ジクロロエタン、ニ
トロエタン等である. 特に、触媒として、スルホン酸類を用いる場合には、誘
電率が7〜40のものが望ましい.例えば、ジクロメタ
ン、1.2−ジクロロエタン、ニトロエタンのごときハ
ロゲン化炭化水素、ニトロ化炭化水素である。
During polymerization, solvents commonly used in cationic polymerization can be used. Examples include aromatic hydrocarbons, halogenated hydrocarbons, and nitrated hydrocarbons. Specifically, benzene, toluene, dichloromethane, 1,2-dichloroethane, nitroethane, etc. In particular, when a sulfonic acid is used as a catalyst, one with a dielectric constant of 7 to 40 is desirable. For example, halogenated hydrocarbons and nitrated hydrocarbons such as dichloromethane, 1,2-dichloroethane, and nitroethane.

重合温度は−100℃〜30℃が好ましく、−80℃〜
0℃がさらに好ましい。
The polymerization temperature is preferably -100°C to 30°C, and -80°C to
0°C is more preferred.

温度が30℃を越えると重合収率が低くなる.また、温
度を−100℃より低下させてもその効果が少なく、工
業的に不利であり、好ましくない。
When the temperature exceeds 30°C, the polymerization yield decreases. Further, even if the temperature is lowered to below -100°C, the effect is small, which is industrially disadvantageous, and is not preferred.

本発明方法によって得られる重合体は、従来のエポキシ
樹脂と同様に硬化剤を加えて硬化させることができ、ま
たそれと同様の用途に使用しうる. 硬化剤としては、公知のものが使用でき、例えば、アミ
ン、ボリアミド等のアミン型;酸無水物等の酸型;フェ
ノールノボラフク、ポリビニルフェノール、ポリイソプ
ロペニルフェノール等のポリフェノール型;三77化ホ
ウ素錯体等のルイス酸型等があげられる。
The polymer obtained by the method of the present invention can be cured by adding a curing agent in the same way as conventional epoxy resins, and can be used for the same purposes. As the curing agent, known ones can be used, such as amine types such as amines and polyamides; acid types such as acid anhydrides; polyphenol types such as phenol novolafuku, polyvinylphenol, and polyisopropenylphenol; Examples include Lewis acid types such as boron complexes.

用途としては、塗料、半導体封止材、接着剤、プリント
基板等のFRP用樹脂、樹脂の改質剤等があげられる. く発明の効果〉 本発明は、エポキシ基を有するα−メチルスチレン誘導
体のごとくl分子中に不飽和二重結合基とエポキシ基の
2種類の官能基を持っている物質を特定の触媒を用いて
、エポキシ基の反応を抑え、不飽和二重結合基のみで重
合を行なわせる方法である。
Applications include paints, semiconductor encapsulants, adhesives, FRP resins for printed circuit boards, and resin modifiers. Effects of the Invention> The present invention provides a method for producing a substance having two types of functional groups, an unsaturated double bond group and an epoxy group, in one molecule, such as an α-methylstyrene derivative having an epoxy group, using a specific catalyst. This method suppresses the reaction of epoxy groups and allows polymerization to occur only with unsaturated double bond groups.

一般には、この様なビニル重合型のエポキシ基を有する
α−メチルスチレン誘導体の重合体は、フェノール性水
酸基を有するα−メチルスチレン誘導体の重合体とエビ
クロルヒドリンの反応によるが、この方法からではエビ
クロルヒドリンに起因する塩素化物の共存物の除去が困
難であった. しかし本発明では、エポキシ基を有するαメチルスチレ
ン誘導体が精留や再結晶等の慣用技術で精製できるので
、不純物含有量の少ないエポキシ基を有するα−メチル
スチレン誘導体を得ることができ、その上、重合時にも
、触媒に由来するハロゲン化物の生成も抑制出来、より
高純度のエポキシ基を有するα−メチルスチレン誘導体
の重合体を得ることができる。
Generally, such a vinyl polymerization type polymer of an α-methylstyrene derivative having an epoxy group is produced by reacting a polymer of an α-methylstyrene derivative having a phenolic hydroxyl group with shrimp chlorohydrin. It was difficult to remove coexisting chlorinated substances caused by shrimp chlorohydrin. However, in the present invention, since the α-methylstyrene derivative having an epoxy group can be purified by conventional techniques such as rectification and recrystallization, it is possible to obtain an α-methylstyrene derivative having an epoxy group with a low content of impurities. During polymerization, the formation of halides derived from the catalyst can also be suppressed, and a polymer of α-methylstyrene derivatives having epoxy groups with higher purity can be obtained.

