JPH03169887A - Diphosphonic acid ester compound and its preparation and application - Google Patents

Diphosphonic acid ester compound and its preparation and application

Info

Publication number
JPH03169887A
JPH03169887A JP90268261A JP26826190A JPH03169887A JP H03169887 A JPH03169887 A JP H03169887A JP 90268261 A JP90268261 A JP 90268261A JP 26826190 A JP26826190 A JP 26826190A JP H03169887 A JPH03169887 A JP H03169887A
Authority
JP
Japan
Prior art keywords
compound
carbon atoms
formula
alkyl
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP90268261A
Other languages
Japanese (ja)
Other versions
JPH07103136B2 (en
Inventor
Tsuaoshen Shao
シャオ、ツァオシェン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of JPH03169887A publication Critical patent/JPH03169887A/en
Publication of JPH07103136B2 publication Critical patent/JPH07103136B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Epoxy Resins (AREA)
  • Catalysts (AREA)

Abstract

NEW MATERIAL: A compound of formula I (m1 is an integer of 0-2; n1 is an integer of 2-m1; m2 is an integer of 0-2; n2 is an integer of 2-m2; 0<m1+m2<4; R means H or 1-8C alkyl; R' means 1-18C alkyl; and X means H, OH).
EXAMPLE: 1-hydroxy-ethylidene-1,1-diphosphonic acid mono-2-ethylhexyl ester.
USE: A catalyst for the oxidation of cyclohexane, etc.
PROCESS: A solid diphosphonic acid of formula II is dissolved in a solvent (desirably chosen from water, methanol, and ethanol). The resulting solution is added into an alcohol of the formula, R'OH under atmospheric pressure, desirably at 160-170°C for esterification.
COPYRIGHT: (C)1991,JPO

Description

【発明の詳細な説明】 発明の分野 本発明は新規ジホスホン酸エステル化合物に関する。[Detailed description of the invention] field of invention The present invention relates to novel diphosphonic acid ester compounds.

さらに詳しくは、本発明は、新しい種類のジホスホン酸
エステル化合物、それらの製造法、それらを含む組戊物
及びそれらの用途に関する。
More particularly, the present invention relates to new types of diphosphonic acid ester compounds, methods for their production, compositions containing them, and uses thereof.

従って、本発明の目的の一つは、新規で有用なジホスホ
ン酸エステル化合物を提供することであ本発明の他の目
的は、かかるジホスホン酸エステル化合物の製造法を提
供することである。
Accordingly, one object of the present invention is to provide a new and useful diphosphonate compound, and another object of the present invention is to provide a method for producing such a diphosphonate compound.

さらに本発明の他の目的は、触媒用のジホスホン酸エス
テル化合物を含む組成物を提供することである。
Still another object of the present invention is to provide a composition containing a diphosphonate compound for use in catalysts.

その上の本発明の目的は、かかるジホスホン酸エステル
化合物及び炭化水素の酸化、特にシクロヘキサンの酸化
等の触媒用にそれらを含む組成物の応用を提供するもの
である。
A further object of the invention is to provide the application of such diphosphonic ester compounds and compositions containing them for catalyzing the oxidation of hydrocarbons, in particular the oxidation of cyclohexane, etc.

発明の構威 本発明のジホスホン酸エステル化合物は、新規で息下の
一般式(1)で示しうる。
Structure of the Invention The diphosphonic acid ester compound of the present invention is novel and can be represented by the following general formula (1).

p−0(OH)m+(OR’)n+ R−C−X             (1)P − 
0 (O H)+z(O R’ )nt(式中、訓=0
、!又は2 ,動= 0 . 1又は2でm.及び鴨,
は共に0又は共に2ではない; n H =2  ” 
+ *m,=2−m2;R=H又は1−8炭素原子のア
ルキルのいずれか、R’=1−18炭素原子のアルキル
、及びX=H又はOH) 本発明の化合物は、ジホスホン酸エステルのモ八ジ又は
トリエステル又は三者の混合物で、ジホスホン酸エステ
ルのジエステルが好まい)化合物である。
p-0(OH)m+(OR')n+ R-C-X (1)P-
0 (OH) + z (OR') nt (wherein = 0
,! or 2, dynamic = 0. 1 or 2 m. and duck,
are not both 0 or both 2; n H =2 ”
+*m,=2-m2; R=H or either alkyl of 1-8 carbon atoms, R'=alkyl of 1-18 carbon atoms, and X=H or OH) esters or triesters or mixtures of the three, preferably diesters of diphosphonic acid esters).

式(1)のrRjは、好ましくはI4又はl−6炭素原
子をもつ直鎖/分技アルキルで、さらに好ましくはl−
3炭素原子をもつアルキル、例えばメチルである。
rRj in formula (1) is preferably linear/branched alkyl having I4 or l-6 carbon atoms, more preferably l-
Alkyl having 3 carbon atoms, for example methyl.

式(1)の「R゛」は、好ましくは6−14炭素原子を
もつ直鎖/分技アルキルで、さらにより好ましくは2−
エチルヘキシルのような8−l2炭素原子をもつ分枝ア
ルキルである。
"R" in formula (1) is preferably straight chain/branched alkyl having 6-14 carbon atoms, even more preferably 2-
A branched alkyl having 8-12 carbon atoms, such as ethylhexyl.

一般式(1)のrXJは、好ましくはOHである。rXJ in general formula (1) is preferably OH.

一般式(1) P  O (O H)I++(O R’ )r++R−
C−X            (1)1 p − 0 (O H)at(O R’ )nt(式中
、m++mt+n++nt+R+R’及びXの定義は、
上記と同一) の該ジホスホン酸エステル化合物の製造法は、般式(2
) P−0(OH) R−C−X            (2)P−0(O
H) (式中、R及びXは、式(1)におけると同意義)で示
される固体ジホスフィン酸を一定の溶媒に溶解すること
及びこうして得られたジホスフィン酸の溶液を常圧下、
一般式(3) R’OH        (3) (式中、R′は式(1)におけると同意義)で示される
アルコールに加える段階よりなり、エステル化反応が起
こり一般式(+)により示される物質が得られる。
General formula (1) PO (OH) I++ (OR') r++R-
C-X (1) 1 p - 0 (OH) at (OR') nt (where m++mt+n++nt+R+R' and the definition of X are,
The method for producing the diphosphonic acid ester compound of formula (same as above) is based on the general formula (2
) P-0(OH) R-C-X (2) P-0(O
H) Dissolving the solid diphosphinic acid represented by the formula (wherein R and
General formula (3) R'OH (3) (wherein R' has the same meaning as in formula (1)) is added to the alcohol represented by formula (1), and an esterification reaction occurs, which is represented by general formula (+) Substances are obtained.

式(2)のホスフィン酸は、好ましくはRがH又は1−
6炭素原子をもつアルキルのもので、より好ましくはR
が1−3炭素原子をもつアルキル、例えばメチルでXが
OHのものである。式(3)のアルコールは、好ましく
はR゛が6−14炭素原子を有するアルキル、より好ま
しくは8−12炭素原子を有する分枝アルキル、例えば
2−エチルのものである。式(2)の1ジホスフイン酸
と式(3)のアルコールは、共に市場で人手可能である
In the phosphinic acid of formula (2), preferably R is H or 1-
Alkyl having 6 carbon atoms, more preferably R
is alkyl having 1-3 carbon atoms, for example methyl and X is OH. The alcohol of formula (3) is preferably one in which R' is an alkyl having 6-14 carbon atoms, more preferably a branched alkyl having 8-12 carbon atoms, such as 2-ethyl. Both the diphosphinic acid of formula (2) and the alcohol of formula (3) are commercially available.

エステル化の温度は、150℃から200℃、好ましく
は160℃から170℃である。
The temperature of esterification is 150°C to 200°C, preferably 160°C to 170°C.

ジホスフィン酸を溶解する溶媒は、メタノール、エタノ
ール及び水から選択しうるが、水が好ましい。
The solvent for dissolving the diphosphinic acid may be selected from methanol, ethanol and water, with water being preferred.

収率を上げるため、ジホスフイン酸は、アルコール中に
、撹拌下、ゆるやかに注ぐのがよい。
In order to increase the yield, the diphosphinic acid is preferably poured slowly into the alcohol under stirring.

本発明の他の態様は、本発明のジホスホン酸エステルを
含有する組成物に関する。
Another aspect of the invention relates to compositions containing the diphosphonic esters of the invention.

組成物は、本発明のジホスホン酸エステル化合物と1又
は幾つかの遷移金属塩からなり、そのモル比jj l 
 ゜ 20、好ましくはI:3−10の間νl“−.、
、コバルト、銅、マグイノつム、バナジウム、クロム及
びモリブデン又ハー::らの混合物から選択されうるが
、コバルトが好ましいものである。
The composition consists of a diphosphonate compound of the invention and one or several transition metal salts, the molar ratio jj l
° 20, preferably between I: 3-10 νl"-.,
, cobalt, copper, maginotum, vanadium, chromium and molybdenum or mixtures thereof, with cobalt being preferred.

組成物はジホスホン酸エステル化合物と遷移金属塩とを
単に混合することにより調製しうる。
The composition can be prepared by simply mixing the diphosphonate compound and the transition metal salt.

発明の効果 本発明の化合物は、単独又は組成物の形で、炭化水素の
酸化、例えばシクロヘキサンの触媒酸化、p−キシレン
及びバラフィンの酸化に用いうる。
Effects of the Invention The compounds of the invention, alone or in the form of a composition, can be used for the oxidation of hydrocarbons, such as the catalytic oxidation of cyclohexane, the oxidation of p-xylene and paraffin.

炭化水素の酸化に関し、工業的には基本的に自体公知の
二方法;溶液相中、有機塩触媒酸化と無触媒酸化がある
。本発明のジホスホン酸エステル化合物は、これを使用
すると、両工程を改良する。
Regarding the oxidation of hydrocarbons, there are basically two methods known per se in industry: organic salt catalytic oxidation in the solution phase and non-catalytic oxidation. When used, the diphosphonate compounds of the present invention improve both processes.

無触媒工程の場合、本発明のジホスホン酸エステルを加
えると、副反応を抑え、従って収率が向上する。
In the case of a non-catalytic process, the addition of the diphosphonic acid ester of the invention suppresses side reactions and thus improves the yield.

触媒工程の場合、本発明の化合物を加えることによって
該当の金属イオンの触媒活性を増強し、角酸化を少くし
、ケーキ形式を防止して連続製造2会延長し、結果とし
て収率が向上する。
In the case of a catalytic process, the addition of the compound of the present invention can enhance the catalytic activity of the corresponding metal ion, reduce oxidation, prevent cake formation, and extend continuous production for two cycles, resulting in improved yield. .

本発明の化合物の助触媒としての添加量は、0.0lな
いし10ppmと変化しうるが、好ましくは0.05な
いし5 ppmである。
The amount of the compound of the invention added as a co-catalyst may vary from 0.0 l to 10 ppm, but is preferably from 0.05 to 5 ppm.

本発明の組成物は、又、触媒工程の場合に、触媒として
直接添加しうる。その濃度は、全供給量当り0,1ない
し1 0 0 ppm,好ましくは0.5ないしIOp
pmである。
The compositions of the invention can also be added directly as catalysts in the case of catalytic processes. Its concentration is between 0.1 and 100 ppm, preferably between 0.5 and IOp.
It is pm.

触媒としての本発明の化合物及びそれらを含む組成物は
、特にシクロヘキサン酸化の経済的操作に適している。
The compounds of the invention as catalysts and compositions containing them are particularly suitable for the economical operation of cyclohexane oxidation.

通常のコバルトを基本とした触媒を一般的に使用すると
、収率は常に80%以下でケーキ形式が激しい。さらに
、ピロリン酸塩か反応壁一面に拡がった場合、生産をじ
ゃまするだけでなく、激しい環境汚染を引き起こすケー
キ蓄積を清浄化するのに閉鎖しなければならないので、
生産はわずかに2ケ月しか行なえない。
When conventional cobalt-based catalysts are commonly used, yields are always less than 80% and heavily cake-based. Furthermore, if the pyrophosphate spreads over the reaction walls, it must be closed to clean up the cake build-up, which not only obstructs production but also causes severe environmental pollution.
Production will only last for two months.

これに対し、本発明のジホスホン酸エステル化合物は、
工程における触媒するコバルトのパラメータ及び当量の
変更を必要とすることなく、シクロヘキサンの酸化に対
するコバルトイオンの触媒活性の改良、過酸化の抑制、
ケーキの大量生成及び装置凝固物の防止、無停止操業期
間の延長及びアルコール及びケトンに関ずる収率の向上
を可能にする。
On the other hand, the diphosphonic acid ester compound of the present invention is
Improving the catalytic activity of cobalt ions for the oxidation of cyclohexane, suppressing overoxidation, without requiring changes in the parameters and equivalents of the catalytic cobalt in the process.
It is possible to prevent the production of large amounts of cake and equipment coagulation, extend the period of non-stop operation, and improve the yield of alcohols and ketones.

シクロヘキサン酸化の場合、本発明の化合物の使用量は
、0。Olないし10ppmで変えうるが、好ましくは
0.5ないし5 ppmで、一方、本発明の組戊物を用
いる場合、使用量は、0.1ないし100ppm、好ま
しくは0.5ないしloppmである。
In the case of cyclohexane oxidation, the amount of the compound of the present invention used is 0. The amount used can vary from 0.1 to 10 ppm, preferably from 0.5 to 5 ppm, whereas when using the composition of the invention, the amount used is from 0.1 to 100 ppm, preferably from 0.5 to loppm.

加えて、本発明のジホスホン酸エステルは、金属イオン
の複合抽出剤及びエボキシ樹脂の凝固剤としても使用し
うる。
In addition, the diphosphonic acid esters of the present invention can also be used as complex extractants for metal ions and coagulants for epoxy resins.

以下の実施例は、本発明の幾つかの態様を単に示すもの
であって、本発明の範囲を限定するものではない。
The following examples merely illustrate some aspects of the invention and are not intended to limit the scope of the invention.

実施例1 3.500xl2の2−エチルヘキサノールを、500
0*(!の三つロフラスコに入れ、底からホットプレー
トで加熱し、内容物に空気を通気して撹拌した。フラス
コの上端で、デカンターとボール型の凝縮コイルに、コ
イルのジャケットを通って循環する冷却水を取り付けた
。温度が160℃に達したとき、HEOP(即ち、1−
ヒドCキシーエチリデン−1.1−ジホスフィン酸、以
下同様に略称す)溶液をゆるやかに加えた。一方、2−
エチルヘキサノール及び水を煮沸し(共沸)、蒸気をコ
イルに流して凝縮させ、そしてデカンターに送り、そこ
で底部から系外に水を取り除き、上層の2−エチルヘキ
サノール凝縮物は反応器にもどし循環させた。各バッチ
に関し系に添加された溶液中の固体HEDPの量は、1
.1009であった。
Example 1 3.500xl2 of 2-ethylhexanol was added to 500
0*(!), heated with a hot plate from the bottom, aerated air through the contents and stirred. Circulating cooling water was installed. When the temperature reached 160°C, HEOP (i.e. 1-
A solution of hydroxyethylidene-1,1-diphosphinic acid (hereinafter similarly abbreviated) was slowly added. On the other hand, 2-
Ethylhexanol and water are boiled (azeotropically), the steam is passed through a coil, condensed, and sent to a decanter, where the water is removed from the bottom from the system, and the upper 2-ethylhexanol condensate is returned to the reactor for circulation. I let it happen. The amount of solid HEDP in solution added to the system for each batch was 1
.. It was 1009.

供給をほぼ2時間続け、その後、全ての残留水が留出す
るまで系を30分間還流した。反応後、約4.OOOi
l2の祖製物がフラスコ内に生成した。
Feed continued for approximately 2 hours, after which the system was refluxed for 30 minutes until all residual water had distilled out. After the reaction, about 4. OOOi
12 progenitor product was produced in the flask.

冷却して得られる生成物を同量の水に浸漬し、4.00
03112のシクロヘキサンを加えた。静置すると内容
物は二層に別れ、底部には少量の未反応のジホスフィン
酸と硫酸(触媒)が存在し、上層の油層を次いで真空蒸
留して水、シクロヘキサン及び2エチルヘキサノールが
上部から留去し、底部に約2,000gの生成物が得ら
れた。
The product obtained by cooling is immersed in the same amount of water and 4.00
03112 cyclohexane was added. When left to stand, the contents separate into two layers, with a small amount of unreacted diphosphinic acid and sulfuric acid (catalyst) present at the bottom, and the upper oil layer is then vacuum distilled to distill water, cyclohexane, and 2-ethylhexanol from the top. About 2,000 g of product was obtained at the bottom.

生成物の融点は−39℃で分解点は215℃である。フ
ィールドデコンボジシヲン質量スペクトル(FDMS)
、赤外スペクトル(IR)及び核磁気共鳴(NMR)等
の一連の試験結果から、主成分は不純物としてごく少量
のI−ヒドロキンーエチリデン−1.1−ジホスホン酸
モノ−2−エチルヘキシルエステル、1−ヒドロキシー
エチリデン1.1−ジホスホン酸トリ−2−エチルヘキ
シルエステル及び2−エチルヘキサノールを含む1一ヒ
ドロキシーエチリデン−1.1−ジホスホン酸ジー2−
エチルヘキシルエステルであることが証明された。!−
ヒドロキシーエチリデン−1.1=ジホスホン酸ジー2
−エチルヘキシルエステルは新規化合物であることが証
明された(以下参照)。
The product has a melting point of -39°C and a decomposition point of 215°C. Field decontamination mass spectrometry (FDMS)
From a series of test results such as , infrared spectroscopy (IR) and nuclear magnetic resonance (NMR), the main components were I-hydroquine-ethylidene-1,1-diphosphonic acid mono-2-ethylhexyl ester, 1 with very small amounts of impurities. -Hydroxy-ethylidene-1,1-diphosphonic acid di-2- containing 1,1-diphosphonic acid tri-2-ethylhexyl ester and 2-ethylhexanol
It was proven to be ethylhexyl ester. ! −
Hydroxyethylidene-1.1 = diphosphonic acid di-2
- Ethylhexyl ester was proven to be a new compound (see below).

1017cm  1218cm  13801463c
−m  εtc. NMR:  0.83ppm  1.24pPm  3
.95ppmFDMS  m/z: 341[M1+Na]  453[M2+Na]5 6
 5 [M3 +Na] ■R: 式中 M1=1−ヒドロキシーエチリデン−ll−ジホスホン
酸モノ−2−エチルヘ キシルエステル M2=1−ヒドロキシーエチリデン−l.1−ジホスホ
ン酸ジー2−エチルヘキ シルエステル M3=1−ヒドロキシーエチリデン−l,l−ジホスホ
ン酸トリ−2−エチルヘ キシルエステル 実施例2 実施例lの比較例として、3,500ml2の2−エチ
ルヘキサノールと1.1009の固体HEDPを5,0
00xffの三つ口フラスコに加え、ホットプレートで
底から加熱し、内容物に窒素を通気して撹拌する。フラ
スコの最上部でデカンターと球型の濃縮コイルをコイル
のジャケットを通って循環する冷却水と連結した。温度
が130と200℃の間に達したとき、溶液が沸騰し始
め、反応が開始するが非常に低速度のエステル化である
。結果は、ごく少量のHEDPエステルが生成したこと
を示した。事実、主反応は2−エチルヘキサノールの脱
水素で大量の2−エチルヘキセンの形成を生じたと確信
される。
1017cm 1218cm 13801463c
-m εtc. NMR: 0.83ppm 1.24pPm3
.. 95ppmFDMS m/z: 341[M1+Na] 453[M2+Na]5 6
5 [M3 +Na] ■R: In the formula, M1 = 1-hydroxyethylidene-ll-diphosphonic acid mono-2-ethylhexyl ester M2 = 1-hydroxyethylidene-l. 1-diphosphonic acid di-2-ethylhexyl ester M3 = 1-hydroxy-ethylidene-l,l-diphosphonic acid tri-2-ethylhexyl ester Example 2 As a comparative example of Example 1, 3,500 ml of 2-ethylhexanol and 1 .1009 solid HEDP 5,0
Add to a 00xff three-necked flask, heat from the bottom with a hot plate, and stir while bubbling nitrogen through the contents. At the top of the flask a decanter and a spherical concentrating coil were connected with cooling water circulating through the jacket of the coil. When the temperature reaches between 130 and 200°C, the solution begins to boil and the reaction begins, but with a very slow rate of esterification. The results showed that only a small amount of HEDP ester was formed. In fact, it is believed that the main reaction was the dehydrogenation of 2-ethylhexanol resulting in the formation of large amounts of 2-ethylhexene.

実施例3 実施例lの比較例として、油を製造する工程での副生成
物として得られた、シクロベンタノール、n−ペンタノ
ール及びシクロヘキサノールを含む主としてエステル化
可能化合物を含む3.5003IQの軽油を5,000
xCの三つ口フラスコに注ぎ、底部よりホットプレート
で加熱し、内容物に窒素を通気して撹拌した。フラスコ
の上端で水デカンターとボール型の凝縮コイルにコイル
のジャヶットを通って循環する冷却水を取り付けた。温
度が140℃に達し溶液が沸騰し始めたとき、水に溶解
したHEDPをゆるやかに加えた。軽油と水溶族が沸騰
している(共沸)間に、蒸気がコイルを通ってそこで凝
縮されたデカンターに流れ、そこで水は底部から系外に
取り出し、上層の軽油凝縮物は反応器にもどし括環させ
た。各バッチに関し系に添加された溶液中の固体HED
Pは200gであった。供給をほぼ2時間続け、その後
、全ての残留物が留去するまで系を30分間還流した。
Example 3 As a comparative example to Example I, a sample of 3.5003IQ containing mainly esterifiable compounds including cyclobentanol, n-pentanol and cyclohexanol obtained as a by-product in the process of producing oil 5,000 light oil
The mixture was poured into an xC three-necked flask, heated from the bottom with a hot plate, and the contents were stirred by bubbling nitrogen through the contents. At the top of the flask a water decanter and a ball-shaped condensing coil were fitted with cooling water circulating through a jack in the coil. When the temperature reached 140° C. and the solution began to boil, the HEDP dissolved in water was slowly added. While the gas oil and water solubles are boiling (azeotrope), the steam flows through the coil to a decanter where it is condensed, where the water is taken out of the system at the bottom and the upper gas oil condensate is returned to the reactor. I put it in a bracket. Solid HED in solution added to the system for each batch
P was 200g. Feed continued for approximately 2 hours, after which the system was refluxed for 30 minutes until all residue had distilled off.

反応後、約3,500xQの粗製物がフラスコ内に生成
した。
After the reaction, about 3,500xQ of crude product was produced in the flask.

冷却して得られる生成物を同量の水に浸漬し、3,50
0i(7のシクロヘキサンを加えた。静置すると二層に
別れた。底部には大量の未反応ジホスフィン酸と少量の
硫酸(触媒)が存在し、上部、油層は、,ヤL)′7′
T″X 4:l ”11−7留に付し、水、シクロヘキ
サン1″L’ 萎”. 11 .+ * .+。から留
去し、底部にごくわずかの生成物HEDPペンチルエス
テル(約lO?)が得られた。有用なジホスホン酸エス
テルめ収率は非常に低い。
The product obtained by cooling was immersed in the same amount of water, and
0i (7) cyclohexane was added. When left to stand, it separated into two layers. A large amount of unreacted diphosphinic acid and a small amount of sulfuric acid (catalyst) were present at the bottom, and the oil layer at the top was
T″X 4:l″ 11-7 distillate, water, cyclohexane 1″L′. 11. + *. +. A very small amount of the product HEDP pentyl ester (approximately 10?) was obtained at the bottom. Yields of useful diphosphonates are very low.

実施例4 3,500ml2のラウリルアルコールを5,0 0 
0m(lの三つ口フラスコに入れ、底部よりホットプレ
ートで加熱し、内容物に窒素を通気して撹拌した。
Example 4 3,500 ml of lauryl alcohol at 5,00 ml
The mixture was placed in a 0 mL three-necked flask, heated from the bottom with a hot plate, and the contents were stirred while nitrogen was bubbled through.

フラスコの上端で、デカンターとボール型の凝縮コイル
にコイルのジャケットを通って循環する冷却水を温度が
160℃に達したとき、まず50ml2のp−キシレン
を加え、次いでHBOP(1−ヒドロキシブチリデン−
1.1−ジホスフィン酸)をゆるやかに加えた。ラウリ
ルアルコール、p−キシレン及び水が沸騰し始め(共沸
)、蒸気がコイルを通って流れ、そこで凝縮してデカン
ターに入り、そこで水は底部から系外に取り出され、上
層のラウリルアルコール、p−キシレン凝縮物は反応器
にもどされ循環した。各バッチ当り系に加えられた溶夜
中の固体HBOPの量は、1.500gであった。粗製
物を浸漬し、蒸留し、最終的に以下の式により、2,4
 0 0gの生成物、1−ヒドロキシプチリデン−1.
1−ジホスホン酸ラウリルエステルが得られた。
At the top of the flask, a decanter and a ball-shaped condensing coil are fed with cooling water circulating through the jacket of the coil. When the temperature reaches 160 °C, first 50 ml of p-xylene is added, then HBOP −
1.1-Diphosphinic acid) was slowly added. The lauryl alcohol, p-xylene and water begin to boil (azeotrope) and the vapor flows through the coil where it condenses into a decanter where the water is taken out of the system at the bottom and the lauryl alcohol, p-xylene in the upper layer - The xylene condensate was recycled back to the reactor. The amount of solid HBOP in the solution added to the system per each batch was 1.500 g. The crude product is soaked and distilled, and finally 2,4
00 g of product, 1-hydroxybutylidene-1.
1-diphosphonic acid lauryl ester was obtained.

PO(OH)2          PO(OHXOC
,H..)CH3H?−C−OH   +2C.ffi
HtsOH=C3H7−C−OH      +2Ht
OPO(OHh           PO(OH)(
OC+tHzs)実施例5 100ml2のベンゼンを250m(2の分液漏斗に加
え、次いで1gのコバルト・シクロアルカノエートを加
え、これをベンゼン相中に平等に懸濁し、次いでI00
ml2のヘキサン・ジホスフイン酸の2%溶液を加えた
のちコバルトイオンを水相中に抽出した。この時点で、
1gのHEDPジー2−エチルヘキサンエステルを加え
て下の水層中のコバルトイオンを上の油層に抽出する。
PO(OH)2 PO(OHXOC
,H. .. )CH3H? -C-OH +2C. ffi
HtsOH=C3H7-C-OH +2Ht
OPO(OHh PO(OH)(
OC+tHzs) Example 5 Add 100 ml of benzene to a 250 ml separatory funnel, then add 1 g of cobalt cycloalkanoate, which is suspended evenly in the benzene phase, then
Cobalt ions were extracted into the aqueous phase after adding 2 ml of a 2% solution of diphosphinic acid in hexane. at this point
1 g of HEDP di-2-ethylhexane ester is added to extract the cobalt ions in the lower water layer into the upper oil layer.

実施例6 50gの一般的な目的のエボキシ樹脂を攪拌しながら5
gのHBDPジラウリルエステルと混合する。40分間
、160と200℃の間の温度に加熱後、樹脂を固定し
成形し、全ての目標は試験の標準に合致した。
Example 6 50g of general purpose epoxy resin was mixed with stirring.
g of HBDP dilauryl ester. After heating to a temperature between 160 and 200° C. for 40 minutes, the resin was fixed and molded and all targets met the test standards.

実施例7 これは実施例8の比較例で、以下の通りである。Example 7 This is a comparative example of Example 8 and is as follows.

シク口ヘキサンのコバルト触媒酸化によるシクロヘキサ
ノンの8.OOOt/g製造用工業単位で、ピロリン酸
ナトリウムが不活性化のため反応器壁に拡がった。シク
ロヘキサンの供給は36m’/hで、空気流れは2 .
 l O O Nm3/hであった。シクロヘキサノン
溶夜中シクロアルカノアートの形のコバルト塩を系に連
続的に供給し、酸化系中のコバルトイオン濃度を0 .
 2 6 ppm重量にコントロールするか、又は2k
gのコバルトシクロアルカノアート(約8%のコバルト
イオン)を2II+3のシクロヘキサンに毎日混合した
。製造された2ffl3のコバルト塩のシクロヘキサン
溶液を計量し定量ボンブでNo.1反応器に一定速度で
24時間かけて供給した。系の圧は、IMPa.g.に
コントロールし、反応温度は154±2℃とした。シク
ロヘキサンの酸化工程は円滑に進行した。酸化からの排
ガスは、ガスサンプリングビンでサンプリングしたとこ
ろ、2.5%の酸素を含有した。視覚試験によれば、試
料は、ビンの底に少量の黄褐色溶液とビン壁に付着した
同一色のいくらかの粒子を伴って濁って見えた。次の工
程、けん化,酸化生成物の蒸留及びシクロヘキサノール
の脱水素等ののち、シクロヘキサン3 3 . 1 t
/dの消費で27.1t/dの平均出量のシクロヘキサ
ンが得られた。この方法で約2ケ月連続操作後、操作を
24時間停止して系を洗浄したのち再び開始した。とい
うのは、反応器と連結パイプ内に生じた大量の容積物が
結局は系をつまらせたからである。洗浄の間、反応器と
パイプには蓄積物のマニュアル洗浄と組合せて大量のソ
ーダ水が消費された。
8. Cyclohexanone by cobalt-catalyzed oxidation of hexane. In the industrial unit for production of OOOt/g, sodium pyrophosphate spread on the reactor walls due to inertization. The cyclohexane feed was 36 m'/h and the air flow was 2.
It was 1 O O Nm3/h. During cyclohexanone dissolution, cobalt salt in the form of cycloalkanoate was continuously fed into the system to bring the cobalt ion concentration in the oxidation system to 0.
Control to 26 ppm weight or 2k
g of cobalt cycloalkanoate (approximately 8% cobalt ion) was mixed into 2II+3 cyclohexane daily. Weighed 2ffl3 of the cobalt salt cyclohexane solution produced and placed it in a No. 3 metering bomb. 1 reactor at a constant rate over 24 hours. The system pressure is IMPa. g. The reaction temperature was 154±2°C. The oxidation process of cyclohexane proceeded smoothly. The exhaust gas from the oxidation contained 2.5% oxygen as sampled in a gas sampling bottle. By visual inspection, the sample appeared cloudy with a small amount of tan solution at the bottom of the bottle and some particles of the same color adhering to the bottle walls. After the next steps, saponification, distillation of the oxidation products and dehydrogenation of the cyclohexanol, 3.3. 1 t
An average output of 27.1 t/d of cyclohexane was obtained with consumption of /d. After approximately two months of continuous operation in this manner, the operation was stopped for 24 hours, the system was cleaned, and then restarted. This is because the large volume created in the reactor and connecting pipes eventually clogged the system. During cleaning, large amounts of soda water were consumed in the reactor and pipes in combination with manual cleaning of the buildup.

実施例8 これは、シクロヘキサンのコバルト触媒酸化による8.
000t/gのシクロヘキサノン製造用工業単位におけ
る触媒としての組成物の採用の場合であり、実施例7と
同一単位であるが不活性化剤としてビロリン酸ナトリウ
ムを使用しなかった。
Example 8 This is an 8. cobalt catalyzed oxidation of cyclohexane.
000 t/g of the composition as a catalyst in an industrial unit for the production of cyclohexanone, the same unit as in Example 7, but without using sodium birophosphate as a deactivator.

シクロヘキサンの供給は36m’/hで、空気は2,1
 0 0 NII1”/hで流した。シクロヘキサン液
中、ジホスホン酸エステルと混合されるンクロアルカノ
アートの形のコバルト塩は、連続的に系に供給した。酸
化系内のコバルトイオン濃度は、0.26 ppI1重
量にコントロールし、コバルトイオンをジホスホン酸エ
ステルのモル比は7:lであるか、又は、2kgのコバ
ルトシクロアルカノアート(約8%のコバルトイオン)
を150ml2のジホスホン酸エステル、主としてHE
DPジー2−二チルヘキサンエステルを2m3のシクロ
ヘキサンに毎日混合した。製造された2+++’のシク
ロヘキサン溶液中のコバルト塩/ジホスホン酸エステル
を計量し定量ボンブでNo.l酸化反応器に一定速度で
24時間かけて供給した。系圧をIMPa.g.に、反
応温度を154±2℃にコントロールした。シクロヘキ
サンの酸化工程は円滑に進行した。酸化からの排ガスは
、ガラスサンプリングビンでサンプリングしたところ、
2.0%の酸素を含有した。視覚試験によれば、試料は
、輝透明で、ビンの底部に少量の無色溶液を伴い、これ
は酸性水であることが証明された。そして、酸化変換速
度が高くなると、結晶ヘキサン・ジ酸白色粒子がビン壁
に付着して見えた。次の工程、けん化、酸化生成物の蒸
留及びシクロヘキサノールの脱水素等の後、34.7t
/dのシクロヘキサンの消費で30.2t/dの平均出
量のシクロヘキサノンが得られた。実施例7と比較する
と、単位時間当りの出量が10%増え、総収率はそれぞ
れ5%上った。この方法を1年連続操作後も、反応器を
パイプのいずれにも樹脂の蓄積はなかった。操作を進行
し続けたが保全のために年間予定の閉鎖は必要としなか
った。全《洗浄することなく開放したところ、器具やパ
イプ内に蓄積は全く見られず、内壁は当初のときのよう
に輝いていた。単位はそのままで少くともI年間連続的
に操作しうろことが確認できた。
Cyclohexane supply is 36m'/h, air is 2,1
The cobalt salt in the form of ncroalkanoate, which is mixed with the diphosphonate ester in the cyclohexane solution, was fed continuously to the system. The cobalt ion concentration in the oxidation system was 0.0 NII1"/h. 26 ppI controlled at 1 weight and the molar ratio of cobalt ions to diphosphonate ester is 7:l or 2 kg of cobalt cycloalkanoate (approximately 8% cobalt ions)
and 150 ml of diphosphonic acid ester, mainly HE
DP di-2-ditylhexane ester was mixed into 2 m3 of cyclohexane daily. The cobalt salt/diphosphonic acid ester in the cyclohexane solution of 2+++' produced was weighed and placed in a No. 2 metering bomb. 1 oxidation reactor at a constant rate over 24 hours. System pressure is set to IMPa. g. The reaction temperature was controlled at 154±2°C. The oxidation process of cyclohexane proceeded smoothly. The exhaust gas from oxidation was sampled in a glass sampling bottle.
Contained 2.0% oxygen. By visual inspection, the sample was bright clear with a small amount of colorless solution at the bottom of the bottle, which proved to be acidic water. As the oxidative conversion rate increased, crystalline hexane diacid white particles were visible adhering to the bottle wall. After the next steps, saponification, distillation of oxidation products, dehydrogenation of cyclohexanol, etc., 34.7t
An average output of 30.2 t/d of cyclohexanone was obtained with consumption of /d of cyclohexane. Compared to Example 7, the output per unit time increased by 10%, and the total yield increased by 5%. After one year of continuous operation of this process, there was no resin build-up in any of the reactor or pipes. Operations continued, but maintenance did not require annual scheduled closures. When opened without cleaning, there was no evidence of accumulation inside the fixtures or pipes, and the interior walls were as shiny as when they were first installed. It was confirmed that the unit could be operated continuously for at least one year without changing the unit.

実施例9 シクロヘキサンの無触媒酸化によるシクロヘキサノン/
シクロヘキサノールの通常の製造工程において、ビロリ
ン酸ナトリウムが不活性剤として用いられて反応器内に
広がり、これは、ナトリウムイオンを生ずるか、逆にこ
れが副反応を生じて低収率をもたらす。同一単位で、壁
にピロリン酸ナトリウムを広げる代りに少量のジホスホ
ン酸エステル、主としてHEDPジー2−エチルヘキサ
ンエステルを、反応物中のジホスホン酸エステルの濃度
を0 . 3 ppm重量にコントロールして酸化系の
No.I反応器に供給する以外は、全工程バラメーター
を変化させないで保持した。それにより、系内に蓄積は
もはやなかった。加えて、酸化生成物は無色となり副反
応が減少した。その結果、アルコール/ケトン生産の総
収率が2%増加した。
Example 9 Cyclohexanone/by non-catalytic oxidation of cyclohexane
In the usual manufacturing process of cyclohexanol, sodium birophosphate is used as a deactivating agent and spreads in the reactor, which generates sodium ions or conversely, which causes side reactions and results in low yields. In the same unit, instead of spreading sodium pyrophosphate on the wall, a small amount of diphosphonate ester, mainly HEDP di-2-ethylhexane ester, is added to reduce the concentration of diphosphonate in the reaction to 0. The oxidation system No. 3 was controlled to 3 ppm weight. All process parameters were kept unchanged except for feeding the I reactor. Thereby there was no more accumulation in the system. In addition, the oxidation product became colorless and side reactions were reduced. As a result, the total yield of alcohol/ketone production increased by 2%.

実施例10 パラフィン酸化による高級アルコール/ケトンの通常の
製造工程、例えばC I2−C +sパラフィンの酸化
によるC ,!− C +sアルコール製造工程におい
て、装置とパイプ中を汚し、詰めるという同様の問題が
正常な操作をてこずらせている。しかしながら、その濃
度が約0 . 3 ppm重量を保つようにHEDPジ
ー2−エチルヘキサンを供給流中に加えるか、触媒金属
イオン対ジホスポン酸エステルのモル比を5対Iとする
ことにより、パラフィン酸化反応器は、蓄積から開放さ
れ、有用な生成物の収率が3%向上した。
Example 10 Conventional process for producing higher alcohols/ketones by paraffin oxidation, e.g. C I2-C +sC by oxidation of paraffins,! - C +s In the alcohol production process, similar problems of fouling and clogging of equipment and pipes hinder normal operation. However, its concentration is about 0. The paraffin oxidation reactor is freed from buildup by adding HEDP di-2-ethylhexane to the feed stream to maintain a 3 ppm weight or by using a 5 to I molar ratio of catalyst metal ions to diphosponate ester. , the yield of useful product increased by 3%.

実施例11 p−キシレンの酸化による1.000t/gのp−トル
イル酸の製造用の商業的に操作される単位において、装
置/パイプ内を汚し/詰めるという同様の問題が存在す
る。全工程/装置パラメーターを、コバルト触媒濃度、
反応圧、温度供給及び空気流等を含めて変更することな
くその濃度が05 ppm − 3 ppm重量に保持
されるようにHEDPジ2−エチルヘキサンエステルを
供給流中に加えるだけで、蓄積は反応器内に全く見られ
ず、目標生成物、p−トルイル酸の総収率は3%向上し
た。
Example 11 In a commercially operated unit for the production of 1.000 t/g p-toluic acid by oxidation of p-xylene, a similar problem of fouling/clogging inside the equipment/pipes exists. All process/equipment parameters were adjusted to include cobalt catalyst concentration,
By simply adding HEDP di-2-ethylhexane ester into the feed stream such that its concentration is maintained at 0.5 ppm - 3 ppm weight without any changes including reaction pressure, temperature supply and air flow etc. None was found in the vessel, and the overall yield of the target product, p-toluic acid, was increased by 3%.

Claims (1)

【特許請求の範囲】 1、式(1)の化合物 ▲数式、化学式、表等があります▼(1) (式中、m_1=0、1又は2、n_1=2−m_1;
m_2=0.1又は2、n_2=2−m_2;0<m_
1+m_2<4;RはH又は1−8炭素原子を有するア
ルキル;R’は1−18炭素原子を有するアルキル;X
はH又はOH)2、R’が6−14炭素原子を有する請
求項1の化合物。 3、RがH又は1−6炭素原子を有するアルキルである
請求項2の化合物。 4、XがOHである請求項3の化合物。 5、R’が8−12炭素原子を有する分枝アルキルであ
る請求項4の化合物。 6、Rが1−3炭素原子を有する請求項5の化合物。 7、R’が2−エチルヘキシルである請求項6の化合物
。 8、Rがメチルである請求項7の化合物。 9、m_1及びm_2が共に1である請求項1−8のい
ずれか1項の化合物。 10、式(2) ▲数式、化学式、表等があります▼(2) (式中、R及びXは、請求項1におけると同意義)の固
形ジホスフィン酸を溶媒に溶かし、次いでジホスフィン
酸の溶液を式(3) R’OH(3) (式中、R’は請求項1におけると同意義)のアルコー
ルに常圧で加えてエステル化反応を行なうことを特徴と
する式(1) ▲数式、化学式、表等があります▼(1) P−O(OH)m_2(OR’)n_2 (式中、m_1、m_2、n_1、n_2、R、R’、
及びXは、請求項1におけると同意義) の化合物の製造方法。 11、エステル化の温度が150から200℃の範囲で
ある請求項10の方法。 12、ジホスフィン酸の溶液を撹拌下ゆるやかに加える
請求項11の方法。 13、溶媒が水である請求項12の方法。 14、溶媒がメタノール又はエタノールである請求項1
2の方法。 15、エステル化反応の温度が160−170℃である
請求項13の方法。 16、RがH又は1−6炭素原子を有するアルキル、R
’が6−14炭素原子を有するアルキルである請求項1
0−15のいずれか1項の方法。 17、Rが1−3炭素原子を有するアルキル、R’が8
−12炭素原子を有する分枝アルキル、XがOHである
請求項10−15のいずれか1項の方法。 18、Rがメチル、R’が2−エチルヘキシル、XがO
Hである請求項10−15のいずれか1項の方法。 19、炭化水素の酸化触媒作用での請求項1−9のいず
れか1項の化合物の用途。 20、シクロヘキサンの酸化触媒作用での請求項1−9
のいずれか1項の化合物の用途。21、化合物が触媒と
して使用される請求項19又は20の用途。 22、使用された化合物の量が0.01から10ppm
である請求項19又は20の用途。 23、使用される化合物の量が0.05から5ppmで
ある請求項19又は20の用途。24、複合コンプレッ
クス抽出剤としての請求項1−9のいずれか1項の化合
物の用途。25、エポキシ樹脂の凝固剤としての請求項
1−9のいずれか1項の化合物の用途。 26、請求項1−9のいずれか1項の化合物又はその混
合物及び遷移金属塩を含む炭化水素の酸化用組成物。 27、化合物と遷移金属塩とのモル比が1:1−20の
間である請求項26の組成物。 28、遷移金属塩がコバルト、銅、マグネシウム、バナ
ジウム、クロム及びモリブデンの塩又はその混合物から
選ばれる請求項27の組成物。 29、化合物と遷移金属塩とのモル比が1:3−10の
間である請求項27の組成物。 30、遷移金属塩がコバルト塩である請求項29の組成
物。 31、炭化水素の酸化触媒としての請求項25−30の
いずれか1項の組成物の用途。
[Claims] 1. Compound of formula (1) ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (1) (In the formula, m_1 = 0, 1 or 2, n_1 = 2 - m_1;
m_2=0.1 or 2, n_2=2-m_2; 0<m_
1+m_2<4; R is H or alkyl having 1-8 carbon atoms; R' is alkyl having 1-18 carbon atoms;
2. A compound according to claim 1, wherein R' is H or OH)2 and R' has 6-14 carbon atoms. 3. A compound according to claim 2, wherein R is H or alkyl having 1-6 carbon atoms. 4. The compound of claim 3, wherein X is OH. 5. The compound of claim 4, wherein R' is branched alkyl having 8-12 carbon atoms. 6. The compound of claim 5, wherein R has 1-3 carbon atoms. 7. The compound of claim 6, wherein R' is 2-ethylhexyl. 8. The compound of claim 7, wherein R is methyl. 9. The compound according to claim 1, wherein m_1 and m_2 are both 1. 10. Formula (2) ▲There are mathematical formulas, chemical formulas, tables, etc.▼ (2) (In the formula, R and Formula (1), which is characterized in that the esterification reaction is carried out by adding R'OH (3) (wherein R' has the same meaning as in claim 1) to the alcohol of formula (3) at normal pressure. , chemical formulas, tables, etc.▼(1) P-O(OH)m_2(OR')n_2 (In the formula, m_1, m_2, n_1, n_2, R, R',
and X have the same meanings as in claim 1). 11. The method of claim 10, wherein the esterification temperature is in the range of 150 to 200°C. 12. The method of claim 11, wherein the solution of diphosphinic acid is added slowly under stirring. 13. The method of claim 12, wherein the solvent is water. 14. Claim 1, wherein the solvent is methanol or ethanol.
Method 2. 15. The method according to claim 13, wherein the temperature of the esterification reaction is 160-170°C. 16, R is H or alkyl having 1-6 carbon atoms, R
Claim 1 wherein ' is alkyl having 6-14 carbon atoms.
The method according to any one of items 0 to 15. 17, R is alkyl having 1-3 carbon atoms, R' is 8
16. A method according to any one of claims 10-15, wherein X is OH, a branched alkyl having -12 carbon atoms. 18, R is methyl, R' is 2-ethylhexyl, X is O
16. The method of any one of claims 10-15, wherein H. 19. Use of a compound according to any one of claims 1 to 9 in catalyzing the oxidation of hydrocarbons. 20. Claims 1-9 regarding the oxidation catalytic action of cyclohexane
Uses of the compound according to any one of the following. 21. The use according to claim 19 or 20, wherein the compound is used as a catalyst. 22. The amount of compound used is from 0.01 to 10 ppm
The use according to claim 19 or 20. 23. The use according to claim 19 or 20, wherein the amount of compound used is from 0.05 to 5 ppm. 24. Use of the compound of any one of claims 1-9 as a complex extractant. 25. Use of the compound according to any one of claims 1-9 as a coagulant for epoxy resins. 26. A composition for oxidizing hydrocarbons, comprising the compound according to any one of claims 1 to 9 or a mixture thereof and a transition metal salt. 27. The composition of claim 26, wherein the molar ratio of compound to transition metal salt is between 1:1-20. 28. The composition of claim 27, wherein the transition metal salt is selected from cobalt, copper, magnesium, vanadium, chromium and molybdenum salts or mixtures thereof. 29. The composition of claim 27, wherein the molar ratio of compound to transition metal salt is between 1:3-10. 30. The composition of claim 29, wherein the transition metal salt is a cobalt salt. 31. Use of the composition of any one of claims 25-30 as a hydrocarbon oxidation catalyst.
JP2268261A 1989-11-06 1990-10-04 Diphosphonate compound, method for producing the same, and catalyst composition containing the compound Expired - Lifetime JPH07103136B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN89108289.1 1989-11-06
CN89108289A CN1017434B (en) 1989-11-06 1989-11-06 Synthesis and application of diphosphonate ester

Publications (2)

Publication Number Publication Date
JPH03169887A true JPH03169887A (en) 1991-07-23
JPH07103136B2 JPH07103136B2 (en) 1995-11-08

Family

ID=4857519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2268261A Expired - Lifetime JPH07103136B2 (en) 1989-11-06 1990-10-04 Diphosphonate compound, method for producing the same, and catalyst composition containing the compound

Country Status (2)

Country Link
JP (1) JPH07103136B2 (en)
CN (1) CN1017434B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1061680C (en) * 1996-11-22 2001-02-07 肖藻生 Fuel oil and lubricating oil additive
CN105906477B (en) * 2016-05-24 2018-11-23 济南大学 A kind of method of continuous azeotropy distillation separation of methylbenzene-ethylene glycol mixture
CN105906471B (en) * 2016-05-24 2018-11-09 济南大学 A kind of method of continuous azeotropic distillation separation meta-xylene-ethylene glycol mixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518493A (en) * 1978-07-21 1980-02-08 Ciba Geigy Ag Separation of hydrogen sulfide
JPS5818631A (en) * 1981-07-28 1983-02-03 Fuji Photo Film Co Ltd Method for processing color photographic material
JPH02101088A (en) * 1988-08-29 1990-04-12 E R Squibb & Sons Inc Phosphorus compound and squalene synthetase inhibitor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518493A (en) * 1978-07-21 1980-02-08 Ciba Geigy Ag Separation of hydrogen sulfide
JPS5818631A (en) * 1981-07-28 1983-02-03 Fuji Photo Film Co Ltd Method for processing color photographic material
JPH02101088A (en) * 1988-08-29 1990-04-12 E R Squibb & Sons Inc Phosphorus compound and squalene synthetase inhibitor

Also Published As

Publication number Publication date
JPH07103136B2 (en) 1995-11-08
CN1017434B (en) 1992-07-15
CN1044281A (en) 1990-08-01

Similar Documents

Publication Publication Date Title
US4158738A (en) Process for the production of fiber-grade terephthalic acid
CN102627541B (en) Technology for preparing hexanaphthene and cyclohexanone through cyclohexane oxidation and device thereof
JP2007254484A (en) Dewatering process
JPS61126050A (en) Polymerization control
JP2012518022A (en) Reactive extraction of free organic acids from their ammonium salts.
CZ397997A3 (en) Process of treating reaction mixture obtained from cyclohexane oxidation
US5449804A (en) Diphosphonate compounds, their preparation and application
JPH03169887A (en) Diphosphonic acid ester compound and its preparation and application
KR101049561B1 (en) Manufacturing Method of (meth) acrylate
US4720577A (en) Process for the extraction of carboxylic acids from dilute aqueous solutions
US4827027A (en) Separation/purification of salicyclic acid
TW553930B (en) Method for recovering and producing C4-C6 dicarboxylate from alkaline waste solution generated in caprolactam preparation process
CN113234055B (en) Synthesis method of lactide
US4072722A (en) Process for preparing dihydric phenol derivatives
US5457236A (en) Process for the production of beta-diketone
EP0031694B1 (en) Production of carboxylic acid salts
JPH0149697B2 (en)
DE4342570C1 (en) Process for the continuous preparation of vinylphosphonic acid dialkyl esters
Kohler et al. The Reaction between Alpha, Beta-Unsaturated Ketones and Organic Magnesium Compounds. Unsaturated Mesitylenic Ketones
CN117645525A (en) Recovery processing method of pentamethylindane raffinate
CN1245794A (en) Production method of ethyl acetate by means of condensation of acetaldehyde
RU2057118C1 (en) Process for preparing n,n-diethylmethatoluamide
CN116514695A (en) Preparation method of phosphonate composition and vitamin A acetate
JPH02134376A (en) Production of trimellitic acid ester anhydride
PL110541B1 (en) Agent for preparing hydrophobic solutions extracting ions of nonferrous metals from aqueous solutions also a method of producing an agent for preparing hydrophobic solutions extracting ions of non-ferrous metals