JPH0316987A - Ampul for crystal growth by bridgman technique - Google Patents

Ampul for crystal growth by bridgman technique

Info

Publication number
JPH0316987A
JPH0316987A JP14979489A JP14979489A JPH0316987A JP H0316987 A JPH0316987 A JP H0316987A JP 14979489 A JP14979489 A JP 14979489A JP 14979489 A JP14979489 A JP 14979489A JP H0316987 A JPH0316987 A JP H0316987A
Authority
JP
Japan
Prior art keywords
ampul
melt
recesses
ampoule
crystal growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14979489A
Other languages
Japanese (ja)
Inventor
Keiichi Kuwabara
桑原 啓一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP14979489A priority Critical patent/JPH0316987A/en
Publication of JPH0316987A publication Critical patent/JPH0316987A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To accomplish inhibition of Marangoni convection development by forming asperities on the inner surface of an ampul to finely divide the free level in melt solidification into sections. CONSTITUTION:Asperities 5 with recesses 4 several mu to several tens mu in size are formed on the inner surface of an ampul 1 for crystal growth by Bridfman technique. The ampul 1 is then encapsulated with a solid sample having such a volume as to be capable of almost fully filling even to the recesses 4 due to the expansion through its melting, followed by heating to effect filling almost of the recesses 4 with the resulting melt 2. The ampul 1 is then cooled at its one end to afford the melt 2 with temperature gradient, a solidified region 3 is gradually formed from the cooling side, and the free level F formed on the melt 2 is finely divided through the recesses 4 to effect inhibition of Marangoni convection development, thus making the interface P of a crystal flat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明はブリッジマン結晶或長用アンプルに関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an ampoule for lengthening Bridgman crystals.

[従来の技術1 近年宇宙開発の発達により、地球上では均一な結晶組織
を得ることが困難或いは不可能であった物質を、宇宙の
微小重力下で達成しようとする研究が種々行われており
、その均一組織の物質を得るための容器として、第3図
に示すようなブリッジマン結晶成長用アンプルlが提案
されている。
[Conventional technology 1] Due to the development of space exploration in recent years, various research efforts have been conducted to create materials with uniform crystal structures that are difficult or impossible to obtain on Earth in the microgravity of space. As a container for obtaining a material with a uniform structure, a Bridgman crystal growth ampoule l as shown in FIG. 3 has been proposed.

ブリッジマン結晶成長用アンプルlは、カーボン、石英
、ポロンナイトライド等の絶縁材料にて略長円筒型容器
形状を有しており、使用に際しては、均一な結晶組織を
得ようとする物質である試料を、固体化した状態で前記
アンプルi内に封入した後、温度勾配を与え得る加熱炉
でまず全体を加熱して内部に封入された試料を融解させ
た後、前記加熱炉により前記融解した試料の融液2に温
度勾配を与えるべくアンプルlの長さ方向同・一端側か
ら徐々に冷却を行うことにより凝固させて凝固部3を成
長させるようにしている。
Bridgman Crystal Growth Ampoule L is made of an insulating material such as carbon, quartz, or poron nitride and has a substantially long cylindrical shape, and is a material that aims to obtain a uniform crystal structure when used. After the sample is sealed in the ampoule i in a solidified state, the whole is first heated in a heating furnace capable of providing a temperature gradient to melt the sample sealed inside, and then the sample sealed inside is melted by the heating furnace. In order to give the sample melt 2 a temperature gradient, it is gradually cooled from one end side in the lengthwise direction of the ampoule l, thereby solidifying it and growing a solidified portion 3.

[発明が解決しようとする課題] しかし、上記従来のアンプル1においては、第4図に示
すように、凝固時の体積収縮によって融液2とアンプル
1内面との間に空隙Sが生じることによって自由液面F
が形成され、そのために表面張力によって生じるマラン
ゴニ対流Mが生じる問題がある。
[Problems to be Solved by the Invention] However, in the conventional ampoule 1 described above, as shown in FIG. Free liquid level F
is formed, which causes the problem of Marangoni convection M caused by surface tension.

即ち、試料を融解させた後、一端側から冷却して凝固さ
せる場合、表面張力は温度の高い液表面(融液2側)で
小さく、低温の液表面(凝固部3側)で大きくなるので
、液分子は低温側へ引張られて動き、表面の分子が動く
と内部の分子も徐々に引きずられて動き出し、全体に流
れか生じることになる。
In other words, when a sample is melted and then cooled and solidified from one end, the surface tension is small on the high temperature liquid surface (melt liquid 2 side) and large on the low temperature liquid surface (solidified part 3 side). , the liquid molecules are pulled toward the lower temperature side and move, and as the molecules on the surface move, the molecules inside are gradually dragged along and begin to move, creating a flow throughout.

このようなマランゴニ対流Mが生じると、凝固面に温度
のむらが生じ、結晶の界面Pか第3、4図に示すように
曲面状となって成分の分布か場所によって異なったり、
結晶に方向性が出るなどの結晶組織の不均一の問題を生
じ、又、上記従来のアンプル1によって得られた製品は
比較的均一な結晶組織の部分として中心部分しか利用す
ることかできないので、歩留りが非常に悪くなってしま
う。
When such Marangoni convection M occurs, temperature unevenness occurs on the solidification surface, and the crystal interface P becomes curved as shown in Figures 3 and 4, and the distribution of components varies depending on the location.
Problems arise in the non-uniformity of the crystal structure, such as crystal orientation, and in addition, in the product obtained by the conventional ampoule 1, only the central part can be used as a relatively uniform crystal structure. Yield becomes very poor.

本発明は、上記従来の問題点に着目してなしたちので、
アンプル内での融液の凝固時における融液の自由液面を
細かく分断することにより、マランゴニ対流の発生を抑
制することを可能にしたブリッジマン結晶成長用アンプ
ルを提供す3 ることを目的としている。
The present invention was made by focusing on the above-mentioned conventional problems.
An object of the present invention is to provide an ampoule for Bridgman crystal growth that makes it possible to suppress the occurrence of Marangoni convection by finely dividing the free liquid surface of the melt during solidification within the ampoule. There is.

[課題を解決するための手段] 本発明は、アンプルの内面に、融液に形成される自由戒
面を細かく分断するための微細な凹凸而を形成したこと
を特徴とするブリッジマン結晶成長用アンプルにかかる
ものである。
[Means for Solving the Problems] The present invention provides a Bridgman crystal growth method characterized in that fine irregularities are formed on the inner surface of the ampoule to finely divide the free surface formed in the melt. It comes in ampoules.

[作   用] 融解した試料か凹凸面の凹溝までを略満した状態として
、冷却により凝固を行わせると、融液が凹溝に満されて
いることにより自由液面が細かく分断され、それによっ
てマランゴニ対流の発生か抑制される。
[Function] When the melted sample fills up to the grooves on the uneven surface and is solidified by cooling, the free liquid surface is divided into small pieces due to the melt filling the grooves. This suppresses the occurrence of Marangoni convection.

[実 施 例コ 以下、本発明の実施例を図面を参照しつつ説明する。[Implementation example] Embodiments of the present invention will be described below with reference to the drawings.

第1図及び第2図は本発明の一実施例であり、図中第3
、4図と同一の符号を付した部分は同一物を表わしてい
る。
1 and 2 show one embodiment of the present invention, and the third
, 4 and 4 indicate the same parts.

本発明では、ブリッジマン結晶成長用アンプル1の内面
に、数μ〜数10μ程度の凹溝4を有4 した凹凸而5を形成している。このとき、前記凹溝4の
ピッチ、凹溝4の容積等は任意に設定することができる
In the present invention, the inner surface of the Bridgman crystal growth ampoule 1 is formed with an uneven surface 5 having grooves 4 of several microns to several tens of microns. At this time, the pitch of the grooves 4, the volume of the grooves 4, etc. can be set arbitrarily.

一方、上記したアンプル1の内部の容積を、前記凹溝4
をも含めて予め求めておくようにする。
On the other hand, the internal volume of the ampoule 1 described above is
Be sure to calculate this in advance, including the following.

上記内面に凹凸面5を有したアンプル{の使用に際して
は、まず、融解による膨張によって前記凹溝4までもほ
ぼ一杯に満し得る体積を有した固体試料を用意し、該固
体試料をアンプルl内に封入した後、加熱炉で加熱して
固体試料を融解させる。
When using the ampoule {having the uneven surface 5 on its inner surface, first prepare a solid sample having a volume that can almost completely fill the groove 4 by expansion due to melting, and then insert the solid sample into the ampoule l. After enclosing the solid sample in a container, it is heated in a heating furnace to melt the solid sample.

このとき、固体試料か融解した融液2は凹満4の殆んど
を満すことになる。
At this time, the melt 2, which is the solid sample, fills most of the recess 4.

続いて、前記加熱装置1こJ、り前記融液2に温度勾配
を与えるべくアンプルlの一端側から冷却を行うと、冷
却側から徐々(ご−凝固部3か形成される。
Subsequently, when the heating device 1 cools the ampoule 1 from one end side in order to give a temperature gradient to the melt 2, a solidification part 3 is gradually formed from the cooling side.

このとき、融液2が凹溝4内に入り込んでいることによ
り、融液2に形成される自由液面F5 が各凹溝4によって細かく分断されることになり、その
ためにマランゴニ対流の発生が阻止されることになる。
At this time, since the melt 2 has entered the grooves 4, the free liquid surface F5 formed in the melt 2 is finely divided by each groove 4, which prevents the occurrence of Marangoni convection. It will be blocked.

このようにマランゴニ対流の発生が阻止されると、結晶
の界面Pが平面となり、成分の分布か均一化し、結晶組
織が均一化されることになる。
When the Marangoni convection is prevented from occurring in this manner, the interface P of the crystal becomes a plane, the distribution of components becomes uniform, and the crystal structure becomes uniform.

更に、結晶組織の均一化により製品歩留りか著しく向上
することになる。
Furthermore, the uniformity of the crystal structure significantly improves the product yield.

尚、本発明のブリッジマン結晶成長用アンプルは、上述
の実施例にのみ限定されるものではなく、凹溝により凹
凸面を形成することに代えて、アンプル内面に沿ってメ
ッシュスクリーンを配置することによって同様の凹凸面
を形或させるようにしても良いこと、その他、本発明の
要旨を逸脱しない範囲内において種々変更を加え得るこ
とは勿論である。
Note that the Bridgman crystal growth ampoule of the present invention is not limited to the above-described embodiments, and instead of forming an uneven surface with grooves, a mesh screen may be arranged along the inner surface of the ampoule. It goes without saying that similar uneven surfaces may be formed by using the same method, and that various other changes can be made without departing from the gist of the present invention.

[発明の効果] 以上説明したように、本発明のブリッジマン結晶或長用
アンプルによれば、マランゴニ対流6 の発生を抑制しつつ凝固させることができるので、成分
の分布が均一化し、結晶組織が均一化し、よって高品質
の製品を歩留りよく製造できる優れた効果を奏し得る。
[Effects of the Invention] As explained above, according to the Bridgman crystal lengthening ampoule of the present invention, it is possible to solidify while suppressing the occurrence of Marangoni convection 6, so that the distribution of components is made uniform and the crystal structure is improved. This makes it possible to achieve an excellent effect of producing high-quality products with a high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の断面図、第2図は第1図の
■部分の拡大詳細図、第3図は従来のブリッジマン結晶
成長用アンプルの一例を示す断面図、第4図は第3図の
■部分の拡大詳細図である。 lはブリッジマン結晶成長用アンプル、2は融液、3は
凝固部、4は凹溝、5は凹凸面、Fは自由液面を示す。
FIG. 1 is a cross-sectional view of an embodiment of the present invention, FIG. 2 is an enlarged detailed view of the part ■ in FIG. 1, FIG. 3 is a cross-sectional view of an example of a conventional Bridgman crystal growth ampoule, and FIG. The figure is an enlarged detailed view of the part ■ in FIG. 3. 1 is a Bridgman crystal growth ampoule, 2 is a melt, 3 is a solidified portion, 4 is a groove, 5 is an uneven surface, and F is a free liquid level.

Claims (1)

【特許請求の範囲】[Claims] 1)アンプルの内面に、融液に形成される自由液面を細
かく分断するための微細な凹凸面を形成したことを特徴
とするブリッジマン結晶成長用アンプル。
1) A Bridgman crystal growth ampoule characterized by having a fine uneven surface formed on the inner surface of the ampoule to finely divide the free liquid surface formed in the melt.
JP14979489A 1989-06-13 1989-06-13 Ampul for crystal growth by bridgman technique Pending JPH0316987A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14979489A JPH0316987A (en) 1989-06-13 1989-06-13 Ampul for crystal growth by bridgman technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14979489A JPH0316987A (en) 1989-06-13 1989-06-13 Ampul for crystal growth by bridgman technique

Publications (1)

Publication Number Publication Date
JPH0316987A true JPH0316987A (en) 1991-01-24

Family

ID=15482862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14979489A Pending JPH0316987A (en) 1989-06-13 1989-06-13 Ampul for crystal growth by bridgman technique

Country Status (1)

Country Link
JP (1) JPH0316987A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742488A1 (en) * 1995-12-19 1997-06-20 Commissariat Energie Atomique DEVICE FOR MOVING A LIQUID, PARTICULARLY IN REDUCED GRAVITY CONDITIONS

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225595A (en) * 1987-03-13 1988-09-20 Fujitsu Ltd Ampoule for growing semiconductor crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63225595A (en) * 1987-03-13 1988-09-20 Fujitsu Ltd Ampoule for growing semiconductor crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2742488A1 (en) * 1995-12-19 1997-06-20 Commissariat Energie Atomique DEVICE FOR MOVING A LIQUID, PARTICULARLY IN REDUCED GRAVITY CONDITIONS
WO1997022806A1 (en) * 1995-12-19 1997-06-26 Commissariat A L'energie Atomique Device for moving a liquid, particularly under low gravity conditions

Similar Documents

Publication Publication Date Title
Eyer et al. Floating zone growth of silicon under microgravity in a sounding rocket
Cröll et al. Floating-zone and floating-solution-zone growth of GaSb under microgravity
JPH0316987A (en) Ampul for crystal growth by bridgman technique
KR910016974A (en) Crystal Growth Method And Apparatus
Vu A numerical investigation of a liquid bridge solidifying with volume change
Albon et al. The influence of twin structure on growth directions in dendritic ribbons of materials having the diamond or zinc-blende stuctures
US4853066A (en) Method for growing compound semiconductor crystal
Nicoara et al. On void engulfment in shaped sapphire crystals using 3D modelling
EP1085112A2 (en) Method of fabricating a single crystal
JP3141442B2 (en) Bridgman crystal growth ampoule
Cröll et al. Floating‐zone growth of GaAs under microgravity during the D2‐mission
Barmin et al. Low-energy methods of mass transfer control at crystal growth
JP3674736B2 (en) Method for producing plate-like single crystal
JPS6111914B2 (en)
JPH0442887A (en) Method for growing crystal by bridgman method
WALTER Containerless processing of single crystals in low-G environment
JPH05139884A (en) Production of single crystal
Bunkin et al. The entrapment and migration of liquid inclusions during growth of FeGe2 single crystals from the melt
JPS6217496Y2 (en)
JPH02263788A (en) Method and device for liquid phase epitaxial growth
JPH026380A (en) Method for growing crystal
JP2547188Y2 (en) PCB holder
JPH06128089A (en) Complex single crystal
JPS5950640B2 (en) Manufacturing equipment for band-shaped silicon crystals
JPS6379792A (en) Device for growing single crystal