く実施例〉 以下、本発明を実施例でもって説明するが、本発明はこ
れらによって限定されるものではない。
EXAMPLES> The present invention will be described below with reference to Examples, but the present invention is not limited thereto.

本発明でいうエポキシ当量とはグリシジルエーテル基1
モル当りのダラム当量で定義される.また塩素含有量と
は、エポキシ基を有するα一メチルスチレン誘導体の重
合体をジオキサンに溶解し、水酸化カリウムのアルコー
ル溶液を加え、還流状態で2時間加熱したときに脱離す
る塩素イオンを硝酸銀溶液で逆滴定により定量し、該化
合物中の塩素原子の重量百分率で定義したものである. ボリマーの数平均分子量Mn及び重量平均分子IMWは
、ゲル.パーミエーション.クロマトグラフ(島津製作
所製、LC−6A)を用い、標準ボリスチレンを用いた
検MFaより求めた。
In the present invention, the epoxy equivalent means glycidyl ether group 1
Defined in duram equivalents per mole. In addition, the chlorine content refers to the chlorine ions released when a polymer of α-methylstyrene derivative having an epoxy group is dissolved in dioxane, an alcoholic solution of potassium hydroxide is added, and the mixture is heated under reflux for 2 hours. It is determined by back titration in a solution and defined as the weight percentage of chlorine atoms in the compound. The number average molecular weight Mn and weight average molecular weight IMW of the polymer are gel. Permeation. It was determined using a chromatograph (manufactured by Shimadzu Corporation, LC-6A) and MFa using standard boristyrene.

H−NMRスペクトルは、日本電子■製、JEOL F
X−90Qで測定した。
H-NMR spectra were obtained using JEOL F manufactured by JEOL Ltd.
Measured with X-90Q.

残存沃素量は、元素分析により測定した.参考例 +ll  粗p−イソブロベニルフエニルグリシジルエ
ーテルの合戒 温度計、分離管、滴下ロート、攪拌器を取り付けた1リ
フ}4フラスコにp−イソプロペニルフェノール(12
.5%のオリゴマーを含む)134g、エビクロルヒド
リン7.0モルヲ入れ均一溶液とした. 温度74℃、圧力2501重Hgに保ち、6時間で48
%NaOH水溶液を連続的に添加した.この間エピクロ
ルヒドリンと水とを共沸させて液化し、分離管で有機層
と水層とに分離し、水層は系外に除去し有IR層は系内
に循環した.反応終了後1時間保温し、未反応のエビク
ロルヒドリンを蒸発除去し、反応生成物をメチルイソブ
チルケトンに溶解した。
The amount of residual iodine was measured by elemental analysis. Reference example + ll Collection of crude p-isopropenyl phenyl glycidyl ether 1 flask equipped with a thermometer, separation tube, dropping funnel, and stirrer}4 flasks were charged with p-isopropenyl phenol (12
.. 134 g (containing 5% oligomer) and 7.0 mol of shrimp chlorohydrin were added to make a homogeneous solution. Maintaining the temperature at 74℃ and the pressure at 2501 Hg, the temperature was 48℃ in 6 hours.
% NaOH aqueous solution was added continuously. During this time, epichlorohydrin and water were azeotropically liquefied and separated into an organic layer and an aqueous layer using a separation tube.The aqueous layer was removed from the system and the IR layer was circulated into the system. After completion of the reaction, the mixture was kept warm for 1 hour, unreacted shrimp chlorohydrin was removed by evaporation, and the reaction product was dissolved in methyl isobutyl ketone.

次に副生塩をろ別したのち、メチルイソブチルケトンを
蒸発して除去して室温で固形の結晶を得た。
Next, by-product salts were filtered off, and methyl isobutyl ketone was removed by evaporation to obtain solid crystals at room temperature.

