JPH03169399A - Granulating and dewatering method of sludge - Google Patents

Granulating and dewatering method of sludge

Info

Publication number
JPH03169399A
JPH03169399A JP1311410A JP31141089A JPH03169399A JP H03169399 A JPH03169399 A JP H03169399A JP 1311410 A JP1311410 A JP 1311410A JP 31141089 A JP31141089 A JP 31141089A JP H03169399 A JPH03169399 A JP H03169399A
Authority
JP
Japan
Prior art keywords
sludge
dewatering
powder
granulating
dry powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1311410A
Other languages
Japanese (ja)
Inventor
Tatsuo Kato
龍夫 加藤
Shusuke Narutomi
成富 修輔
Kazuo Endo
遠藤 和夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP1311410A priority Critical patent/JPH03169399A/en
Publication of JPH03169399A publication Critical patent/JPH03169399A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treatment Of Sludge (AREA)
  • Glanulating (AREA)

Abstract

PURPOSE:To lower sludge treatment cost and improve dewatering ratio by using a drying powder with specified particle size in sludge granulating and dewatering processes consisting of granulating sludge into refined sludge granules after primary sludge dewatering while covering it with the dried powder as a dewatering agent and dewatering secondarily. CONSTITUTION:A sludge cake primarily dewatered by a primary dehydrator 1 is supplied to a granulating machine 2. At the same time, incinerated ashes which are discharged from an incinerator 4 and screened by a screening machine 9 to separate fine powder is also supplied to the incinerator via a storage tank 10. The sludge cake is pulverized by the granulating machine 2 to a degree not to break the water route of the cake, granulated into granules by rotation, and the granules are coated with the incinerated ashes, from which fine powder is separated, and become refined sludge granules and are supplied to a secondary dehydrator 3. Here, the incinerated ashes as drying powder is screened by the screening machine 9 at about 500rpm rotation frequency at which the particles size becomes the highest water permeable size of about 10-100mum.

