JPH03170370A - Dielectric porcelain composition and laminated ceramic capacitor using the same and production of laminated ceramic capacitor - Google Patents

Dielectric porcelain composition and laminated ceramic capacitor using the same and production of laminated ceramic capacitor

Info

Publication number
JPH03170370A
JPH03170370A JP1307035A JP30703589A JPH03170370A JP H03170370 A JPH03170370 A JP H03170370A JP 1307035 A JP1307035 A JP 1307035A JP 30703589 A JP30703589 A JP 30703589A JP H03170370 A JPH03170370 A JP H03170370A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic capacitor
green sheet
cuo
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1307035A
Other languages
Japanese (ja)
Other versions
JP2847822B2 (en
Inventor
Yasuhiko Hakotani
箱谷 靖彦
Seiichi Nakatani
誠一 中谷
Sei Yuhaku
聖 祐伯
Tsutomu Nishimura
勉 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1307035A priority Critical patent/JP2847822B2/en
Publication of JPH03170370A publication Critical patent/JPH03170370A/en
Application granted granted Critical
Publication of JP2847822B2 publication Critical patent/JP2847822B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To obtain the title ceramic capacitor improved in dielectric constant by printing a CuO-contg. electrically conductive base on a dielectric green sheet of specified composition followed by lamination into a multilayer form which is then heat-treated in a mixed gas of H2 and N2 to reduce the CuO followed by sintering. CONSTITUTION:Pb(Mg1/3Nb2/3)O3, Ba(Ti1-xZrx)O3 and CuO are formulated at a specified ratio, calcinated and ground to prepare the objective dielectric porcelain composition of the formula (0.01<a<=3.0, 0<=b<0.15, 0.3<x<0.8). Thence, the presence composition as the inorganic component is mixed with an organic binder, plasticizer and solvent at a specified proportion into a slurry, which is then put to film formation into a dielectric green sheet. Thence, an electrically conductive paste prepared by kneading an organic vehicle with an inorganic component consisting mainly of CuO is put to screen printing on the green sheet to form an electrode pattern. The resulting green sheet is then laminated with other electrode-formed green sheet(s) made in a similar way followed by pressing into a multilayer form, which is then heat-treated to remove the binder contained, and the resulting multilayer form is further heat-treated in a mixed gas atmosphere of H2 and N2 to reduce the electrode material into Cu followed by roasting in a N2 atmosphere, thus obtaining the other objective laminated ceramic capacitor.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、セラミソクコンデンサに用いられる誘電体材
料で、特に、非酸化性雰囲気中での低温焼結が可能であ
り、広範囲な温度領域において誘電率の温度変化の小さ
い誘電体磁器組成物と、この誘電体磁器組威物を用いた
セラミックコンデンサ、およびそのセラミックコンデン
サの製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a dielectric material used in ceramic capacitors, which can be sintered at a low temperature in a non-oxidizing atmosphere, and has dielectric properties in a wide temperature range. The present invention relates to a dielectric ceramic composition with a small temperature change in coefficient, a ceramic capacitor using this dielectric ceramic composition, and a method for manufacturing the ceramic capacitor.

2 従来の技術 セラミックコンデンサに用いられる誘電体材料に求めら
れる電気的性質としては、高誘電率,低誘電損失,高絶
縁抵抗,低い誘電率の温度依存性,低い誘電率のバイア
ス電界依存性などがある。この中で、誘電率の温度依存
性についてはJIS(日本工業規格)やEIA(米国電
子工業会)規格によって細かく定められている。高誘電
率を有する誘電体材料については、例えば、JIS規格
ではY級B特性(−25゜C〜+85゜Cでの容量変化
率が±10%以内)、また、EIA規格では、X7R特
性(−55゜C〜+125゜Cでの容量変化率が±15
%以内)などが定められており、このように広範囲の温
度領域における容量変化率が小さい材料が求められる場
合もある。従来、この様に温度特性の良好な誘電体材料
は、チタン酸バリウムをベースとしたものが主流であり
、誘電率は1000程度であり、焼或温度も1300゜
C〜1400゜Cと高温であるためセラミックコンデン
ザの電極利料に白金やパラジウムなどの貴金属を用いな
ければならず、これがコスト高となっていた。
2. Conventional technology The electrical properties required of dielectric materials used in ceramic capacitors include high dielectric constant, low dielectric loss, high insulation resistance, low temperature dependence of dielectric constant, and low dependence of dielectric constant on bias electric field. There is. Among these, the temperature dependence of the dielectric constant is defined in detail by JIS (Japanese Industrial Standards) and EIA (Electronic Industries Association) standards. For dielectric materials with a high dielectric constant, for example, the JIS standard requires Y-class B characteristics (capacitance change rate within ±10% from -25°C to +85°C), and the EIA standard requires X7R characteristics ( Capacitance change rate from -55°C to +125°C is ±15
% or less), and there are cases where a material with a small rate of change in capacity over a wide temperature range is required. Conventionally, dielectric materials with such good temperature characteristics have been mainly based on barium titanate, with a dielectric constant of about 1000 and annealing temperatures as high as 1300°C to 1400°C. Therefore, precious metals such as platinum and palladium must be used for the electrode material of ceramic capacitors, which increases costs.

このようなチタン酸ハリウム系材料の問題点を解決する
ために、鉛イオンを含むペロブスカイト型の誘電体材利
をヘースにする各種組戒物の研究(例えば、特開昭57
−57204,特開昭5551759,特開昭58−2
17462)や、温度特性の異なる複数の鉛イオンを含
むペロブスカイト型の誘電体材料を混合して誘電率の温
度特性を平坦にする研究(例えば、特開昭592037
59号公報,JJAP,vol.24(1985)Su
pplement  pp.427429)や、チタン
酸ハリウム系材料と鉛イオンを含むベロブスカイト型の
誘電体材料を混合して誘電率の温度特性を平坦にする研
究(例えば、特開昭63−156062号公報)などの
多くの試みがなされている。これらの研究により考案さ
れた誘電体材料は、誘電率が高く、誘電率の温度特性も
良好である。また、焼成温度も比較的低いため、比較的
安価な銀−パラジウム合金を内部電極とした積層セラミ
ックコンデンサも製造されるようになった。
In order to solve these problems with halium titanate-based materials, research has been carried out on various composite materials using perovskite-type dielectric materials containing lead ions (for example, JP-A-57
-57204, JP 5551759, JP 58-2
17462), and research on flattening the temperature characteristics of the dielectric constant by mixing perovskite dielectric materials containing multiple lead ions with different temperature characteristics (for example, Japanese Patent Application Laid-Open No. 592-037).
Publication No. 59, JJAP, vol. 24 (1985) Su
pplement pp. 427,429), and research on flattening the temperature characteristics of the dielectric constant by mixing a halium titanate-based material and a berovskite-type dielectric material containing lead ions (for example, Japanese Patent Laid-Open No. 156062/1983). Attempts are being made. The dielectric materials devised through these studies have a high dielectric constant and good temperature characteristics of the dielectric constant. Furthermore, since the firing temperature is relatively low, multilayer ceramic capacitors with internal electrodes made of relatively inexpensive silver-palladium alloys have also come to be manufactured.

発明が解決しようとする課題 しかしながら上記のような誘電体材料では、低酸素分圧
雰囲気中で焼或すると、誘電体磁器の絶縁抵抗が大きく
低下するために、銅などの卑金属を電極とするセラミッ
クコンデンサの作製が困難であるという課題を有してい
た。特に、焼成温度については1000゜C以上である
ため、銅を内部電極とするセラ旦ツタコンデンサの作製
は不可能であった。
Problems to be Solved by the Invention However, when dielectric materials such as those mentioned above are fired in a low oxygen partial pressure atmosphere, the insulation resistance of dielectric ceramics decreases significantly. The problem was that manufacturing the capacitor was difficult. In particular, since the firing temperature was 1000°C or higher, it was impossible to produce a ceramic vine capacitor using copper as the internal electrode.

本発明は上記課題に鑑み、非酸化性雰囲気中での低温焼
結が可能であり、広範囲な温度領域において誘電率の温
度変化の小さい誘電体磁器組成物と、この誘電体磁器組
成物を用いたセラミックコンデンサ、およびそのセラミ
ックコンデンサの製造方法を提供するものである。
In view of the above problems, the present invention provides a dielectric ceramic composition that can be sintered at low temperature in a non-oxidizing atmosphere and has a small temperature change in dielectric constant over a wide temperature range, and a dielectric ceramic composition that uses this dielectric ceramic composition. The present invention provides a ceramic capacitor and a method for manufacturing the ceramic capacitor.

課題を解決するための手段 上記課題を解決するために本発明の誘電体磁器組威物は
、高誘電率、非酸化性雰囲気中での低温焼結、高絶縁抵
抗、広範囲な温度領域における小さい誘電率の温度変化
率などを両立するように、P b ( M g 1y3
N b zi3)O3 (以下PMNと略ず)、BaT
i○3とBaZr○3の固溶体(以下BTZと略す)、
および銅酸化物を配合したものである。
Means for Solving the Problems In order to solve the above problems, the dielectric porcelain composite of the present invention has a high dielectric constant, low-temperature sintering in a non-oxidizing atmosphere, high insulation resistance, and small size in a wide temperature range. P b ( M g 1y3
N b zi3) O3 (hereinafter abbreviated as PMN), BaT
Solid solution of i○3 and BaZr○3 (hereinafter abbreviated as BTZ),
and copper oxide.

また、上記誘電体磁器組成物と、電極の出発原料に酸化
銅を用い、セラミックコンデンサのグリーンチップを作
る工程と、空気中での熱処理によって有機ハインダを除
去する工程と、及び還元処理によって内部電極を金属化
する工程、そして中性雰囲気中で誘電体磁器と電極とを
同時焼威する工程より成るセラミックコンデンサの製造
方法を考案し、その各工程条件を詳細に検討することに
より、銅を電極とするセラq7クコンデンサの作製に戒
功したものである。
In addition, a process of making a green chip of a ceramic capacitor using the dielectric ceramic composition and copper oxide as a starting material for electrodes, a process of removing organic binder by heat treatment in air, and a process of removing internal electrodes by reduction treatment. We devised a manufacturing method for ceramic capacitors that consists of a process of metallizing copper, and a process of simultaneously firing the dielectric ceramic and electrodes in a neutral atmosphere, and by carefully examining the conditions of each process, we succeeded in converting copper into electrodes. This study was conducted in preparation for the production of Ceramic Q7 capacitors.

作用 本発明は、PMN,BTZ,銅酸化物を所定の割合で配
合することにより低酸素雰囲気中で1000゜C以下の
温度で焼威し、高誘電率と、優れた誘電率の温度依存性
を実現したものである。
Function The present invention achieves high dielectric constant and excellent temperature dependence of dielectric constant by blending PMN, BTZ, and copper oxide in a predetermined ratio. This has been realized.

これは、PMNとBTZという誘電率の温度依存性の異
なる2種の高誘電率誘電体材料を複合することにより高
誘電率と、優れた誘電率の温度依存性を得ることができ
、また銅酸化物を配合することにより低温での充分な焼
結を可能にしたものである。また、この複合材料は低酸
素雰囲気中での焼威によっても絶縁抵抗が低下せず、む
しろ高い焼結性が実現することにより絶縁抵抗は増大し
た。
It is possible to obtain a high dielectric constant and an excellent temperature dependence of the dielectric constant by combining PMN and BTZ, two types of high permittivity dielectric materials with different temperature dependencies of the permittivity, and also By incorporating oxides, sufficient sintering at low temperatures is possible. Furthermore, the insulation resistance of this composite material did not decrease even when burned in a low-oxygen atmosphere, but rather the insulation resistance increased due to the high sinterability achieved.

次に、本発明のセラご冫クコンデンサの製造方法につい
て述べる。これは内部導体の出発原料に酸化銅を用いる
ことにより脱バインダ時の内部導体の収縮,酸化を考慮
せずに空気中で充分に有機ハインダを除去でき、脱バイ
ンダ工程後の水素・窒素雰囲気中での還元工程、窒素雰
囲気中での焼或工程を組み合わせることにより、優れた
特性および信頼性を有する銅内部電極積層セラξツクコ
ンデンサの製造が可能になったものである。
Next, a method for manufacturing the ceramic capacitor of the present invention will be described. By using copper oxide as the starting material for the internal conductor, the organic binder can be sufficiently removed in air without worrying about shrinkage or oxidation of the internal conductor during binder removal, and in a hydrogen/nitrogen atmosphere after the binder removal process. By combining the reduction process at 100 mL and the annealing process in a nitrogen atmosphere, it has become possible to manufacture a laminated ceramic capacitor with copper internal electrodes that has excellent characteristics and reliability.

実施例 (実施例1) 以下本発明の第1の一実施例として単板コンデンヅにつ
いて説明する。誘電体磁器組成物の作製には、出発原料
として工業用のPbO,Mg○Nb205,BaC○3
,Ti02,Zr02,CuOを用いた。PMNの合威
は次のように行なった。
Example (Example 1) A single plate condenser will be described below as a first example of the present invention. To prepare the dielectric ceramic composition, industrial PbO, Mg○Nb205, BaC○3 are used as starting materials.
, Ti02, Zr02, and CuO were used. The PMN gathering was conducted as follows.

まず、MgOとNb205をMgNb206となるよう
秤量配合し、950゜Cで空気中で5時間仮焼し、その
後粉砕した6粉砕したMgNb206とPb○をP b
 (M g +/3N b 2/3) 03となるよう
に秤量,配合し、9 0 0 ’Cの温度で空気中で2
時間仮焼し、その後粉砕しPMN粉を得た。
First, MgO and Nb205 were weighed and blended to form MgNb206, calcined in air at 950°C for 5 hours, and then crushed.
(M g +/3N b 2/3) 03, and in air at 900'C.
The mixture was calcined for a period of time and then crushed to obtain PMN powder.

BaTi○3の合或は次の手順で行なった。This was done by combining BaTi○3 or by the following procedure.

BaCO3とTi○2を1:1のモル比で秤量配合し、
l300゜Cの温度で2時間仮焼し、その後粉砕した。
Weigh and blend BaCO3 and Ti○2 at a molar ratio of 1:1,
It was calcined for 2 hours at a temperature of 300°C and then ground.

BaTi○3のTiの一部をZrで置換したB a (
T i I−X ZrJ○3の合或については、BaT
i○3の合或と同様の方法で行なった。つまり、原料に
BaCO3,Ti02 +Zr02を用い所定の組或と
なるようこれらを秤量配合し、空気中で仮焼後粉砕した
.PMN,BaTi O3合威の際の、配合および粉砕
はボール短ルを用いた湿式法で行なった。以上の方法で
得られた、PMNBaTiO3又はB a (T + 
+−x Z rJ ○3とCu○を、第1表に示す各所
望の配合比となるように、ボールミルで湿式混合した後
、乾燥した。
Ba (
For the combination of T i I-X ZrJ○3, BaT
It was carried out in the same manner as the i○3 meeting. That is, using BaCO3, Ti02 + Zr02 as raw materials, these were weighed and blended to form a predetermined composition, calcined in air, and then pulverized. During the synthesis of PMN and BaTiO3, blending and pulverization were carried out by a wet method using a short ball. PMNBaTiO3 or B a (T +
+-x Z rJ ○3 and Cu○ were wet mixed in a ball mill so as to achieve the desired mixing ratios shown in Table 1, and then dried.

第l表 これら混合物は、空気中800゜Cで2時間仮焼を行な
い、その後、ボールミルによる粉砕.乾燥を行なった。
Table 1 These mixtures were calcined in air at 800°C for 2 hours, and then ground in a ball mill. Drying was performed.

このようにして得られた、誘電体磁器組成物粉体に、ポ
リビニルアルコールをパインダとして5重量部加え、混
合,乾燥後,整粒した。
To the thus obtained dielectric ceramic composition powder, 5 parts by weight of polyvinyl alcohol was added as a binder, mixed, dried, and sized.

q 整粒した磁器組成物粉体を、1 0 0 0 kg/a
flの圧力で、直径10mm,厚さ2.5mmのペレッ
トに或形した。このペレットを、空気中で約700゜C
の温度で脱ハインダを行ない、その後、窒素中950゜
Cで焼或を行なった。なお、焼戒時間は、それぞれ1時
間とし、鉛の飛散を防ぐためPMN粉中にべレソトを埋
め込み焼或を行なった。焼或後、ペレットの収縮率(S
hrinkage)を測定した後、ペレットの両面にA
gペーストを塗布し、空気中120゜Cで電極ペースト
を完全に乾燥させ単板コンデンサを作製した。
q Sorted porcelain composition powder at 1000 kg/a
It was shaped into pellets with a diameter of 10 mm and a thickness of 2.5 mm at a pressure of fl. The pellets were heated to about 700°C in air.
Dehindering was carried out at a temperature of 100.degree. C., followed by annealing at 950.degree. C. in nitrogen. Incidentally, the burning time was 1 hour for each, and the burning was performed by embedding Beresoto in the PMN powder to prevent lead from scattering. After sintering, the pellet shrinkage rate (S
After measuring hrinkage), apply A on both sides of the pellet.
The electrode paste was applied and completely dried in air at 120°C to produce a single-plate capacitor.

その後、各試料について誘電率(ε),誘電損失(ta
nδ)、および絶縁抵抗(R)を測定した。
After that, for each sample, the dielectric constant (ε), dielectric loss (ta
nδ) and insulation resistance (R) were measured.

εおよびtanδは25゜C、IKHz.IVrmsの
条件で測定を行なった。また、Rは、ペレットに50V
の直流バイアスを印加し、1分後の抵抗値を測定した。
ε and tan δ at 25°C, IKHz. Measurements were performed under IVrms conditions. Also, R is 50V to the pellet.
A direct current bias of 100 mL was applied, and the resistance value was measured after 1 minute.

それら測定の結果を第2表に示した。The results of these measurements are shown in Table 2.

ここで、容量抵抗積(CR積)は、作製したコンデンサ
の静電容量と、絶縁抵抗の積で表わした10 ものである。
Here, the capacitance-resistance product (CR product) is 10 expressed as the product of the capacitance and insulation resistance of the manufactured capacitor.

(以 下 余 白) l1 ○○○ ○○ ○○ 12 第2表でO印を付けた組成物が、本発明の組威を満足す
るものである。第2表より明らかなように、本発明の誘
電体磁器組成物は、低酸素雰囲気中での1000゜C以
下の低温で十分に焼結し、高誘電率(K≧3000)で
あり、誘電率の温度変化率も小さl−55゜C〜+12
5゜Cで±20%以下)、また実用上十分高い抵抗率を
有するものである。第2表において、銅酸化物の含有量
が少ないと1 0 0 0 ”C以下の温度では焼結せ
ず、誘電率も小さく、不適当である。また、反対に銅酸
化物の含有量が多すぎると、十分な焼結性は得られるも
のの温度特性は悪化し、また誘電損失が大きくなりすぎ
実用的ではない.また.BaTi03の含有量は特に低
温焼結性と、誘電率の温度変化率に大きく影響し、含有
量が少ないとPMHによる温度依存性が強すぎ、また含
有量が多いとPMHによる特性が十分に得られずまた、
焼結性も低くなり不適当である.また.BaTi○3の
Tiの1部をZrで置換した場合、Ba(Ti,−xZ
rx)O3はBaTiO3よりもキュリー点を低温側に
もつl3 ため、本発明の組威物の高温域での温度特性を改善する
。しかし、Zr成分の置換量が多すぎると、キュリー点
が低温側にシフトし過ぎるため、組成物の温度特性は、
むしろ悪化するため適当ではない。本実施例ではN2雰
囲気中での焼威結果のみを示したが、空気中での焼戒に
よっても十分焼結し、誘電特性,温度特性ともに良好で
あった。また、今回は、銅酸化物にCu○(酸化第2銅
)を用いたが、C u 20(酸化第1銅)を用いても
、誘電体磁器組成物の作製の際、空気中での仮焼でCu
Oに酸化されるため、同様の話果が得られた。
(The following is a blank space) l1 ○○○ ○○ ○○ 12 The compositions marked with O in Table 2 satisfy the compositional requirements of the present invention. As is clear from Table 2, the dielectric ceramic composition of the present invention can be sufficiently sintered at a low temperature of 1000°C or less in a low oxygen atmosphere, has a high dielectric constant (K≧3000), and has a high dielectric constant. Temperature change rate of temperature is also small l-55°C ~ +12
(±20% or less at 5°C), and has a sufficiently high resistivity for practical use. In Table 2, if the copper oxide content is low, sintering will not occur at temperatures below 1000"C, and the dielectric constant will be small, making it unsuitable. If it is too large, sufficient sinterability can be obtained, but the temperature characteristics will deteriorate and the dielectric loss will become too large, making it impractical.Also, the content of BaTi03 is particularly important for low-temperature sinterability and changes in dielectric constant due to temperature. If the content is low, the temperature dependence due to PMH is too strong, and if the content is high, the characteristics due to PMH cannot be obtained sufficiently.
The sinterability also decreases, making it unsuitable. Also. When a part of Ti in BaTi○3 is replaced with Zr, Ba(Ti, -xZ
rx) Since O3 has a Curie point on the lower temperature side than BaTiO3, it improves the temperature characteristics of the composition of the present invention in a high temperature range. However, if the amount of substitution of the Zr component is too large, the Curie point will shift too much to the low temperature side, so the temperature characteristics of the composition will be
In fact, it is not appropriate because it will make things worse. In this example, only the firing results in an N2 atmosphere were shown, but sufficient sintering was achieved by firing in air, and both the dielectric properties and temperature characteristics were good. In addition, although Cu○ (cupric oxide) was used as the copper oxide this time, even if Cu20 (cuprous oxide) is used, it will not be possible to produce the dielectric ceramic composition in the air. Cu in calcining
Similar results were obtained since it was oxidized to O.

また、PMN,銅酸化物,B a T i O aの配
合は、今回の方法に限らず、例えばPMN合或時に銅酸
化物を配合,仮焼しても問題ない。
Furthermore, the blending of PMN, copper oxide, and B a Ti O a is not limited to the present method; for example, copper oxide may be blended and calcined at the time of PMN blending without any problem.

(実施例2) 以下に、本発明の第2の実施例として、Cuを内部電極
とする積層セラくツクコンデンサについて図面を参照し
ながら説明する。
(Example 2) Hereinafter, as a second example of the present invention, a multilayer ceramic capacitor having internal electrodes made of Cu will be described with reference to the drawings.

誘電体粉は、実施例lで示した方法で、PMNCub,
Ba (Tio.q Zro.+)O3を配合、仮14 焼,粉砕したものを用いた。用いた誘電体の組或は0.
6  {P b(Mg+7z Nbzzz)Cuo.+
  CL+.+  1’0.4Ba(Tio.q Zr
o.+)O3である。
The dielectric powder was prepared using the method shown in Example 1, such as PMNCub,
A mixture of Ba (Tio.q Zro.+)O3, calcined and pulverized was used. The dielectric combination used or 0.
6 {P b(Mg+7z Nbzzz)Cuo. +
CL+. + 1'0.4Ba (Tio.q Zr
o. +) O3.

この誘電体材料を無機成分とし、有機ハインダにはブチ
ラール樹脂、可塑剤としてジ−n−プチルフタレート、
溶剤としてトルエンを次表の組威で混合し、スラリーと
した。
This dielectric material is an inorganic component, butyral resin is an organic binder, and di-n-butyl phthalate is a plasticizer.
Toluene was mixed as a solvent with the composition shown in the table below to form a slurry.