このもののエポキシ当量は201、塩素含有量は830
ppmであった. GC−Mass(ガスクロマトグラフー質量分析計、日
本電子一DX−800)及び(ゲル・バー藁エーション
・クロマトグラフ(日本分光工業TRIROTAR−S
R!)による分析では、p−イソブロベニルフェニルグ
リシジルエーテル8 0. 9 5重量%、そのオリゴ
マ−14.7重景%、p−イソプロペニルフェニルの塩
素含有誘導体が0.42重量%であった。
The epoxy equivalent of this product is 201 and the chlorine content is 830.
It was ppm. GC-Mass (gas chromatograph-mass spectrometer, JEOL DX-800) and gel-bar chromatography (JASCO Corporation TRIROTAR-S)
R! ) p-isobrobenylphenyl glycidyl ether 80. 95% by weight of the oligomer, 14.7% by weight of the oligomer, and 0.42% by weight of the chlorine-containing derivative of p-isopropenylphenyl.

(2)p−イソプロペニルフェニルグリシジルエーテル
の精製 (1)で得られた、粗p−イソプロペニルフエニルグリ
シジルエーテル100gを理論段数10段の精留塔によ
り分離し、1.8Torrでl2O℃〜122℃までの
留分67gを得た。
(2) Purification of p-isopropenylphenyl glycidyl ether 100 g of crude p-isopropenylphenyl glycidyl ether obtained in (1) was separated in a rectification column with 10 theoretical plates and heated at 1.8 Torr to 120°C. 67g of fractions up to 122°C were obtained.

この留分は、室温で白色の結晶となった。This fraction became white crystals at room temperature.

このもののエポキシ当量は1901塩素含有量は30p
pmであった。
The epoxy equivalent of this product is 1901, and the chlorine content is 30p.
It was pm.

GC−Mass分析によると、p−イソプロペニルフェ
ニルグリシジルエーテルの純度は99.95重f%、p
〜イソブロペニルフェニルの塩素含有誘導体の含有量は
0.01重景%であった。
According to GC-Mass analysis, the purity of p-isopropenylphenyl glycidyl ether is 99.95 wt%, p
The content of the chlorine-containing derivative of isobropenylphenyl was 0.01% by weight.

実施例1、2 比較例l、2 参考例{2)で得られたp−イソブロベニルフエニルグ
リシジルエーテルを原料として、精製ジクロルメタンに
溶解した. 表1に示した触媒をジクロルメタン溶液として調整した
Examples 1 and 2 Comparative Examples 1 and 2 The p-isobrobenylphenyl glycidyl ether obtained in Reference Example {2) was used as a raw material and dissolved in purified dichloromethane. The catalysts shown in Table 1 were prepared as dichloromethane solutions.

乾燥N,下、3方コックを取り付けた試験管に、表1に
示した濃度となるように、原料、触媒の溶液およびジク
ロルメタンを入れ、−78℃で重合を行なった. 重合終了後、冷アンモニアーメタノール溶液で反応を停
止し、10%チオ硫酸ナトリウム水溶液及び純水で洗浄
後、減圧蒸留により溶媒を回収し、ボリマーを得た。
Into a test tube equipped with dry N, bottom and three-way stopcock, raw materials, catalyst solution and dichloromethane were added to the concentrations shown in Table 1, and polymerization was carried out at -78°C. After the polymerization was completed, the reaction was stopped with a cold ammonia methanol solution, and after washing with a 10% aqueous sodium thiosulfate solution and pure water, the solvent was recovered by vacuum distillation to obtain a polymer.

得られたボリマーは、クロロホルムに可溶であった。The obtained polymer was soluble in chloroform.

また、’H−NMRにより、イソプロペニル基のみが重
合していることが確認された.得られたボリマーの収率
、平均分子量、分子量分布、残存沃素含量を測定算出し
た. 結果を、表1に示す。
Furthermore, 'H-NMR confirmed that only isopropenyl groups were polymerized. The yield, average molecular weight, molecular weight distribution, and residual iodine content of the obtained polymer were measured and calculated. The results are shown in Table 1.

比較例3 触媒を表1に示した金属ハロゲン化物を用いた以外は、
実施例と同様に重合を行なった.得られたポリマーは、
クロロホルムに全く不7容であった. 実施例3〜8 参考例{2)で得られたp−イソプロペニルフェニルグ
リシジルエーテルを原料として、精製ジクロノレメタン
に冫容解した. 表2に示した触媒をジクロルメタン溶液として調整した
Comparative Example 3 Except for using the metal halide shown in Table 1 as the catalyst,
Polymerization was carried out in the same manner as in the example. The obtained polymer is
It was completely intolerant of chloroform. Examples 3 to 8 The p-isopropenylphenyl glycidyl ether obtained in Reference Example {2) was used as a raw material and dissolved in purified dichloromethane. The catalysts shown in Table 2 were prepared as dichloromethane solutions.

乾燥Nつ下、3方コックを取り付けた試験管に、表2に
示した濃度となるように、原料、触媒の溶液およびジク
ロルメタンを入れ、−78℃で重合を行なった. 重合終了後、冷アンモニアーメタノール溶液で反応を停
止し、10%チオ硫酸ナトリウム水溶液及び純水で洗浄
後、減圧蒸留により溶媒を回収し、ボリマーを得た。
The raw materials, catalyst solution, and dichloromethane were placed in a test tube equipped with a three-way stopcock under a dry tube to give the concentrations shown in Table 2, and polymerization was carried out at -78°C. After the polymerization was completed, the reaction was stopped with a cold ammonia methanol solution, and after washing with a 10% aqueous sodium thiosulfate solution and pure water, the solvent was recovered by vacuum distillation to obtain a polymer.

得られたボリマーは、クロロホルムに可溶であった・ また、’H−NMRにより、イソブロベニル基のみが重
合していることが確認された。
The obtained polymer was soluble in chloroform. Further, 'H-NMR confirmed that only isobrobenyl groups were polymerized.

得られたボリマーの収率、平均分子量、分子量分布、残
存沃素含量を測定算出した。
The yield, average molecular weight, molecular weight distribution, and residual iodine content of the obtained polymer were measured and calculated.

結果を、表2に示す.The results are shown in Table 2.

Claims (7)

【特許請求の範囲】[Claims] (1)エポキシ基を有するα−メチルスチレン誘導体を
、酢酸又はその誘導体と二価の金属のハロゲン化物とか
らなる触媒の存在下に重合せしめる、反応性重合体の製
造方法。
(1) A method for producing a reactive polymer, which comprises polymerizing an α-methylstyrene derivative having an epoxy group in the presence of a catalyst consisting of acetic acid or its derivative and a halide of a divalent metal.
(2)エポキシ基を有するα−メチルスチレン誘導体を
、触媒としてスルホン酸類の存在下に重合せしめる、反
応性重合体の製造方法。
(2) A method for producing a reactive polymer, which comprises polymerizing an α-methylstyrene derivative having an epoxy group in the presence of a sulfonic acid as a catalyst.
(3)エポキシ基を有するα−メチルスチレン誘導体が
、核置換又は非置換のイソプロペニルフェニルグリシジ
ルエーテル類である請求項(1)又は(2)の製造方法
(3) The production method according to claim (1) or (2), wherein the α-methylstyrene derivative having an epoxy group is a nuclear-substituted or unsubstituted isopropenylphenyl glycidyl ether.
(4)核置換又は非置換のイソプロペニルフェニルグリ
シジルエーテル類が、p−イソプロペニルフェニルグリ
シジルエーテルである請求項(3)の製造方法。
(4) The method of claim (3), wherein the nuclear-substituted or unsubstituted isopropenylphenyl glycidyl ether is p-isopropenylphenyl glycidyl ether.
(5)酢酸又はその誘導体が、酢酸、トリフルオロ酢酸
、モノクロル酢酸、ジクロル酢酸、トリクロル酢酸、イ
ソブチロキシエチルアセテートから選ばれた少なくとも
一種である請求項(1)の製造方法。
(5) The method of claim (1), wherein acetic acid or a derivative thereof is at least one selected from acetic acid, trifluoroacetic acid, monochloroacetic acid, dichloroacetic acid, trichloroacetic acid, and isobutyloxyethyl acetate.
(6)二価の金属のハロゲン化物が、ヨウ化亜鉛、臭化
亜鉛、塩化亜鉛、塩化第一スズ、から選ばれた少なくと
も一種である請求項(1)の製造方法。
(6) The method of claim (1), wherein the divalent metal halide is at least one selected from zinc iodide, zinc bromide, zinc chloride, and stannous chloride.
(7)スルホン酸類が、メタンスルホン酸、トリフルオ
ロメタンスルホン酸、トルエンスルホン酸から選ばれた
少なくとも一種である請求項(2)の製造方法。
(7) The method of claim (2), wherein the sulfonic acid is at least one selected from methanesulfonic acid, trifluoromethanesulfonic acid, and toluenesulfonic acid.
JP31145189A 1989-11-29 1989-11-29 Method for producing reactive polymer Expired - Fee Related JP2745743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31145189A JP2745743B2 (en) 1989-11-29 1989-11-29 Method for producing reactive polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31145189A JP2745743B2 (en) 1989-11-29 1989-11-29 Method for producing reactive polymer