Description

【発明の詳細な説明】 「産業上の利用分野] 本発明は,下水道等で発生する汚泥を,一次脱水した後
に脱水助剤として乾燥粉を被覆しっつ調質汚泥粒に造粒
し、しがる後二次脱水する汚泥の造粒脱水方法に関する
. 「従来の技術] 下水道等で発生する汚泥を脱水して低含水率の汚泥ケー
キを生成する技術としては、一次脱水した汚泥ケーキを
揺変(チキソトロピ一変化)を防ぎながら造粒して粒径
1〜10mmの汚泥粒となし、その際造粒しながら汚泥
粒の表面に珪藻土、消石灰、焼却灰等の乾燥粉を脱水助
材として被覆して調質汚泥粒となし、該調質汚泥粒を圧
搾して二次脱水して汚泥ケーキの含水率を60%以下に
する技術が、特公昭59−48160号公報に記載され
ている. この方法の基本的な考え方は、汚泥ケーキを造粒してこ
れを圧搾したときに含有水が速やかに汚泥粒表面まで到
達できるようにし、且つ乾燥粉の透水性が高いことを利
用して、汚泥粒に乾燥粉を被覆して汚泥粒表面まで到達
した含有水をろ材まで速やかに導く「水路Jの役目を果
たさせることにより、低含水率の汚泥ケーキを短時間に
容易に得ようとするものであった. 上記技術においては、乾燥粉の透水性を改善することに
より、調質汚泥粒を圧搾して二次脱水するときの含有水
の「はけ[を良くして、一層低含水率の汚泥ケーキゆ生
成を図ることが好ましい.そのような乾燥粉の透水性を
改善する技術としては、乾燥粉中に乾重量比でl〜20
%の酸化アルミニウム又は水酸化アルミニウムを添加し
、あるいは焼却灰中にリンが0.5%以上残留するよう
焼却炉中にリン酸を噴露する技術が開発されている(特
願平1−5612号及び特願平1−21823号). [発明が解決しようとする課題] 汚泥の脱水はその焼却・廃棄を目的とするものであるか
ら、所要コストの削減が強く求められている6しかるに
前記した従来技術では酸化アルミニウム、水酸化アルミ
ニウム、リン酸等の化学薬品に類するものを添加する必
要があり、しかも特に下水処理場で処理する一次脱水汚
泥ケーキの量は1日に数百トンにもなり、その結果添加
する化学薬品類が1日に数トンにもなる。したがって汚
泥の脱水のための所要コストが思うように下がらないと
いう問題点があった。
[Detailed Description of the Invention] "Industrial Application Field" The present invention involves firstly dewatering sludge generated in sewers, etc., and then granulating it into moist tempered sludge particles coated with dry powder as a dehydration aid. This relates to a method for granulating and dewatering sludge, which is subjected to secondary dewatering after drying. ``Prior art'' As a technology for dewatering sludge generated in sewers, etc. to produce a sludge cake with a low moisture content, a sludge cake that has undergone primary dewatering is Granulate sludge particles with a particle size of 1 to 10 mm while preventing thixotropy (thixotropic change).Dry powders such as diatomaceous earth, slaked lime, and incinerated ash are added to the surface of the sludge particles as a dewatering aid during granulation. Japanese Patent Publication No. 59-48160 describes a technique in which the tempered sludge particles are coated as sludge particles, and the tempered sludge particles are compressed and subjected to secondary dehydration to reduce the water content of the sludge cake to 60% or less. The basic idea of this method is to allow the water contained in the sludge cake to quickly reach the surface of the sludge particles when it is granulated and squeezed, and to take advantage of the high water permeability of the dry powder. A sludge cake with a low water content can be easily obtained in a short time by coating the sludge grains with dry powder to quickly guide the contained water that has reached the surface of the sludge grains to the filter medium. In the above technology, by improving the water permeability of the dry powder, it is possible to improve the drainage of the contained water when the tempered sludge grains are compressed and subjected to secondary dewatering. It is preferable to produce a sludge cake with an even lower water content.As a technique for improving the water permeability of such dry powder, it is possible to
% of aluminum oxide or aluminum hydroxide, or spraying phosphoric acid into the incinerator so that 0.5% or more of phosphorus remains in the incinerated ash (Japanese Patent Application No. 1-5612) (No. 1 and Japanese Patent Application No. 1-21823). [Problems to be Solved by the Invention] Since the purpose of dewatering sludge is to incinerate and dispose of the sludge, there is a strong need to reduce the required cost.6 However, in the prior art described above, aluminum oxide, aluminum hydroxide, It is necessary to add similar chemicals such as phosphoric acid, and in particular, the amount of primary dewatered sludge cake processed at sewage treatment plants is several hundred tons per day, and as a result, the amount of chemicals added is 1. It weighs several tons per day. Therefore, there was a problem in that the cost required for dewatering the sludge did not go down as expected.

本発明は、上記した問題点を解消して、乾燥粉の透水性
を低コストで改善した汚泥の造粒脱水方法を提供するも
のである. [課題を解決するための手段] 本発明者は上記課題を解決するために研究を重ね、乾燥
粉の透水性がその粒径に依存することを見出して、本発
明を完成するに至った。
The present invention solves the above problems and provides a method for granulating and dewatering sludge that improves the water permeability of dry powder at low cost. [Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventor has conducted repeated research and has found that the water permeability of dry powder depends on its particle size, thereby completing the present invention.

すなわち本発明は、一次脱水した汚泥ケーキと乾燥粉と
を造粒機に供給し、該造粒機において前記乾燥粉を被覆
した調質汚泥粒を形成し、該調質汚泥粒を圧搾して二次
脱水する汚泥の造粒脱水方法において、前記乾燥粉とし
て粒径が略10〜10.0μmの乾燥粉を用い、あるい
は前記乾燥粉を造粒機に供給するに先立って乾燥粉中の
例えば略15μm未満の微粉を除去する工程を付加した
、汚泥の造粒脱水方法である. [実施例1 本発明の実施例を図面を用いて説明する.第1図は本発
明の一実施例のフローシ一トであり、この実施例では乾
燥粉として焼却灰を用いており、先ず汚泥は一次脱水a
llによって一次脱水され、一次脱水された汚泥ケーキ
は造粒I12に供給される。造粒機2には、焼却炉4か
ら排出された後分級機9にかけて微粉を除去した焼却灰
も、同時に供給される.造粒機2において汚泥ケーキは
、その中のキャビラリー(水路)を破壊しない程度に破
砕され、転勤によって粒状に造粒され、且つ転勤してい
る間に汚泥粒表面に微粉を除去した焼却灰が被覆されて
ゆく. 造粒機2で造粒され且つ微粉を除去した焼却灰で被覆し
た調質汚泥粒は,次の二次脱水a3に供給されて調質汚
泥粒中の含有水が更に圧搾脱水される。二次脱水機3と
してはより強力な圧搾力を必要とするために、プレス式
あるいは水圧ダイアフラム式の圧搾脱水機が使用される
6二次脱水を終えた汚泥・ケーキは焼却炉4に投入され
て焼却される。焼却炉4は流動層式焼却炉でもよいし、
多段式焼却炉でもよいが,本実際例では流動層式焼却炉
を用いた。
That is, the present invention supplies a primarily dehydrated sludge cake and dry powder to a granulator, forms tempered sludge particles coated with the dry powder in the granulator, and compresses the tempered sludge particles. In a method for granulating and dewatering sludge for secondary dewatering, dry powder having a particle size of approximately 10 to 10.0 μm is used as the dry powder, or prior to supplying the dry powder to a granulator, e.g. This is a sludge granulation and dewatering method that includes an additional step of removing fine particles less than approximately 15 μm in size. [Example 1 An example of the present invention will be explained using the drawings. FIG. 1 is a flowchart of one embodiment of the present invention. In this embodiment, incineration ash is used as the dry powder, and the sludge is first dehydrated by a
The sludge cake that has undergone primary dewatering is supplied to granulation I12. The granulator 2 is also supplied with incinerated ash discharged from the incinerator 4 and subjected to a classifier 9 to remove fine powder. In the granulator 2, the sludge cake is crushed to an extent that does not destroy the cavities (channels) therein, and is granulated into granules by transfer, and incinerated ash from which fine powder is removed from the surface of the sludge particles during transfer. is covered. The tempered sludge particles granulated by the granulator 2 and coated with incineration ash from which fine powder has been removed are supplied to the next secondary dehydration a3, where the water contained in the tempered sludge particles is further compressed and dehydrated. As the secondary dewatering machine 3 requires a stronger squeezing force, a press type or hydraulic diaphragm type compressing dehydrator is used. 6 After the secondary dehydration, the sludge and cake are fed into the incinerator 4. and incinerated. The incinerator 4 may be a fluidized bed incinerator,
Although a multistage incinerator may be used, a fluidized bed incinerator was used in this practical example.

焼却された汚泥ゲーキは燃焼ガスと焼却灰になるが、焼
却灰は燃焼ガスと共に流動してサイクロン5に送られ、
サイクロン5において燃焼ガス中の粗焼却灰が分離捕集
されて貯留ホッパ7に貯留される。燃焼ガスは次いで電
気集塵a!6に導入され、ここで更に細焼却灰が分離捕
集されて貯留ホッパ8に貯留され、燃焼ガスは大気へ放
出される。
The incinerated sludge becomes combustion gas and incineration ash, but the incineration ash flows together with the combustion gas and is sent to cyclone 5.
Crude incineration ash in the combustion gas is separated and collected in the cyclone 5 and stored in the storage hopper 7. The combustion gas is then electrostatically precipitated a! 6, where the fine incinerated ash is further separated and collected and stored in a storage hopper 8, and the combustion gas is released to the atmosphere.

貯留ホッパ7.8内の焼却灰は、分級機9にかけて分級
される。分級機9は、本実施例では遠心力と空気抵抗と
を利用して分級する回転式分級機を使用した。分級して
微粉を除去した焼却灰は貯留ホッパ10に貯留された後
、造粒1!2へ供給される. 次に第1表は、分級機9による焼却灰の分級結果を、分
級しない焼却灰と比較して示した表であり、焼却灰の粒
径はHe−Neレーザ光の照射によっておこる回折リン
グの大きさによって計測した.同表に示すように分級機
の回転数が5000rpmのときは、脱水助剤として用
いた微粉除去粉の平均粒径は21.2μmであるが、粒
径の範囲はlO〜100μmであった。また分級機の回
転数が6000rpmのときは、微粉除去粉の平均粒径
は16.7μmであるが、粒径の範囲は5〜80μmで
あった.分岐機の回転数5000rpmと6000rp
mとにおける微粉除去粉の平第1表 均粒径及び分級割合の相違は、5000rρmにおいて
微粉として分級されたものの一部が,60QQrpmで
は微粉除去粉側に入り込んだためである6 次に第2図は、分級しない場合と比較した本実施例の効
果を示した図である.図中5000rpmと6000r
pmとは,それぞれの分級機回転数によって微粉を除去
した焼却灰を脱水助剤として用いて二次脱水した場合を
示し、無分級とは、捕集した焼却灰を分級しないでその
まま脱水助剤として用いて二次脱水した場合を示す.し
たがって5000 rpmの場合、6000rpmの場
合、及び無分級の場合の順に焼却灰の平均粒径は小さく
なっている. また第2図縦軸の減水率とは,一次脱水した汚泥ケーキ
が含有している水分の量に対する、二次脱水によってし
ぼり出された水の量の割合である.本実験に使用した一
次脱水した汚泥ケーキの含水率は82%であった.また
横軸の灰添加率とは、一次脱水した汚泥ケーキの重量に
対する焼却灰の添加割合である。
The incinerated ash in the storage hopper 7.8 is passed through a classifier 9 and classified. As the classifier 9, in this embodiment, a rotary classifier that performs classification using centrifugal force and air resistance is used. The incinerated ash from which fine powder has been removed is stored in a storage hopper 10 and then supplied to granulation units 1 and 2. Next, Table 1 shows the results of classifying incinerated ash by the classifier 9 in comparison with unclassified incinerated ash. It was measured by size. As shown in the same table, when the rotation speed of the classifier was 5000 rpm, the average particle size of the fine powder used as a dehydration aid was 21.2 μm, but the particle size range was 10 to 100 μm. Further, when the rotation speed of the classifier was 6000 rpm, the average particle size of the fine powder removed was 16.7 μm, but the particle size range was 5 to 80 μm. Turning machine rotation speed 5000rpm and 6000rpm
The difference in Table 1 average particle diameter and classification ratio of the fines removed powder between M and M is due to the fact that a part of what was classified as fines at 5000rpm entered the fines removed powder side at 60QQrpm6. The figure shows the effect of this example compared to the case without classification. 5000rpm and 6000r in the diagram
pm indicates the case where the incinerated ash from which fine powder has been removed by the rotational speed of each classifier is used as a dehydration aid for secondary dehydration, and "unclassified" means that the collected incinerated ash is directly used as a dehydration aid without being classified. This shows the case where secondary dehydration is performed using Therefore, the average particle size of the incinerated ash becomes smaller in the order of 5000 rpm, 6000 rpm, and no classification. The water reduction rate on the vertical axis in Figure 2 is the ratio of the amount of water squeezed out through secondary dewatering to the amount of water contained in the sludge cake after primary dewatering. The moisture content of the primary dehydrated sludge cake used in this experiment was 82%. Further, the ash addition rate on the horizontal axis is the addition rate of incineration ash to the weight of the primary dehydrated sludge cake.

第2図より明らかなように、5000rpmの場合、6
000rpmの場合、及び無分級の場合の順に、すなわ
ち平均粒径が小さくなるほど、同一の減水率を得るため
に必要な灰添加率は多くなっている.換言すれば,二次
脱水によって所要の減水率を得ようとするときには、微
粉を除去した焼却灰を脱水助剤として添加した方が、所
要の灰量が少なくて済むということである.灰添加量が
少なければ、二次脱水後の汚泥ケーキの容積も少なくな
り、焼却処分あるいは埋立て等においての取扱いが容易
になることは当然である.なお焼却灰中の微粉が透水性
を阻害する原因としては、第lに、微粉になるほどその
形状は球状に近くなって「水路』を形成し難くなること
、第2に、粗粉同士が形成した「水路1に微粉が入り込
んで「水路1を閉塞することのためであると考えられる
. 以上のように、分級機の回転数5000rpmで分.級
した微粉除去粉、6000 rpmで分級した微粉除去
粉、及び無分級のうちでは、5000rpmで分級した
微粉除去粉がもつとも透水性に優れており、その粒径の
範囲は10〜100timであるから、焼却灰として粒
径が略10〜100μmのものを用いることが、二次脱
水での脱水効率の向上に有効であることがわかる. またより一般的には、焼却灰をそのまま造粒機に供給す
るのではなく、造粒機に供給するに先立って、少なくと
も焼却灰中の微粉を除去する工程を付加することが,二
次脱水効率の向上に有効である。同工程においては、焼
却灰中の粗粉の除去を同時に行ってもよい.また少なく
とも微粉を除去する工程においては、安全サイドに考え
て、例えば粒径が略15μm未満の微粉を除去するよう
にすれば、二次脱水効率の向上を図ることができる. なお本実施例では可能な限り閉サイクルとなるように,
汚泥ケーキを焼却した焼却灰を二次脱水時の脱水助剤と
して用いた場合示したが、脱水助剤としては焼却灰に限
らずその他の乾燥粉を利用することもできる7 [発明の効果] 本発明は乾燥粉の透水性がその粒径に依存することを利
用したものであるから、薬品類を脱水助剤として使用す
る場合に比して、汚泥の処理コストが小さくてすむ.ま
た無分級の乾燥粉を脱水助剤として使用する場合に比し
て、少ない添加量で同等の減水率が得ることができ、し
たがって汚泥ケーキの取扱いが容易となる.
As is clear from Figure 2, in the case of 5000 rpm, 6
In the case of 000 rpm and in the case of no classification, that is, as the average particle size becomes smaller, the ash addition rate necessary to obtain the same water reduction rate increases. In other words, when trying to obtain the required water reduction rate through secondary dehydration, the amount of ash required is smaller if incinerated ash from which fines have been removed is added as a dehydration aid. It goes without saying that if the amount of ash added is small, the volume of the sludge cake after secondary dewatering will be small, making it easier to handle in incineration or landfill. The reasons why fine powder in incinerated ash impairs water permeability are: first, the finer the powder, the more spherical it becomes, making it difficult to form "channels"; and second, coarse powder particles form with each other. It is thought that this is due to the fine powder entering into the waterway 1 and clogging the waterway 1.As mentioned above, the fine powder classified at the rotation speed of the classifier at 5000 rpm, and the fine powder classified at 6000 rpm. Among the removed powder and unclassified powder, the fine removed powder classified at 5000 rpm has excellent water permeability, and its particle size ranges from 10 to 100 tim. It can be seen that it is effective to improve the dewatering efficiency in the secondary dehydration by using It is effective to improve the secondary dehydration efficiency by adding at least a step of removing fine powder from the incinerated ash prior to the step.In the same step, coarse powder from the incinerated ash may be removed at the same time. Furthermore, at least in the step of removing fine powder, if, on the safe side, for example, fine powder with a particle size of less than approximately 15 μm is removed, it is possible to improve the secondary dehydration efficiency. So, to make the cycle as closed as possible,
Although the case where the incinerated ash obtained by incinerating the sludge cake is used as a dehydration aid during secondary dehydration is shown, not only incinerated ash but also other dry powders can be used as the dehydration aid.7 [Effects of the invention] Since the present invention takes advantage of the fact that the water permeability of dry powder depends on its particle size, the cost of sludge treatment is lower than when chemicals are used as dewatering aids. Furthermore, compared to the case where unclassified dry powder is used as a dehydration aid, the same water reduction rate can be obtained with a smaller amount of addition, making the sludge cake easier to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の7ローシ〜トであり、第2
図は本発明と従来例とを比較した減水率を示す線図であ
る.
Figure 1 shows seven low seats of one embodiment of the present invention, and the second
The figure is a diagram showing the water reduction rate comparing the present invention and the conventional example.

Claims (4)

【特許請求の範囲】[Claims] (1)一次脱水した汚泥ケーキと乾燥粉とを造粒機に供
給し、該造粒機において前記乾燥粉を被覆した調質汚泥
粒を形成し、該調質汚泥粒を圧搾して二次脱水する汚泥
の造粒脱水方法において、前記乾燥粉として粒径が略1
0〜100μmの乾燥粉を用いたことを特徴とする汚泥
の造粒脱水方法。
(1) The primary dewatered sludge cake and dry powder are supplied to a granulator, and the granulator forms tempered sludge particles coated with the dry powder, and the tempered sludge particles are compressed to form a secondary powder. In the method for granulating and dewatering sludge to be dehydrated, the dry powder has a particle size of approximately 1
A method for granulating and dewatering sludge, characterized in that dry powder of 0 to 100 μm is used.
(2)一次脱水した汚泥ケーキと乾燥粉とを造粒機に供
給し、該造粒機において前記乾燥粉を被覆した調質汚泥
粒を形成し、該調質汚泥粒を圧搾して二次脱水する汚泥
の造粒脱水方法において、前記乾燥粉を造粒機に供給す
るに先立って乾燥粉中の微粉を除去する工程を付加した
ことを特徴とする汚泥の造粒脱水方法。
(2) Supply the primary dewatered sludge cake and dry powder to a granulator, form tempered sludge particles coated with the dry powder in the granulator, and compress the tempered sludge particles to form a secondary A method for granulating and dewatering sludge to be dehydrated, characterized in that a step of removing fine powder from the dry powder is added before the dry powder is supplied to a granulator.
(3)前記乾燥粉中の微粉を除去する工程は、粒径が略
15μm未満の微粉を除去するものである請求項2記載
の汚泥の造粒脱水方法。
(3) The sludge granulation and dewatering method according to claim 2, wherein the step of removing fine powder from the dry powder removes fine powder having a particle size of approximately less than 15 μm.
(4)前記乾燥粉として焼却灰を用いた請求項1、2又
は3記載の汚泥の造粒脱水方法。
(4) The sludge granulation and dewatering method according to claim 1, 2 or 3, wherein incineration ash is used as the dry powder.
JP1311410A 1989-11-29 1989-11-29 Granulating and dewatering method of sludge Pending JPH03169399A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1311410A JPH03169399A (en) 1989-11-29 1989-11-29 Granulating and dewatering method of sludge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1311410A JPH03169399A (en) 1989-11-29 1989-11-29 Granulating and dewatering method of sludge

Publications (1)

Publication Number Publication Date
JPH03169399A true JPH03169399A (en) 1991-07-23

Family

ID=18016869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1311410A Pending JPH03169399A (en) 1989-11-29 1989-11-29 Granulating and dewatering method of sludge

Country Status (1)

Country Link
JP (1) JPH03169399A (en)

Similar Documents

Publication Publication Date Title
US4829678A (en) Sludge treatment process
US4420404A (en) Process for dewatering fine granular materials
JP4191199B2 (en) Waste incineration ash treatment method, sand substitute and crushed stone substitute obtained by the treatment method
JP4501098B2 (en) Method and apparatus for recovering useful particulate matter from waste
JPH03169399A (en) Granulating and dewatering method of sludge
JPH03169400A (en) Granulating and dewatering method of sludge
JP2000197877A (en) Method and apparatus for treating particulate material to which pollutant is adhered
JP2017148720A (en) Processing device and processing method for chlorine-containing dust
JP3211113B2 (en) Method for producing lightweight aggregate from dewatered sludge
JP5052720B2 (en) Incineration ash treatment method
JP2022140541A (en) Method for producing cement raw material
JP4348046B2 (en) Treatment method of kiln exhaust gas dust
JP2001018000A (en) Treatment of sludge and treating device
JP2003073153A (en) Method of disposing incinerated ash
JP4452337B2 (en) Cement wet manufacturing apparatus and method
JPH03146200A (en) Granulation and dehydration of sludge
JPS62224641A (en) Treatment of dust and sludge
KR101845807B1 (en) Manufacturing method of a sludge treatment agent and method to treat a sludge using the same
JPH06134496A (en) Dehydration of sludge in system to utilize sludge as resource
JPH1135350A (en) Production of cement raw material
JP4137291B2 (en) Method for treating particulate matter with contaminants attached
JPH11171605A (en) Production of cement using waste material containing slightly water-soluble chlorine compound
JP7090564B2 (en) Waste incineration ash resource recycling method and resource recycling equipment
JPH10500353A (en) Aggregate manufacturing method
AU5682600A (en) Method for the preparation of fine grain ores