無a成分          100部ブチラール樹脂
        10部ジ−n−プチルフタレー1−5
部 トルエン           40部このスラリーを
ドクターブレード法で、有機フィルム上に造膜し、誘電
体グリーンシー1・を作製した。乾燥後のグリーンシー
ト厚みは約3olImであった。次に、導体ペース1・
はCuO粉体無機戒分とし、エチルセルロースをターピ
ネオールニ溶かしたビヒクルを加え、三段ロールにより
適度な粘度になるよう混練したものを用いた。この導体
ペーストを前記グリーンシート上にスクリーン印刷して
電極パターンを形威した。同様にして作15 製した電極形或済グリーンシートを対向電極として構威
されるように所望の枚数積層し、熱プレスを用いて80
゜C−1 2 0 kg/c+flの温度と圧力で積層
体を圧着した。その後、所望の寸法に切断した。
Non-a component 100 parts Butyral resin 10 parts D-n-butyl phthalate 1-5
40 parts toluene This slurry was formed into a film on an organic film by a doctor blade method to prepare dielectric Green Sea 1. The thickness of the green sheet after drying was about 3 olIm. Next, conductor pace 1.
was used as CuO powder inorganic substance, a vehicle in which ethyl cellulose was dissolved in terpineol was added, and the mixture was kneaded using three-stage rolls to obtain an appropriate viscosity. This conductive paste was screen printed on the green sheet to form an electrode pattern. Similarly, a desired number of electrode-shaped green sheets were stacked so that they could be used as counter electrodes, and a heat press was used to form 80
The laminate was pressed at a temperature and pressure of °C-1 20 kg/c+fl. Thereafter, it was cut into desired dimensions.

次にこの積層体の脱ハインダを空気中、550゜Cで第
I表に示す条件で行なった。脱ハインダ温度は、予め有
機ハインダの熱分析の結果に基づき決定され、バインダ
が分解する温度以上であれば良いが必要以上に高温で熱
処理を行なうと導体材料の誘電体材料への不必要な拡散
が生しるため、約600゜C以下で行なうのが望ましい
。なお、この脱ハインダによって、酸化銅を主成分とす
る導体ペーストは、大きな体積変化を生じず、ハインダ
が飛散したのみであった。ハインダを完全に除去した積
層体は、窒素ガスを1.ON/分、水素ガスを0.51
/分の流量で流入させたアルξナ炉心管状炉中で、第2
図に示す昇降温条件を用い400゜Cの温度で熱処理し
、電極材料のCuへの還元を行なった。還元工程を終え
た積層体は第3図に示す昇降温条件により、950゜C
の窒素雰囲気中で16 焼威された。なお、この焼或工程は、還元工程で用いた
同様管状炉で行なった。以上のようにして作製した積層
セラξツクコンデンサに外部電極(金属銅ペースト塗布
、乾燥後、6 0 0 ’Cの窒素雰囲気で焼き付け)
を設けて、コンデンサとしての評価を行なった。その結
果を第3表に示す。
Next, this laminate was dehindered in air at 550° C. under the conditions shown in Table I. The dehindering temperature is determined in advance based on the results of thermal analysis of the organic binder, and should be at least the temperature at which the binder decomposes, but if heat treatment is performed at a higher temperature than necessary, unnecessary diffusion of the conductive material into the dielectric material may occur. Therefore, it is desirable to carry out the process at a temperature of about 600°C or less. In addition, as a result of this dehindering, the conductor paste containing copper oxide as a main component did not undergo a large volume change, and only the binder was scattered. After the binder has been completely removed, the laminate is heated with nitrogen gas for 1. ON/min, hydrogen gas 0.51
The second
The electrode material was reduced to Cu by heat treatment at a temperature of 400°C using the temperature raising and lowering conditions shown in the figure. After the reduction process, the laminate is heated to 950°C under the temperature raising and lowering conditions shown in Figure 3.
It was incinerated in a nitrogen atmosphere for 16 hours. Note that this calcination step was performed in the same tubular furnace as used in the reduction step. External electrodes (coated with metallic copper paste, dried, and baked in a nitrogen atmosphere at 600'C) on the multilayer ceramic capacitor fabricated as described above.
was installed and evaluated as a capacitor. The results are shown in Table 3.

第3表 得られた積層セラξツクコンデンサの誘電率は約320
0であり、誘電率の温度変化率も小さく、ETA規格の
X7R特性を満足した。また、その他の特性についても
第3表から明らかなように実用上十分であった。また、
内部の切断面の観察においても、クラックやデラξネー
ションは認められず、耐湿特性や電極のマイグレーショ
ン性などについても実用上十分な結果を示した。
Table 3 The dielectric constant of the obtained multilayer ceramic capacitor is approximately 320
0, the temperature change rate of dielectric constant was small, and the X7R characteristics of the ETA standard were satisfied. Further, as is clear from Table 3, the other properties were practically sufficient. Also,
When observing the internal cut surface, no cracks or delamination were observed, and the moisture resistance and electrode migration properties showed satisfactory results for practical use.

l7 本発明の製造方法により作製された積層セラミックコン
デン勺の構成を示す断面図を第4図に示した。図中の1
は本発明によって得られた誘電体材料、2は銅内部電極
、3は外部電極である。
17 A cross-sectional view showing the structure of a multilayer ceramic capacitor manufactured by the manufacturing method of the present invention is shown in FIG. 1 in the diagram
2 is a dielectric material obtained according to the present invention, 2 is a copper internal electrode, and 3 is an external electrode.

このように、本発明の誘電体磁器組威物は、低酸素雰囲
気中での低温焼結が可能であり、高誘電率、高絶縁抵抗
を有し、特に、広い温度範囲における誘電率の温化率が
小さいなどの優れた特性を有し、また、本発明の積層セ
ラミックコンデンサ製造法により、実用上十分な特性を
有する、銅内部電極の積層セラミックコンデンナを作製
する事ができた。
As described above, the dielectric ceramic composite of the present invention can be sintered at low temperature in a low oxygen atmosphere, has a high dielectric constant and high insulation resistance, and in particular has a high dielectric constant over a wide temperature range. A multilayer ceramic capacitor with copper internal electrodes was able to be manufactured, which has excellent characteristics such as a low conversion rate, and also has practically sufficient characteristics by the method of manufacturing a multilayer ceramic capacitor of the present invention.

発明の効果 以上のように本発明の誘電体磁器組成物は、PMN,銅
酸化物,BTZを成分とする事により、1000゜C以
下のイ民温で十分に焼結し、高誘電率高絶縁抵抗、優れ
た温度特性を有する磁器が得られる。
Effects of the Invention As described above, the dielectric ceramic composition of the present invention, which contains PMN, copper oxide, and BTZ as components, can be sufficiently sintered at an average temperature of 1000°C or less, and has a high dielectric constant. Porcelain with excellent insulation resistance and temperature characteristics is obtained.

また、本発明の積層セラミソクコンデンサの製造方法に
より、本発明の誘電体磁器組成物を誘電18 体材料とし、脱ハインダ,還元,焼成の各工程を前記の
ような構或条件で行なう事により、メクライズ性に優れ
た信頼性の高い、銅電極による積層セラくツクコンデン
サが得られるものである。
Further, according to the method for manufacturing a multilayer ceramic capacitor of the present invention, the dielectric ceramic composition of the present invention is used as a dielectric material, and the steps of dehindering, reduction, and firing are performed under the above-mentioned configuration and conditions. , a highly reliable multilayer ceramic capacitor with copper electrodes having excellent mecrization properties can be obtained.

このように、本発明の誘電体磁器組威物は、電気特性に
優れ、低温で焼或ができるので、極めて量産に適した誘
電体材料であり、また、本発明の製造方法によって得ら
れるCuメタライズコンデンサは、Cuのもつ導電抵抗
の低さ、耐マイグレーション性の良さ、低コストの利点
を十分に発揮できるものであり、極めて効果的な発明で
ある。
As described above, the dielectric ceramic composite of the present invention has excellent electrical properties and can be fired at low temperatures, so it is a dielectric material extremely suitable for mass production. The metallized capacitor is an extremely effective invention that can fully utilize the advantages of Cu, such as low conductive resistance, good migration resistance, and low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図,第2図,第3図はそれぞれ本発明の製造方法の
脱バインダ工程,還元工程.焼或工程の温度プロファイ
ルの一例を示すグラフ、第4図は本発明の製造方法によ
って作製されたグリーンシートによる積層セラくツクコ
ンデンサの構威を示す断面図である。 1・・・・・・誘電体、2・・・・・・内部電極、3・
・・・・・外部電極。 19 帽 ・叱
Figures 1, 2, and 3 show the binder removal step and reduction step of the manufacturing method of the present invention, respectively. FIG. 4 is a graph showing an example of the temperature profile of the firing process, and FIG. 4 is a cross-sectional view showing the structure of a multilayer ceramic capacitor using a green sheet manufactured by the manufacturing method of the present invention. 1... Dielectric, 2... Internal electrode, 3...
...External electrode. 19 Hat/Scold

Claims (4)