Publications (2)

Publication Number Publication Date
JPH03170509A true JPH03170509A (en) 1991-07-24
JP2745743B2 JP2745743B2 (en) 1998-04-28

Family

ID=18017380

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31145189A Expired - Fee Related JP2745743B2 (en) 1989-11-29 1989-11-29 Method for producing reactive polymer

Country Status (1)

Country Link
JP (1) JP2745743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065835A (en) * 2012-09-26 2014-04-17 Asahi Kasei E-Materials Corp Method of producing epoxy resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065835A (en) * 2012-09-26 2014-04-17 Asahi Kasei E-Materials Corp Method of producing epoxy resin

Also Published As

Publication number Publication date
JP2745743B2 (en) 1998-04-28

Similar Documents

Publication Publication Date Title
AU593833B2 (en) Polyhydroxyethers from hydroxybiphenyls
Goldmann et al. A series of calix [4] arenes, having two opposite para positions connected by an aliphatic chain
JP3476027B2 (en) Manufacturing method of epoxy resin
US7371800B2 (en) Derivatized novolak polyhydroxystyrene from hydroxyphenylmethylcarbinol
US4032513A (en) Process of producing alkenylphenol polymers
JP4529234B2 (en) Epoxy resin composition and cured product thereof
JPH03170509A (en) Production of reactive polymer
JPS61168617A (en) Production of high-purity brominated epoxy resin
JPH0713057B2 (en) Novel sulfonium salt
JP3573530B2 (en) Epoxy resin mixture, epoxy resin composition and cured product thereof
JPH02263809A (en) Production of reactive polymer
JPS62197405A (en) Production of reactive polymer
JPH062785B2 (en) Process for producing poly (isopropenylphenylglycidyl ether) s
US4696988A (en) Process for preparation of reactive polymers and polymers prepared by said process
JP3377241B2 (en) Method for producing epoxy resin, epoxy resin composition and cured product thereof
JPH01252624A (en) Production of polyphenol glycidyl ether
JP3939000B2 (en) Novolac resin, epoxy resin, epoxy resin composition and cured product thereof
CA2002153A1 (en) Process for the manufacture of polyglycidylethers
Koizumi et al. Radical ring-opening polyaddition of bis (vinyloxirane) derivatives and dithiols
CN115894185B (en) Artificial urushiol monomer containing long fluorocarbon chain and preparation method thereof
JP2548009B2 (en) Method for producing reactive polymer compound
JP4186153B2 (en) Epoxy resin composition, cured product thereof, semiconductor sealing material, and resin composition for electronic circuit board
JPS61293209A (en) Production of poly(p-isopropenylphenyl gylcidyl ether)
JPS63312307A (en) Composition containing reactive polymeric compound and production thereof
Budde et al. Studies on new non‐shrinking, thermally stable, araldite‐type photopolymers with pendent arylacryloyl groups III. Photopolymers with pendent cinnamic acid ester and furan acrylic ester groups and their reactions with low molar mass modifiers

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees