JPH03170340A - Production of composite silica glass tube for heat treatment of semiconductor - Google Patents

Production of composite silica glass tube for heat treatment of semiconductor

Info

Publication number
JPH03170340A
JPH03170340A JP4660490A JP4660490A JPH03170340A JP H03170340 A JPH03170340 A JP H03170340A JP 4660490 A JP4660490 A JP 4660490A JP 4660490 A JP4660490 A JP 4660490A JP H03170340 A JPH03170340 A JP H03170340A
Authority
JP
Japan
Prior art keywords
tube
glass tube
inner layer
quartz glass
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4660490A
Other languages
Japanese (ja)
Other versions
JPH0729798B2 (en
Inventor
Ichiro Yanase
一郎 柳瀬
Hiroshi Kimura
博至 木村
Akira Fujinoki
朗 藤ノ木
Toshiyuki Kato
俊幸 加藤
Hiroyuki Nishimura
裕幸 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Quartz Products Co Ltd
Original Assignee
Shin Etsu Quartz Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Quartz Products Co Ltd filed Critical Shin Etsu Quartz Products Co Ltd
Priority to JP4660490A priority Critical patent/JPH0729798B2/en
Publication of JPH03170340A publication Critical patent/JPH03170340A/en
Publication of JPH0729798B2 publication Critical patent/JPH0729798B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Glass Melting And Manufacturing (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

PURPOSE:To obtain the subject composite silica glass tube excellent in heat resistance, uniformity, etc., by inserting a low viscosity glass tube of a prescribed thickness for the inner layer into a high viscosity glass tube for the outer layer, holding the glass tubes in the horizontal position and heating one end thereof while rotating the glass tubes around the common axis and simultaneously pressurizing the inside of the tube for the inner layer. CONSTITUTION:Into a silica glass tube (B) for the outer layer having a higher viscosity than that of a silica glass tube (A) for the inner layer, the silica glass tube (A) for the inner layer having a thickness of 8-40% based on the total thickness of the both tubes is inserted and put on top of the other. The piled-up tubes are then held almost in the horizontal position and rotated around the common axis at a same speed. A compressed air is simultaneously introduced thereinto through a nozzle 3 for pressurization of the inside so as to keep the inside of the glass tube (A) for the inner layer to a pressurized state. The piled-up tubes are then heated while moving a gas burner 5 from one end thereof to the other end and both the piled-up pipes (A) and (B) are drown and unified into one body, thus obtaining the objective composite silica glass tube composed of different silica glasses and used for heat treatment of semiconductors.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウエハーの熱処理用、例えば、1 ,
 000〜1,300℃の高温度領域での熱処理用とし
ての炉心管及び保温治具等に好適な複合石英ガラス管の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention is applicable to heat treatment of semiconductor wafers, for example, 1,
The present invention relates to a method for manufacturing a composite quartz glass tube suitable for use in a furnace core tube, heat retention jig, etc. for heat treatment in a high temperature range of 000 to 1,300°C.

〔従来の技術〕[Conventional technology]

従来、半導体工業に使用される炉心管やウエハー治具類
は、例えば、1,000〜1,300℃の高温領域で変
形することのない耐熱性が要求され、また、半導体の集
積度の向上に伴い、熱処理工程における金属不純物、特
にアルカリ金属類によるウエハの微量な汚染が大きな問
題となっている。
Conventionally, furnace tubes and wafer jigs used in the semiconductor industry are required to have heat resistance that will not deform in the high temperature range of 1,000 to 1,300 degrees Celsius. Along with this, trace contamination of wafers by metal impurities, especially alkali metals, during the heat treatment process has become a major problem.

かかる要求に沿って、耐熱性の優れた天然石英ガラスを
外層とし、金属不純物含有量の少ない高純度合成石英ガ
ラスを内層とする積層構造の複合管が提案された。その
代表的な製造方法が、例えば、特開昭48−92410
号公報に開ホされている。
In line with these requirements, a composite tube with a laminated structure has been proposed, in which the outer layer is made of natural quartz glass with excellent heat resistance, and the inner layer is made of high-purity synthetic quartz glass with a low content of metal impurities. A typical manufacturing method thereof is disclosed in Japanese Patent Application Laid-Open No. 48-92410, for example.
It has been published in the Publication No.

そこに開示された積層構造石英ガラス管の製造方法によ
れば、合或石英ガラス管の外表面に、水晶又は天然石英
ガラスの粉体を熱溶射して積層構造の石英ガラス管が形
威される。しかし、この方法では、溶射される天然石英
ガラス層の厚みを均一にすることが難しく、また合或石
英ガラス管を基体としているため熱変形し易いという欠
点があり、更に、肉厚の不均質及び外径精度あるいは軸
精度の低下のために、管の炉体への取付け不良を招き、
特に、ウエハー表面での熱処理温度分布がが不均質とな
るので、その結果,熱処理不良を招くという重大な問題
があった。
According to the method for manufacturing a quartz glass tube with a laminated structure disclosed therein, a quartz glass tube with a laminated structure is formed by thermally spraying crystal or natural quartz glass powder onto the outer surface of the quartz glass tube. Ru. However, this method has the disadvantage that it is difficult to make the thickness of the sprayed natural quartz glass layer uniform, and that it is easily deformed by heat because it is based on a fused silica glass tube. and poor fitting of the tube to the furnace body due to a decrease in outside diameter accuracy or shaft accuracy.
In particular, the heat treatment temperature distribution on the wafer surface becomes non-uniform, resulting in a serious problem of poor heat treatment.

また、天然石英ガラス管の内部に小径の合或石英ガラス
を内挿し、加熱一体化させる積層状複合管の製造方法も
提案されたが、溶融一体化された外側の天然石英ガラス
管と内側の合或石英ガラス管の融着面に多数の気泡が残
存し、使用に際して3− それらの気泡が膨張してガラスを破損させたり、融着時
の加熱による変形などにより、所定の外径及び肉厚のも
のを得ることが難かしく、そのため前記と同様の熱処理
における不利益を招くので、なお技術的改善の余地があ
る。
In addition, a method of manufacturing a laminated composite tube has been proposed in which a small-diameter fused silica glass is inserted inside a natural quartz glass tube and heated and integrated. Many air bubbles remain on the welded surface of the fused quartz glass tube, and during use, these air bubbles may expand and break the glass, or may be deformed due to heating during welding, resulting in failure of the specified outer diameter and wall thickness. There is still room for technical improvement, since it is difficult to obtain thick ones, which leads to the same disadvantages in heat treatment as described above.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従って、本発明の目的ないし技術的課題は、半導体ウエ
ハーの熱処理において、優れた耐熱性と金属汚染防止性
を有する均質な複合管を提供することにある。また、本
発明の他の目的は、均質に熱処理された高品質の半導体
ウェハーを工業的に有利に提供することにある。
Therefore, an object or technical problem of the present invention is to provide a homogeneous composite tube having excellent heat resistance and metal contamination prevention properties during heat treatment of semiconductor wafers. Another object of the present invention is to provide a uniformly heat-treated high-quality semiconductor wafer that is industrially advantageous.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記課題を克服し得る積層状の複合石−
英ガラス管の効果的製作について研究を重ねた結果、実
用的に極めて望ましい製造方法を開発した。
The present inventors have developed a laminated composite stone that can overcome the above problems.
As a result of repeated research into the effective production of English glass tubes, we have developed a manufacturing method that is highly desirable for practical purposes.

すなわち、本発明は、異なる石英ガラスを内層用管及び
外層用管として一体化して成る複合石英ガラス管の製造
において、内層用石英ガラス管より高い粘度、好ましく
は、logη=0.lポイズ以上高い粘度を有する外層
用石英ガラス管内に,両管の肉厚の合計の8〜40%の
肉厚を存する合或石英ガラス内層用管を挿入重合し、該
重合管をほダ水平に保ち、これを共通軸の周りに同一速
度で回転させながら、一端より他端に向けて外部加熱区
域を移動させ、その操作の間は内層用管内を加圧状態に
保持し、該重合両管を延伸一体化する半導体熱処理用複
合石英ガラス管の製造方法を提供するものである。
That is, in the production of a composite quartz glass tube in which different quartz glasses are integrated as an inner layer tube and an outer layer tube, the present invention provides a composite quartz glass tube with a higher viscosity than that of the inner layer quartz glass tube, preferably log η = 0. A composite quartz glass tube for the inner layer having a wall thickness of 8 to 40% of the total wall thickness of both tubes is inserted into a quartz glass tube for the outer layer having a viscosity higher than 1 poise and polymerized, and the polymerized tube is held horizontally. The outer heating zone is moved from one end to the other while rotating at the same speed about a common axis, maintaining pressure inside the inner layer tube during this operation, and keeping the inner layer tube under pressure during the operation. The present invention provides a method for manufacturing a composite quartz glass tube for semiconductor heat treatment, which involves stretching and integrating the tubes.

本発明の方法で形威される複合石英ガラス管は、一体化
される外層形或用石英ガラス管が内層形成用石英ガラス
管より高い粘度を有し、且つ低粘度の内層用管を相対的
に薄く形威させることに技術的特徴がある。しかして、
その外層用管は、特に半導体ウエハー熱処理温度領域に
おいて実質的に熱変形しない高い粘度を有することが好
ましい。
In the composite quartz glass tube formed by the method of the present invention, the outer layer type quartz glass tube to be integrated has a higher viscosity than the inner layer forming quartz glass tube, and the inner layer tube having a lower viscosity is relatively The technical feature is that it has a thin shape. However,
The outer layer tube preferably has a high viscosity that does not substantially cause thermal deformation, particularly in the semiconductor wafer heat treatment temperature range.

そのような素材は、通常、天然石英ガラスによって提供
されるが、変性合或石英ガラスを用いることもできる。
Such a material is usually provided by natural quartz glass, but modified synthetic quartz glass can also be used.

また、内層用管の素材としては、可−5 及的高純度の合或石英ガラスが用いられる。本発明にお
ける内層用管と外層用管の加熱溶融一体化は、一般に、
内層用と外層用の石英ガラス管の粘度差が大きいほど容
易且つ有効であるが、その複合化操作の容易さを考慮す
れば、両管の1 , 280℃の温度における粘度差η
は、log η=0.1ポイズ以上であればよく、0.
2ポイズ以上あることが更に好ましい。このように、本
発明にOいて].og ηで表される粘度ηは、1 ,
 280℃の温度におけるものである。
Furthermore, as the material for the inner layer tube, fused silica glass of the highest possible purity is used. In the present invention, the heating and melting integration of the inner layer tube and the outer layer tube generally involves the following steps:
The larger the difference in viscosity between the inner layer and outer layer quartz glass tubes, the easier and more effective it is, but considering the ease of composite operation, the viscosity difference η between the two tubes at a temperature of 1,280°C
should be log η=0.1 poise or more, and 0.
It is more preferable that it is 2 poise or more. In this way, the present invention includes [0]. The viscosity η, expressed as og η, is 1,
At a temperature of 280°C.

また、内層用合成石英ガラス管の肉厚は、一体化操作及
び使用の実情から、両管の肉厚合計の8〜40%程度と
することが重要で、その粘度と外層用石英ガラス管の粘
度の差に関連して選択される。
In addition, it is important that the wall thickness of the synthetic quartz glass tube for the inner layer is approximately 8 to 40% of the total wall thickness of both tubes due to the integration operation and actual usage conditions. Selection is made in relation to the difference in viscosity.

内層用管の肉厚の割合がlO%より薄いと、アルカリ金
属等によるウエハーへの汚染防止能が大きく低下し、ま
た、40%を超えると、外部加熱方式による溶融一体化
が実質的に困難で、気泡が包蔵され易く、耐熱性も低下
するので好ましくない。
If the wall thickness ratio of the inner layer tube is thinner than 1O%, the ability to prevent contamination of the wafer with alkali metals etc. will be greatly reduced, and if it exceeds 40%, it will be practically difficult to melt and integrate by external heating method. This is not preferable because air bubbles are likely to be trapped and the heat resistance is also lowered.

一般に、外層用管の粘度が内層用管のそれに比6ー べて充分大きいときは、内層用管の肉厚を比較的大きく
することができるが、逆に、粘度差が小さいときは、内
層用管の肉厚はかなり制限される。
In general, when the viscosity of the outer layer tube is sufficiently larger than that of the inner layer tube, the wall thickness of the inner layer tube can be made relatively large, but conversely, when the viscosity difference is small, the inner layer tube The wall thickness of the pipe is quite limited.

本発明の方法は、重合状に溶融一体化させる外層用と内
層用のそれぞれの石英ガラス管を予め作威し、外層用管
内に内層用管を挿入して重合させ、これを水平に保持し
て、両管をその共通軸のまわりに同一速度で回転させる
。その加熱溶融一体化操作の間は、内層用管内を適度の
加圧状態に保持することが重要である。この加圧状態の
保持は、通常、内層用管の一端を封止し、他端の開放口
から不活性ガス、例えば、窒素ガスを送入して行われる
。加熱は、重合管の部分の全周を取り囲むガスバーナ又
は環状炉が好ましく用いられ、重合管の上記内層管の封
止端側から他端に向けて溶融加熱区域を移動させ、その
間、溶融部を延伸して所望の外径及び肉厚の積層状複合
管に調製される。
In the method of the present invention, quartz glass tubes for the outer layer and the inner layer to be melted and integrated in a polymerized manner are prepared in advance, the inner layer tube is inserted into the outer layer tube to polymerize, and this is held horizontally. and rotate both tubes at the same speed about their common axis. During the heat melting and unifying operation, it is important to maintain the inside of the inner layer tube in a moderately pressurized state. This pressurized state is normally maintained by sealing one end of the inner layer tube and introducing an inert gas, such as nitrogen gas, through an open port at the other end. For heating, a gas burner or annular furnace that surrounds the entire circumference of the polymerization tube section is preferably used, and the melting heating area is moved from the sealed end side of the inner layer tube of the polymerization tube toward the other end, while the melting part is heated. A laminated composite tube with a desired outer diameter and wall thickness is prepared by stretching.

バーナー等の加熱区域の移動は、バーナー等を固定して
重合状管を水平移動させることによって行うこともでき
る。
Movement of the heating area, such as a burner, can also be achieved by fixing the burner or the like and horizontally moving the polymeric tube.

管の回転や水平移動の速度は、管径,肉厚,材質,その
他加熱源の容量等によって適宜選択され、最適条件は、
それぞれの場合に応じて簡単な実験により容易に決定す
ることができる。
The speed of rotation and horizontal movement of the tube is selected appropriately depending on the tube diameter, wall thickness, material, capacity of the heating source, etc., and the optimum conditions are:
It can be easily determined by simple experiments depending on each case.

上記内層用管に送入される不活性ガスは、加熱された石
英ガラス管に悪影響を与えないならば、なんら制約はな
いが、通常、高純度の窒素ガス,アルゴンガス、あるい
は0.2μm以上のミスト粒子をフィルタリングした圧
縮空気等が好都合に用いられる。
There are no restrictions on the inert gas fed into the inner layer tube as long as it does not adversely affect the heated quartz glass tube, but it is usually a high purity nitrogen gas, argon gas, or a gas with a diameter of 0.2 μm or more. Compressed air filtered with mist particles is conveniently used.

また、重合管の加熱溶融一体化において、一体化される
そのガラス管に50Hz以上の周波数の振動を与えると
、両管同士の融着が助長され、微細な気泡の形或が効果
的に排除されるので極めて有効であり、外層管と内層管
の粘度差が小さくても気泡のない良好な複合石英ガラス
管を得ることができる。この振動は両方の管に与えても
よいし、一方の管のみに与えるとともできるが、周波数
が50Hz未満の振動では満足し得る効果は期待できな
い。更に、溶融延伸一体化において、重合状の7− 両管の間隙を減圧にすることきは、融着面への気泡の残
存が一層効果的に排除されるので極めて有効である。
In addition, when heating and melting the polymerized tubes to integrate them, applying vibrations at a frequency of 50Hz or higher to the glass tubes to be integrated will promote fusion between the two tubes and effectively eliminate the formation of minute bubbles. This method is extremely effective, and a good composite quartz glass tube without bubbles can be obtained even if the viscosity difference between the outer layer tube and the inner layer tube is small. This vibration may be applied to both tubes or only to one tube, but a satisfactory effect cannot be expected if the frequency is less than 50 Hz. Furthermore, in the melt-stretching process, it is extremely effective to reduce the pressure in the gap between the polymerized tubes, since the remaining air bubbles on the fused surface are more effectively eliminated.

また、本発明の方法に係る積層構造を持つ複合石英ガラ
ス管の製造は、合或石英ガラスと耐熱性石英ガラスの組
合せだけでなく,石英管の内面又は外面に異なった性質
を付与する石英ガラス管の製造等に広く応用することが
できる。
In addition, the production of composite quartz glass tubes with a laminated structure according to the method of the present invention involves not only a combination of composite quartz glass and heat-resistant quartz glass, but also a combination of quartz glass that imparts different properties to the inner or outer surface of the quartz tube. It can be widely applied to pipe manufacturing, etc.

本発明の方法を添付図面により、更に具体的に説明する
The method of the present invention will be explained in more detail with reference to the accompanying drawings.

第1図は、本発明の方法の実施状態を説明するための概
要断面図である。
FIG. 1 is a schematic sectional view for explaining the implementation state of the method of the present invention.

高粘度石英ガラス外層用管Bの右端を固定式の回転チャ
ック1に固定し、該管Bの内側に・、これと一体化され
る長さがほゾ同じか、あるいはやや短い低粘度合或石英
ガラス内層用管Aを挿入し、同端部を減圧チャンバー兼
クランプ治具2で固定して両管A,Bをクランプ固定す
る。その内層管Aの固定された端部開口に、内部加圧用
ノズル3を備えた内管の開口に取り付けられる栓4を差
し8 込み固定する。一方、水平に保持された重合状両管A,
Bの左端開口周縁部を移動式酸素一水素ガスバーナー5
で加熱融着させて溶封一体化し、この溶封端縁部を別途
準備した移動式チャック6に固定されたほゾ同径の有底
石英ガラス管7の開口端周縁部と密に加熱融着一体化さ
せる。
The right end of the high-viscosity quartz glass outer layer tube B is fixed to the fixed rotary chuck 1, and a low-viscosity glass tube with the same or slightly shorter length is attached to the inside of the tube B and is integrated with it. Insert the quartz glass inner layer tube A, and fix the same end with a vacuum chamber/clamp jig 2 to clamp and fix both tubes A and B. A stopper 4 attached to the opening of the inner tube provided with the nozzle 3 for internal pressurization is inserted into the fixed end opening of the inner layer tube A and fixed. On the other hand, both polymeric tubes A held horizontally,
A mobile oxygen-hydrogen gas burner 5 is attached to the left end opening periphery of B.
This melt-sealed edge is tightly heat-fused with the open end periphery of a bottomed quartz glass tube 7 with the same diameter as the tenon, which is fixed to a separately prepared movable chuck 6. Unify the outfit.

重合状管A,Bの融着一体化操作は、上記回転チャック
1と移動式チャック6を共通軸の周りに同期回転させて
重合状管を所定の同一速度で目転させ、前記移動式酸素
一水素ガスバーナー5を前記有底石英ガラス管7との融
着部から右端の固定チャックの方へガイドレール8上を
ゆっくり移動させる。この融着操作の間、上記内部加熱
ノズル3より窒素ガスを吹き込み続けて、例えば、大気
圧との差圧を0.5kg/cd程度の加圧状態に保ち、
また条件によっては、減圧チャンバー兼クランク治具2
で吸引して管A,Bの間隙を減圧に保持し、更に、外層
管B及び/又は内層管Aに振動治具9により50Hz以
上の周波数の振動が与えられる。
The operation of fusing and integrating the polymeric tubes A and B is performed by rotating the rotating chuck 1 and the movable chuck 6 synchronously around a common axis to rotate the polymeric tubes at the same predetermined speed. The hydrogen gas burner 5 is slowly moved on the guide rail 8 from the fused portion with the bottomed quartz glass tube 7 toward the fixed chuck at the right end. During this fusion operation, nitrogen gas is continuously blown from the internal heating nozzle 3 to maintain a pressure difference of about 0.5 kg/cd from atmospheric pressure, for example.
Also, depending on the conditions, the decompression chamber and crank jig 2
The gap between the tubes A and B is maintained at a reduced pressure by suction, and furthermore, a vibration with a frequency of 50 Hz or more is applied to the outer layer tube B and/or the inner layer tube A by the vibration jig 9.

バーナー5によって、通常、l , 800〜2 , 
000℃の温度に加熱溶融された重合管は、加熱帯域に
おいて内側からの加圧と両管の間隙の減圧で効果的に一
体化され、好ましくは、同時に移動式回転チャック6を
バーナーと反対の左側方向に移動して管を延伸させ、所
定の径と肉厚を有する、特に肉厚が高精度にコントロー
ルされた複合石英ガラス管10が形威される。
By burner 5, typically l, 800-2,
The polymerized tubes heated and melted to a temperature of 000°C are effectively integrated in the heating zone by applying pressure from the inside and reducing the pressure in the gap between the two tubes. Preferably, at the same time, the movable rotary chuck 6 is moved opposite to the burner. The tube is moved to the left and stretched to form a composite quartz glass tube 10 having a predetermined diameter and wall thickness, especially the wall thickness being precisely controlled.

〔作用〕[Effect]

本発明の方法によれば、外層用石英ガラス管とその内側
に挿入重合された内層用石英ガラス管が、その接合面に
気泡を残存することなく容易に融着一体化され、しかも
肉厚精度のよい複合石英ガラス管が効果的、且つ容易に
得られる。
According to the method of the present invention, the quartz glass tube for the outer layer and the quartz glass tube for the inner layer inserted and polymerized inside the outer layer can be easily fused and integrated without leaving any air bubbles on the joint surface, and moreover, the wall thickness can be accurately A composite quartz glass tube with good quality can be obtained effectively and easily.

〔実施例〕〔Example〕

次に、具体例により、本発明を更に詳細に説明する。 Next, the present invention will be explained in more detail using specific examples.

め114宣1ll1 精製けい酸エチルを加水分解し、縮合反応によりゲル化
乾燥させて管状の多孔質ゲルをつくり、該管状母材を加
熱,焼結して、いわゆるゾルーゲル法により、肉厚の異
なる下記4種の透明な高純度合或石英ガラス管Al,A
2,A3及びA4を調製した。なお、各ガラス管の] 
, 280℃の粘度を陥入法で測定し、それらの測定値
を併記した。
Me114 Sen1ll1 Purified ethyl silicate is hydrolyzed, gelled and dried through a condensation reaction to create a tubular porous gel, and the tubular base material is heated and sintered to produce products with different wall thicknesses using the so-called sol-gel method. The following four types of transparent high-purity aluminum or quartz glass tubes Al, A
2, A3 and A4 were prepared. In addition, for each glass tube]
The viscosity at 280°C was measured by the invagination method, and the measured values are also listed.

外径(rMn)  肉厚(mu)  長さ(IIn)粘
度(logηポイズ)Al  l40    12  
  2,000     11.2A2  140  
  3    2,000     11.3A 3 
 140    1.5    2,000     
11.3A4  140    16    2,00
0     11.2分遺』41彰1巌 天然水晶塊を誘導加熱炉で溶融し、公知の電気溶融法又
はダイレクトプリング法により、モリブデン或形治具を
用いて管状に押し出し、各種肉厚の天然石英ガラス管B
l,B2,B3及びB4を製造した。
Outer diameter (rMn) Wall thickness (mu) Length (IIn) Viscosity (log η poise) Al l40 12
2,000 11.2A2 140
3 2,000 11.3A 3
140 1.5 2,000
11.3A4 140 16 2,00
0 11.2 Part 41 Sho 1 Gan A natural crystal block is melted in an induction heating furnace and extruded into a tubular shape using a molybdenum or shaped jig using a known electric melting method or direct pulling method to produce natural stone of various thicknesses. English glass tube B
1, B2, B3 and B4 were produced.

外径(un)  肉厚(Ilwl)長さ(−)  粘度
(logηポイズ)Bl  200    18   
 1,500     12.6B2  200   
 17    1,500     12.5B 3 
 200    28.5    1,500    
 12.6B4  200    14    1,5
00     12.6実施例1〜2及び比較例1〜2 前記図面に示した方法に準じて、上記内層用管Alと外
層用管B1との組合せ、A2とB2,A−11 3とB3及びA4とB4の組合せに成る各重合管の加熱
融着一体化を行った。
Outer diameter (un) Wall thickness (Ilwl) Length (-) Viscosity (log η poise) Bl 200 18
1,500 12.6B2 200
17 1,500 12.5B 3
200 28.5 1,500
12.6B4 200 14 1,5
00 12.6 Examples 1 and 2 and Comparative Examples 1 and 2 According to the method shown in the drawings, combinations of the inner layer tube Al and outer layer tube B1, A2 and B2, A-11 3 and B3, and Each polymerized tube, which is a combination of A4 and B4, was heat-fused and integrated.

それら各複合管における内層管と外層管の融着面の泡の
状態,内層の厚みのばらつきの状態、及び全体の肉厚の
ばらつきの状態について調べた結果を、下掲第1表にま
とめた。
Table 1 below summarizes the results of investigating the state of bubbles on the fused surface of the inner layer pipe and outer layer pipe, the state of variation in the thickness of the inner layer, and the state of variation in the overall wall thickness in each of these composite pipes. .

第   1   表 内外層 内層管肉厚 泡の 内層厚の全肉厚の萱揚處 
割合(%)U  均一性 均一性実施例I  AI/B
l   約40   良好  良好  良好実施例2 
 A2/B2   約10   良好  良好  良好
比較例I  A3/B3   約5  良好  不良 
 良好17  2  A4/B4   約53   不
良  良好  不良実施例1におけるA1とB1及びA
2とB2の複合管には融着境界面に泡が全く存在せず、
またA1とB1の複合管の断面を偏光顕微鏡で観察した
ところ、約1 . 5mn+の肉厚精度のよい均一な内
層が確認された。
1st surface inner and outer layer Inner layer tube wall thickness Total thickness of foam inner layer thickness
Ratio (%) U Uniformity Uniformity Example I AI/B
l Approx. 40 Good Good Good Example 2
A2/B2 Approx. 10 Good Good Good comparative example I A3/B3 Approx. 5 Good Poor
Good 17 2 A4/B4 Approximately 53 Bad Good A1, B1 and A in defective example 1
There are no bubbles at the fused interface in the composite tubes of 2 and B2,
In addition, when the cross section of the composite tubes A1 and B1 was observed using a polarizing microscope, it was found that approximately 1. A uniform inner layer with good wall thickness accuracy of 5 mm+ was confirmed.

上記第1表から理解されるように、内層用管及び外層用
管の合計肉厚の対する内層用管の肉厚が、50%を超え
ると境界面に多数の泡が残り、肉厚の−12ー ばらつきは著しく、しかも耐熱性に劣るので不都合であ
る。また、内層用管の肉厚が5%程度では、内層の厚み
のばらつきが大きくなり、当然金属汚染防止効果も損な
われるので好ましくない。
As can be understood from Table 1 above, when the wall thickness of the inner layer tube exceeds 50% of the total wall thickness of the inner layer tube and the outer layer tube, many bubbles remain at the interface, resulting in a decrease in the wall thickness. 12 - Dispersion is significant and heat resistance is poor, which is disadvantageous. Further, if the wall thickness of the inner layer tube is about 5%, the variation in the thickness of the inner layer becomes large, which naturally impairs the effect of preventing metal contamination, which is not preferable.

なお、実態を軽視して、合或石英ガラスの外層用管と天
然石英ガラスの内層用管を作威し、重合管を同様に加熱
融着一体化した。その融着一体化はスムーズに行えなか
ったばかりでなく、得られた複合管の融着面には大きな
気泡が多数存在した。
In addition, disregarding the actual situation, we created a tube for the outer layer made of composite quartz glass and a tube for the inner layer made of natural quartz glass, and integrated the polymerized tubes by heat-fusion in the same way. Not only could the welding and integration not be carried out smoothly, but there were many large air bubbles on the welded surface of the resulting composite tube.

複合管の内層の厚みの均一性は良好であったが、全体の
肉厚のばらつきは大きく不良であった。
Although the uniformity of the thickness of the inner layer of the composite tube was good, the variation in the overall wall thickness was large and poor.

実施例3 スート法により、精製した四塩化けい素を酸素−水素火
炎中で加水分解してスート体をつくり,該スート体を無
水の窒素ガス中で、長時間、加熱脱水した後,焼結ガラ
ス化して、外径100ma,肉厚8 yrm ,長さが
2,000+nmで、温度1 , 280℃における粘
度がlogη=11.7ボイスの透明な内層用高純度石
英ガラス管を製造した。一方、天然水晶粉を酸素一水素
炎により溶融ガラス化して、石英ガラス塊を製造するベ
ルヌーイ法により、外径126mm,肉厚12+nm,
長さ2,000nmテ、1,280”Cニおける粘度が
].ogη=12.Oポイズの透明な外層用天然石英ガ
ラス管を製造した。
Example 3 By the soot method, purified silicon tetrachloride was hydrolyzed in an oxygen-hydrogen flame to produce a soot body, which was heated and dehydrated for a long time in anhydrous nitrogen gas, and then sintered. Vitrification was performed to produce a transparent high-purity quartz glass tube for inner layer having an outer diameter of 100 ma, a wall thickness of 8 yr, a length of 2,000+ nm, and a viscosity of log η = 11.7 voices at a temperature of 1,280°C. On the other hand, by the Bernoulli method, which produces quartz glass blocks by melting and vitrifying natural quartz powder using an oxygen-hydrogen flame, the outer diameter of 126 mm, the wall thickness of 12+ nm,
A transparent natural quartz glass tube for the outer layer with a length of 2,000 nm and a viscosity at 1,280''C].ogη=12.0 poise was manufactured.

両管(内層管の肉厚は合計の約40%)を重合させ、実
施例1と同様にして加熱融着一体化を行った。
Both tubes (the wall thickness of the inner layer tube is about 40% of the total) were polymerized and integrated by heat fusion in the same manner as in Example 1.

内外層管の融着面には実質的に泡はなく、良好な積層構
造の複合管が得られた。
There were substantially no bubbles on the fused surfaces of the inner and outer layer tubes, and a composite tube with a good laminated structure was obtained.

比較例3 スート法により得られたスート体を窒素気流中で加熱脱
水処理した後、焼結してガラス化し,温度1 , 28
0℃における粘度logη=11.6ポイズを有する外
径126mm,肉厚17m,長さ2,000mnの透明
な外層用天然石英ガラス管を作った。
Comparative Example 3 A soot body obtained by the soot method was heated and dehydrated in a nitrogen stream, and then sintered and vitrified at temperatures of 1 and 28.
A transparent natural quartz glass tube for outer layer having an outer diameter of 126 mm, a wall thickness of 17 m, and a length of 2,000 mm and having a viscosity of log η = 11.6 poise at 0°C was prepared.

一方、スート法により同様にして得られたスト体を、窒
素気流中での脱水処理に代えて高濃度塩化水素一塩素気
流中で超純化処理を行った後、焼結ガラス化して、1,
280℃の温度での粘度が上記外層用管と実質的に同じ
logη= 11.6ポイズを有する外径]00mn,
肉厚3+nm,長さ2,OOO+nmの透明な内層用超
高純度石英ガラス管を製作した。
On the other hand, a strike body similarly obtained by the soot method was subjected to ultra-purification treatment in a high-concentration hydrogen chloride monochlorine gas flow instead of dehydration treatment in a nitrogen gas flow, and then sintered and vitrified.
An outer diameter having a viscosity at a temperature of 280° C. that is substantially the same as that of the outer layer tube, log η = 11.6 poise] 00 mn,
A transparent ultra-high purity quartz glass tube for the inner layer with a wall thickness of 3+nm and a length of 2,000+nm was manufactured.

両管を重合して(内層用管の肉厚は合計肉厚の15%)
、実施例1と同様にし加熱融着一体化した。
Polymerize both tubes (the wall thickness of the inner layer tube is 15% of the total wall thickness)
, and were heat-fused and integrated in the same manner as in Example 1.

得られた複合石英ガラス管は、一部ではあるがその融着
面に小さな気泡群が観察された。
In the resulting composite quartz glass tube, small bubbles were observed on the fused surface, albeit in some parts.

実施例4 スート法により得られたスート体を窒素気流中で加熱脱
水処理した後、焼結ガラス化して、温度1,280℃に
おける粘度がlogη=11.6ポイズを有する、外径
126mn,肉厚17+m+,長さが2,OOO+nm
の透明な外層用高純度石英ガラス管を製造した。一方、
同様にスート法により得られたスート体を窒素気流中で
の脱水処理に代えて高濃度塩化水素一塩素気流中で超純
化処理を行った後、焼結ガラス化して、1 , 280
℃の温度での粘度logη=11.4ポイズを有する外
径ioo冊,肉厚3 +nm ,長さ2,OOOmnの
透明な内層用超高純度石英ガラス管を製作した。
Example 4 A soot body obtained by the soot method was heated and dehydrated in a nitrogen stream, and then sintered and vitrified to produce a material with an outer diameter of 126 mm and a viscosity of log η = 11.6 poise at a temperature of 1,280°C. Thickness 17+m+, length 2, OOO+nm
A high-purity quartz glass tube for the transparent outer layer was manufactured. on the other hand,
Similarly, the soot body obtained by the soot method was subjected to ultra-purification treatment in a high concentration hydrogen chloride monochlorine gas flow instead of dehydration treatment in a nitrogen gas flow, and then sintered and vitrified to obtain 1,280
A transparent ultra-high-purity quartz glass tube for inner layer having an outer diameter of 10 mm, a wall thickness of 3 + nm, and a length of 2,000 mn and having a viscosity of log η = 11.4 poise at a temperature of °C was manufactured.

この両管(内層管の肉厚は合計肉厚の15%)を重合さ
せ、実施例1と同様にして加熱溶融一体化を行った。但
し、本操作では、隔管の間隙の圧を大気圧よりも0.5
kg/a#低い減圧状態に保持して手行った。
These two tubes (the inner layer tube's wall thickness was 15% of the total wall thickness) were polymerized and heated and melted into one piece in the same manner as in Example 1. However, in this operation, the pressure in the gap between the septa is 0.5 below atmospheric pressure.
The test was carried out by hand while maintaining a low vacuum of kg/a#.

得られた複合石英ガラス管は、その融着面に気泡を含ま
ず、ばらつきのない均一な内外層を有する良好な積層構
造を示した。
The obtained composite quartz glass tube did not contain any air bubbles on its fused surface and exhibited a good laminated structure with uniform inner and outer layers without variations.

上記内層用管に代えて、1,280℃の温度での粘度が
logη=11.5ポイズの超高純度石英ガラス管を用
いて、全く同様の複合化を行った結果、極微細な気泡が
いくらか認められたが、使用上の不都合は特に認められ
なかった。
In place of the tube for the inner layer, an ultra-high purity quartz glass tube with a viscosity of log η = 11.5 poise at a temperature of 1,280°C was used, and as a result of performing exactly the same composite, extremely fine bubbles were found. However, no particular inconvenience was observed during use.

実施例5 スート法により得られたスート体を窒素気流中で脱水処
理した後、焼結ガラス化して、1 , 280℃の温度
における粘度logη=11.6ボイスを有する外径1
26+nn+,肉厚17mn+,長さ2,OOO+m+
の透明な外層用高純度石英ガラス管を製造した。一方、
同様にス〜ト法により得たスート体を、窒素気流中で脱
水処理しないで高濃度塩化水素一塩素気流中で超純化し
た後、焼結ガラス化して,1,280℃の温度における
粘度lag 7+ = 11,5ポイズを有する外径1
00+nm,−16 肉厚3+nm,長さ2,000mmの透明な内層用超高
純度石英ガラス管を製作した。
Example 5 A soot body obtained by the soot method was dehydrated in a nitrogen stream, and then sintered and vitrified to obtain an outer diameter of 1 having a viscosity of log η = 11.6 voice at a temperature of 1,280°C.
26+nn+, wall thickness 17mm+, length 2, OOO+m+
A high-purity quartz glass tube for the transparent outer layer was manufactured. on the other hand,
Similarly, the soot body obtained by the soot method was ultra-purified in a high concentration hydrogen chloride monochlorine stream without dehydration in a nitrogen stream, and then sintered and vitrified to obtain a viscosity lag at a temperature of 1,280°C. 7+ = outer diameter 1 with 11,5 poise
00+nm, -16 A transparent ultra-high purity quartz glass tube for the inner layer with a wall thickness of 3+nm and a length of 2,000 mm was manufactured.

この両管(内層管の肉厚は合計肉厚の15%)を重合さ
せ、実施例1と同様にして加熱溶融一体化を行った。但
し、本操作においては、その間、両管の間隙の圧を大気
圧よりも0.5kgld低い減圧状態に保持し、更に5
0Hzの振動を外層用管に加え続けた。
These two tubes (the inner layer tube's wall thickness was 15% of the total wall thickness) were polymerized and heated and melted into one piece in the same manner as in Example 1. However, during this operation, the pressure in the gap between both pipes is maintained at a reduced pressure state of 0.5 kgld lower than atmospheric pressure, and
Vibration at 0 Hz was continued to be applied to the outer layer tube.

得られた複合石英ガラス管は、その融着面に全く気泡を
含まず、均一な内外複合層を有するばらつきのない均一
な内外層を有する良好な積層構造を示した。
The obtained composite quartz glass tube did not contain any air bubbles on its fused surface and exhibited a good laminated structure having uniform inner and outer layers with uniform inner and outer composite layers.

また、上記複合一体化操作において、10Hzの振動を
加えて得られた複合石英ガラス管には、僅かではあるが
、実害のない螺旋状の微小な泡が存在した。
Furthermore, in the composite quartz glass tube obtained by applying vibration at 10 Hz in the composite integration operation described above, there were a few spiral microbubbles that caused no actual damage.

〔発明の効果〕〔Effect of the invention〕

本発明の製造方法によって得られる複合石英ガラス管は
、半導体ウェハー熱処理用石英ガラス部材として望まし
い耐熱性と、均一性の優れた層構成を有するので、長期
にわたって繰り迦し使用することができ、また,その熱
処理の間に、例えば、アルカリ金属等の金属類によるウ
エハーの汚染は効果的に防止されるので、工業的に望ま
しいものであり、また本発明によって得られる複合石英
ガラス管は、粘度以外のさまざまに異なった性質を組み
合わせた複合右英ガラス管であるために、ウエハー熱処
理用の石英ガラス部材として広い応用が考えられ、その
実用的価値は極めて高い。
The composite quartz glass tube obtained by the manufacturing method of the present invention has heat resistance desirable as a quartz glass member for semiconductor wafer heat treatment and a layer structure with excellent uniformity, so it can be used repeatedly over a long period of time, and , During the heat treatment, contamination of the wafer by metals such as alkali metals is effectively prevented, which is industrially desirable, and the composite quartz glass tube obtained by the present invention has other properties other than viscosity. Because it is a composite right-handed silica glass tube that combines various properties, it can be widely used as a quartz glass member for wafer heat treatment, and its practical value is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の方法の実施状態の概要説明図である
。 図中の符号: A・・・内層用管 B・・・外層用管 1・・・固定式回転チャック 2・・・減圧チャンバー兼クランプ 3・・・内部加圧用ノズル 4・・栓 5・・・ガスバーナ 19 6・・・移動式チャック 7・・・有底石英ガラス管 8・・・ガイドレール 9・・・振動治具 10・・・複合石英ガラス管 −20−
FIG. 1 is a schematic explanatory diagram of the implementation state of the method of the present invention. Codes in the diagram: A...Inner layer tube B...Outer layer tube 1...Fixed rotary chuck 2...Decompression chamber/clamp 3...Internal pressurization nozzle 4...Bung 5...・Gas burner 19 6... Mobile chuck 7... Bottomed quartz glass tube 8... Guide rail 9... Vibration jig 10... Composite quartz glass tube -20-

Claims (1)

【特許請求の範囲】 1、異なる石英ガラスを内層用管及び外層用管として一
体化して成る複合石英ガラス管の製造において、内層用
石英ガラス管より高い粘度を有する外層用石英ガラス管
内に、両管の肉厚の合計の8〜40%の肉厚を有する石
英ガラス内層用管を挿入重合し、該重合管をほゞ水平に
保ち、これを共通軸の周りに同一速度で回転させながら
、一端より他端に向けて外部加熱区域を移動させ、その
操作の間は内層用管内を加圧状態に保持し、該重合両管
を延伸一体化することを特徴とする半導体熱処理用複合
石英ガラス管の製造方法。 2、外層用石英ガラス管が、内層用石英ガラス管より、
logη=0.1ポイズ以上、好ましくは、0.2ポイ
ズ以上高い粘度を有する特許請求の範囲第1項記載の製
造方法。 3、重合状の両管の間隙を減圧にする特許請求の範囲第
1項記載の製造方法。 4、重合状管の少なくとも一方に、50Hz以上の周波
数の振動を与える特許請求の範囲第1項記載の製造方法
[Scope of Claims] 1. In manufacturing a composite quartz glass tube in which different quartz glasses are integrated as an inner layer tube and an outer layer tube, both quartz glass tubes are combined into an outer layer quartz glass tube having a higher viscosity than the inner layer quartz glass tube. Inserting and polymerizing a quartz glass inner layer tube having a wall thickness of 8 to 40% of the total wall thickness of the tubes, keeping the polymerized tube substantially horizontal and rotating it around a common axis at the same speed, Composite quartz glass for semiconductor heat treatment, characterized in that an external heating area is moved from one end to the other end, the inside of the inner layer tube is kept under pressure during this operation, and the two polymerized tubes are stretched and integrated. Method of manufacturing tubes. 2. The quartz glass tube for the outer layer is larger than the quartz glass tube for the inner layer.
The manufacturing method according to claim 1, which has a viscosity higher than log η = 0.1 poise, preferably 0.2 poise or more. 3. The manufacturing method according to claim 1, in which the pressure is reduced in the gap between the two polymerized tubes. 4. The manufacturing method according to claim 1, wherein vibrations at a frequency of 50 Hz or more are applied to at least one of the polymerized tubes.
JP4660490A 1989-08-31 1990-02-27 Method for manufacturing composite quartz glass tube for semiconductor heat treatment Expired - Lifetime JPH0729798B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4660490A JPH0729798B2 (en) 1989-08-31 1990-02-27 Method for manufacturing composite quartz glass tube for semiconductor heat treatment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22490689 1989-08-31
JP1-224906 1989-08-31
JP4660490A JPH0729798B2 (en) 1989-08-31 1990-02-27 Method for manufacturing composite quartz glass tube for semiconductor heat treatment

Publications (2)

Publication Number Publication Date
JPH03170340A true JPH03170340A (en) 1991-07-23
JPH0729798B2 JPH0729798B2 (en) 1995-04-05

Family

ID=26386702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4660490A Expired - Lifetime JPH0729798B2 (en) 1989-08-31 1990-02-27 Method for manufacturing composite quartz glass tube for semiconductor heat treatment

Country Status (1)

Country Link
JP (1) JPH0729798B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574935A1 (en) * 1992-06-19 1993-12-22 Fujitsu Limited Apparatus made of silica for semiconductor device fabrication
CN115010355A (en) * 2022-07-05 2022-09-06 江苏先品光子科技有限公司 Extension method of quartz sleeve

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0574935A1 (en) * 1992-06-19 1993-12-22 Fujitsu Limited Apparatus made of silica for semiconductor device fabrication
US5395452A (en) * 1992-06-19 1995-03-07 Fujitsu Limited Apparatus made of silica for semiconductor device fabrication
CN115010355A (en) * 2022-07-05 2022-09-06 江苏先品光子科技有限公司 Extension method of quartz sleeve

Also Published As

Publication number Publication date
JPH0729798B2 (en) 1995-04-05

Similar Documents

Publication Publication Date Title
JP4676985B2 (en) Method for joining quartz glass components, component assembly obtained by the method, and use of amorphous SiO2-containing powder, paste or liquid for joining quartz glass components
US6584808B1 (en) Method of manufacturing an optical fiber preform by collapsing a tube onto a rod
US3907536A (en) Method for depositing silica on a fused silica tube
US7797965B2 (en) Method for producing tubes of quartz glass
JP5114409B2 (en) Welding method for joining components made of high silica material and apparatus for carrying out the method
US6405566B1 (en) Method and device for over-cladding an optical fiber primary preform
US6840063B2 (en) Optical fiber preform manufacturing method for shrinkage and closing of deposited tube
US6928838B2 (en) Apparatus and method for forming silica glass elements
JPH03170340A (en) Production of composite silica glass tube for heat treatment of semiconductor
JP4054434B2 (en) Silica glass crucible for pulling silicon single crystal and method for producing the same
US5429653A (en) Method of partially introverting a multiple layer tube to form an optical fiber preform
JP4086293B2 (en) Method for producing silica plate
JP3327364B2 (en) Method for producing silica glass processed product
JPS6272537A (en) Production of high-purity quartz glass
JPS62162632A (en) Working of glass pipe
JPH03252324A (en) Production of composite quartz glass tube
KR100540492B1 (en) Method of and apparatus for manufacturing an optical fiber preform
JP3836298B2 (en) Method for manufacturing preform for optical fiber
JPH01246153A (en) Forming of glass tube
JP3291153B2 (en) Quartz glass products for heat treatment
JP2004123439A (en) Process for manufacturing optical glass
FR2879114A1 (en) METHOD FOR HOT MOLDING OF FLAT BOROSILICATE GLASS, HOLLOW GLASS BODY MOLDED ACCORDING TO THE METHOD AND USE OF THE BODY AS ENVELOPE OF A MEASURING BODY FOR A NEUTRIN DETECTOR
JPH0387020A (en) Quartz glass member for semiconductor heat treatment and manufacture thereof
JPH09301726A (en) Production of quarts glass tube
KR100528752B1 (en) Method of and apparatus for overcladding a optical preform rod

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090405

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100405

Year of fee payment: 15

EXPY Cancellation because of completion of term