【特許請求の範囲】[Claims] (1)一般式 (1−x){Pb(Mg_1_/_3Nb_2_/_3
)Cu_aO_3_+_a}・xBa(Ti_1_−_
bZr_b)O_3で表わした時、 0.01<a≦0.30 0≦b<0.15 0.3<x<0.8 を満足することを特徴とする誘電体磁器組成物。
(1) General formula (1-x) {Pb(Mg_1_/_3Nb_2_/_3
)Cu_aO_3_+_a}・xBa(Ti_1_-_
A dielectric ceramic composition characterized in that, when expressed as bZr_b)O_3, it satisfies the following: 0.01<a≦0.30 0≦b<0.15 0.3<x<0.8.
(2)請求項(1)記載の誘電体磁器組成物を用いたセ
ラミックコンデンサ。
(2) A ceramic capacitor using the dielectric ceramic composition according to claim (1).
(3)請求項(1)記載の誘電体磁器組成物を用い、C
uを内部電極とした積層セラミックコンデンサ。
(3) Using the dielectric ceramic composition according to claim (1),
A multilayer ceramic capacitor with u as an internal electrode.
(4)請求項(1)記載の誘電体磁器組成物より作製し
た、誘電体グリーンシート上に、CuOを主成分とする
無機成分と、有機ビヒクルから成る導体ペーストを印刷
し、しかる後、前記グリーンシートを積層し、さらにそ
の上に前記導体ペーストを印刷する方法を繰り返し行な
い多層体を得る工程と、この多層体を空気中で熱処理す
る工程と、しかる後水素と窒素の混合ガス雰囲気中で熱
処理して前記多層体内部のCuOを金属Cuに還元する
工程と、さらにこの還元済多層体を窒素雰囲気で焼結さ
せる工程から成ることを特徴とするセラミックコンデン
サの製造方法。
(4) A conductive paste consisting of an inorganic component mainly composed of CuO and an organic vehicle is printed on a dielectric green sheet made from the dielectric ceramic composition according to claim (1), and then the A process of laminating green sheets and printing the conductive paste on top of the green sheets is repeated to obtain a multilayer body, a process of heat treating this multilayer body in air, and then a process of heating the multilayer body in a mixed gas atmosphere of hydrogen and nitrogen. A method for manufacturing a ceramic capacitor, comprising the steps of: reducing CuO inside the multilayer body to metal Cu by heat treatment; and further sintering the reduced multilayer body in a nitrogen atmosphere.
JP1307035A 1989-11-27 1989-11-27 Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor Expired - Fee Related JP2847822B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307035A JP2847822B2 (en) 1989-11-27 1989-11-27 Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307035A JP2847822B2 (en) 1989-11-27 1989-11-27 Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor

Publications (2)

Publication Number Publication Date
JPH03170370A true JPH03170370A (en) 1991-07-23
JP2847822B2 JP2847822B2 (en) 1999-01-20

Family

ID=17964257

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307035A Expired - Fee Related JP2847822B2 (en) 1989-11-27 1989-11-27 Method for manufacturing dielectric porcelain and method for manufacturing multilayer ceramic capacitor

Country Status (1)

Country Link
JP (1) JP2847822B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481226B1 (en) * 2002-06-12 2005-04-07 한국전기연구원 Piezoelectric ceramic composition for ceramic actuators and Method of fabricating the piezoelectric ceramics
KR100693886B1 (en) * 2004-08-10 2007-03-12 티디케이가부시기가이샤 Paste for exfoliation layer and fabrication method for stack type electronic components

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100481226B1 (en) * 2002-06-12 2005-04-07 한국전기연구원 Piezoelectric ceramic composition for ceramic actuators and Method of fabricating the piezoelectric ceramics
KR100693886B1 (en) * 2004-08-10 2007-03-12 티디케이가부시기가이샤 Paste for exfoliation layer and fabrication method for stack type electronic components

Also Published As

Publication number Publication date
JP2847822B2 (en) 1999-01-20

Similar Documents

Publication Publication Date Title
EP1130004B1 (en) Manufacturing method for oxide having perovskite structure
KR100218225B1 (en) Multilayer ceramic capacitor and process for producing the same
JP2615977B2 (en) Dielectric ceramic composition, multilayer ceramic capacitor using the same, and method of manufacturing the same
JP4345071B2 (en) Multilayer ceramic capacitor and method for manufacturing the multilayer ceramic capacitor
US5248640A (en) Non-reducible dielectric ceramic composition
JP3470703B2 (en) Non-reducing dielectric ceramic, multilayer ceramic capacitor using the same, and method for producing non-reducing dielectric ceramic
JPH065460A (en) Porcelain capacitor and manufacture thereof
KR900008779B1 (en) Ceramic capacitor method of manufacture
JP2004323315A (en) Dielectric ceramic composition, its production method, and multilayer ceramic capacitor obtained by using the same
JP3323801B2 (en) Porcelain capacitors
JP2529410B2 (en) Dielectric ceramic composition, laminated ceramic capacitor using the same, and method for producing the same
JP3634930B2 (en) Dielectric porcelain composition
JPH03170370A (en) Dielectric porcelain composition and laminated ceramic capacitor using the same and production of laminated ceramic capacitor
JP2004210613A (en) Dielectric ceramic, its producing method and laminated ceramic capacitor
KR910001347B1 (en) Ultra-low fire ceramic compositions and method for producing thereof
JPH02270313A (en) Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof
JPH11219844A (en) Dielectric ceramic and laminated ceramic capacitor
JP3233020B2 (en) Manufacturing method of multilayer ceramic capacitor
JP2531548B2 (en) Porcelain composition for temperature compensation
JP5354185B2 (en) Dielectric ceramic and manufacturing method thereof, and multilayer ceramic capacitor
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JP2720531B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor using the same
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP2531547B2 (en) Porcelain composition for temperature compensation
JP2024048975A (en) Dielectric composition and electronic component

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees