JPH03169292A - Torque detection method for synchronous motor - Google Patents

Torque detection method for synchronous motor

Info

Publication number
JPH03169292A
JPH03169292A JP1306587A JP30658789A JPH03169292A JP H03169292 A JPH03169292 A JP H03169292A JP 1306587 A JP1306587 A JP 1306587A JP 30658789 A JP30658789 A JP 30658789A JP H03169292 A JPH03169292 A JP H03169292A
Authority
JP
Japan
Prior art keywords
axis
signal
synchronous motor
torque
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1306587A
Other languages
Japanese (ja)
Inventor
Yuzo Takakado
祐三 高門
Hiroshi Hayashi
宏 林
Yuji Yamashita
裕司 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Electric Co Ltd
Original Assignee
Shinko Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Electric Co Ltd filed Critical Shinko Electric Co Ltd
Priority to JP1306587A priority Critical patent/JPH03169292A/en
Publication of JPH03169292A publication Critical patent/JPH03169292A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To improve the reliability of detection by performing a vector product operation on the basis of a field flux vector and armature current vector and by detecting the generated torque of a synchronous motor by means of an instantaneous value. CONSTITUTION:A d-axis field flux signal and q-axis field flux signal are generated on the basis of a rotation angle detector 11 for detecting the magnetic pole angle of the revolving field rotor 1F of a synchronous motor SM. A d-axis armature ampere-turn signal and q-axis armature ampere-turn signal are generated on the basis of the output of a current detector 13 for detecting the armature current of the synchronous motor SM. Also, the value of the d-axis field flux signal and that of the q-axis armature ampere-turn signal are multiplied by a multiplier 18, and the value of the q-axis field flux signal and that of the d-axis armature ampere-turn signal are multiplied by a multiplier 19. Both multiplied values are added by an adder 20 for the purpose of performing a torque detection. Thus, the generated torque of the synchronous motor can accurately be detected with a high reliability without any mechanical torque transfer means.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は同期電動機機の発生トルクを、ベクトル演算に
より検出するトルク検出方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a torque detection method for detecting the torque generated by a synchronous electric motor by vector calculation.

〔従来の技術〕[Conventional technology]

同期電動機等のトルク検出は、従来、例えば第4図に示
す如く、3相の同期電動機(SM)1の電動機軸と負荷
(LOAD)2の負荷軸との間に継手3を介してトルク
ピックアップ4を軸結して行ったり、第5図に示す如く
、ロードセル5を用いて行う等、機械的トルク検出手段
を介して行っている。6ば検出信号を増幅する増幅手段
である。
Torque detection of synchronous motors, etc. has conventionally been carried out using torque pickup via a joint 3 between the motor shaft of a three-phase synchronous motor (SM) 1 and the load shaft of a load (LOAD) 2, as shown in FIG. 4, for example. 4, or through a mechanical torque detection means, such as by using a load cell 5 as shown in FIG. 6 is an amplification means for amplifying the detection signal.

上記1〜ルクピックアップ4を用いるトルク検出は、上
記負荷軸と上記電動機軸間のねしれトルクをトルクビッ
クアップ4に加えて検出させるものであり、ロードセル
5を用いるトルク検出は、電動機固定子を矢印方向に回
動可能に軸7で止め、その反作用トルクをロードセル5
に加えて検出させる。
Torque detection using the torque pickup 4 described above is to detect torsional torque between the load shaft and the motor shaft in addition to the torque pickup 4, and torque detection using the load cell 5 is to detect the torsion torque between the load shaft and the motor shaft in addition to the torque pickup 4. It is stopped by a shaft 7 so as to be rotatable in the direction of the arrow, and the reaction torque is transferred to a load cell 5.
be detected in addition to.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

トルクピックアップ4やロードセル5等を用いるトルク
検出では、これらの他にトルクを伝達させる機械的伝達
手段を必要とするので、余分なスペースが必要になり、
機構的に複雑となるので、費用もかかるという経済的な
問題がある上、この機械的伝達手段のガタ、共振、脈動
トルクに起因する検出誤差を生じやすく、また、この機
械的伝達手段は、ロボット等においては、その運動性能
を阻害する原因となり、トルックビックアップ4を用い
る場合には、高速電動機システムに使用することができ
ないという問題があった。
Torque detection using the torque pickup 4, load cell 5, etc. requires mechanical transmission means for transmitting torque in addition to these, so extra space is required.
Since it is mechanically complex, there is an economical problem in that it is expensive, and detection errors are likely to occur due to play, resonance, and pulsating torque of this mechanical transmission means. In robots and the like, there is a problem in that it impairs the motion performance of the robot, and when using the torque pull-up 4, it cannot be used in a high-speed electric motor system.

本発明は上記従来の問題を解消するためになされもので
、ACサーボモー夕として多用されてる同期電動機の発
生トルクを、機械的なトルク伝達手段を使用することな
く、正確に、かつ高い信頼性をもって検出することがで
きる同期電動機のトルク検出方法を提供することを目的
とする。
The present invention was made in order to solve the above-mentioned conventional problems, and it is possible to accurately and reliably transfer the torque generated by a synchronous motor, which is often used as an AC servo motor, without using mechanical torque transmission means. An object of the present invention is to provide a method for detecting the torque of a synchronous motor.

〔課題を解決するための手段〕[Means to solve the problem]

この発明は上記目的を達或するため、同期電動機の回転
界磁ロータの磁極角を検出する回転角検出器が送出する
回転角信号に基づいて、d軸界磁東信号とq軸界磁束信
号を生成し、同期電動機の電機子電流を検出する電流検
出器の出力に基づいてd軸電機子アンペアターン信号と
q軸電機子アンペアターン信号を生成し、上記d軸界磁
束信号の値とq軸電機子アンペアターン信号の値を乗算
するととにも上記q軸界磁束信号の値とd軸電機子アン
ペアターン信号の値を乗算し、上記両果算値を加算して
トルク検出を行う構或としたものである。
In order to achieve the above object, the present invention detects a d-axis field east signal and a q-axis field flux signal based on a rotation angle signal sent out by a rotation angle detector that detects the magnetic pole angle of a rotating field rotor of a synchronous motor. A d-axis armature ampere turn signal and a q-axis armature ampere turn signal are generated based on the output of a current detector that detects the armature current of the synchronous motor, and the value of the d-axis field flux signal and q A structure in which torque is detected by multiplying the value of the shaft armature ampere turn signal, multiplying the value of the q-axis field magnetic flux signal and the value of the d-axis armature ampere turn signal, and adding the above product values. It was something like that.

〔作用〕[Effect]

本発明では、界磁東ベクトルと電機子電流ベクトルに基
づいて、ベクトル外積演算行い、同期電動機の発生トル
クを瞬時値で検出する。
In the present invention, vector cross product calculation is performed based on the field east vector and the armature current vector, and the torque generated by the synchronous motor is detected as an instantaneous value.

〔実施例〕〔Example〕

以下、本発明の1実施例を図面を参照して説明する。 Hereinafter, one embodiment of the present invention will be described with reference to the drawings.

第1図および第2図において、10は制御回路であって
、回転角検出器11、同期電動機SMとともにブラシレ
ス同期電動機を構或しており、3相給電線12を通して
同期電動機SMの電機子巻線IU,IV、IWに3相交
流電力を供給する。
In FIGS. 1 and 2, 10 is a control circuit, which together with a rotation angle detector 11 and a synchronous motor SM constitutes a brushless synchronous motor. Three-phase AC power is supplied to lines IU, IV, and IW.

回転角検出器l1は、例えばエンコーダやレゾルバ等で
あって、回転界磁ロータIFの磁極N, Sの回転角を
検出する検出器であって、同期電動機SMの回転界磁ロ
ータIFと同期して回転し、回転角信号(パルス信号)
θを送出する。13は同期電動機SMの電機子巻線IU
、IV、IWに供給される電流iu,iv、jw(以下
、iaで総称する)を検出する電流検出器(1相分を示
してある)である。14はトルク演算器であって、界磁
東設定器15、磁束ベクトル演算器16、3相/2相変
換器17、乗算器I8、19、加算器20を備えている
The rotation angle detector l1 is, for example, an encoder or a resolver, and is a detector that detects the rotation angle of the magnetic poles N and S of the rotating field rotor IF, and is synchronized with the rotating field rotor IF of the synchronous motor SM. The rotation angle signal (pulse signal)
Send θ. 13 is the armature winding IU of the synchronous motor SM
, IV, and IW (hereinafter collectively referred to as ia) are current detectors (one phase is shown). Reference numeral 14 denotes a torque calculator, which includes a field east setting device 15, a magnetic flux vector calculator 16, a three-phase/two-phase converter 17, multipliers I8 and 19, and an adder 20.

この制御回路10は、同期電動機SMの速度またはトル
クを速度指令S“またはトルク指令T゛が指令する値に
制御する制御回路であって、交流電源ACの電力を直流
変換したのち可変電圧・可変周波数の3相交流に変換す
る電力変換器とその制御装置を有しており、該制御装置
は上記回転角信号θを取り込んで、この回転角信号θに
一致した位相の位相信号を作威し、上記電力変換器が出
力する電流iaの瞬時値がこの回転角θに基づく位相を
持つ3相交流となるように該電力変換器を制御するとと
もに電流iaを指令値に追従させるフィードバック制御
を行う。
This control circuit 10 is a control circuit that controls the speed or torque of the synchronous motor SM to a value commanded by a speed command S" or a torque command T", and after converting the power of an AC power supply AC to DC, a variable voltage/variable It has a power converter that converts the frequency into three-phase alternating current, and its control device, and the control device takes in the rotation angle signal θ and generates a phase signal whose phase matches the rotation angle signal θ. , controls the power converter so that the instantaneous value of the current ia output by the power converter becomes a three-phase AC having a phase based on the rotation angle θ, and performs feedback control to make the current ia follow the command value. .

トルク演算器14の界磁東設定器15は、磁束ベクトル
演算器16は、回転角信号θを入力して、界磁ロータI
Fの回転中心を原点とする静止直交座標系(第3図に示
すd軸とq軸)上の回転界磁束41Fの2相ベクトル信
号を生成する。
The field east setter 15 of the torque calculator 14 inputs the rotation angle signal θ to the magnetic flux vector calculator 16, and sets the field rotor I.
A two-phase vector signal of the rotating field flux 41F on a stationary orthogonal coordinate system (d-axis and q-axis shown in FIG. 3) having the origin at the rotation center of F is generated.

(It)dF一ΦF cosθ・・・・・・・・・・・
・(11(1)qF−=ΦFsinθ・・・・・・・・
・・・・(2)但し、ΦF :界磁束の最大振幅 θ一ωt,ω:角速度 3相2相変換器15は電流検出器l2の出力を人力して
、上記座標系上に設定した電機子アンペアターン(回転
ベクトル)I[{A”の下記2相のベクトル信号を生或
する。
(It)dF-ΦF cosθ・・・・・・・・・・・・
・(11(1)qF−=ΦFsinθ・・・・・・・・・
...(2) However, ΦF: Maximum amplitude of field flux θ - ωt, ω: Angular velocity 3-phase 2-phase converter 15 manually inputs the output of current detector l2 and converts the electric machine set on the above coordinate system. The following two-phase vector signal of the child ampere turn (rotation vector) I[{A'' is generated.

π BIdA=N−IA cos  (ωt +     
+ψ)  ・− (3)2 π nlqA=N−I A sjn  ( (L) t +
     +ψ)  ・・(4)2 但し、N・IIA一酊八 :電機子アンペアターン■A
 :電機子電流ベクトル 1A :電機子電流の最大振幅 N :電機子巻線の巻数 ψ :相差角 今、無損失の理想的な同期電動機を考えた場合、Nを電
機子巻線IAの巻数として、電機子アンペアターンIH
A ” =NXII^であるので、同期電動機SMの発
生トルクT1は、 T”−II{^” X@F” 一(MFXIHqA−4
+qFXIHdAπ 一ΦF  −f{A cos  ωt  −sin  
(  ωt+     +ψ)2 π ΦF  −1{A sin  ωt  −cos  (
ωt+     +ψ)2 π =ΦF  −HAsin  (     +ψ)2 一ΦF−HAcos  ψ一ΦF −N・ ■ACOS
 ψ・ ・ ・ ・ ・ ・ ・ ・ ・ ・(5)l
・ルク演算器14の乗算器17はr @dPX IHq
AJを演算し、乗算器18はr@qFXI[{dJを演
算し、両乗算器の出力が加算器l9で加算されるので、
この加算器19の出力は同期電動機SMの発生トルクの
瞬時値Tを与える。
π BIdA=N−IA cos (ωt +
+ψ) ・− (3)2 π nlqA=N−I A sjn ((L) t +
+ψ) ... (4) 2 However, N・IIA one-man: armature ampere turn ■A
: Armature current vector 1A : Maximum amplitude of armature current N : Number of turns of armature winding ψ : Phase difference angle Now, when considering an ideal lossless synchronous motor, let N be the number of turns of armature winding IA. , armature ampere turn IH
Since A" = NXII^, the generated torque T1 of the synchronous motor SM is T"-II{^"X@F" - (MFXIHqA-4
+qFXIHdAπ 1ΦF −f{A cos ωt −sin
(ωt+ +ψ)2 π ΦF −1{A sin ωt −cos (
ωt+ +ψ)2 π =ΦF −HAsin (+ψ)2 1ΦF−HAcos ψ1ΦF −N・■ACOS
ψ・ ・ ・ ・ ・ ・ ・ ・ ・ (5) l
・The multiplier 17 of the rk calculator 14 is r @dPX IHq
AJ is calculated, and the multiplier 18 calculates r@qFXI[{dJ, and the outputs of both multipliers are added by the adder l9, so
The output of this adder 19 provides an instantaneous value T of the torque generated by the synchronous motor SM.

このように、本実施例では、回転角検出器11の出力を
信号処理して界磁東ベクトル(!I)dF,◇qFを作
威し、電流検出器13の出力を信号処理して電機子アン
ペアターンベクトルn{dA、If{qAを作威し、こ
れらのベクトル外積演算によりトルク検出を行うので、
前記した従来の機械的伝達手段は不要であり、同期電動
機SMを直接的に検出ので、従来に比して、極めて高精
度なトルク検出を行うことができる。
In this way, in this embodiment, the output of the rotation angle detector 11 is signal-processed to produce the field east vector (!I) dF, ◇qF, and the output of the current detector 13 is signal-processed to generate the electrical equipment. Since the child ampere turn vectors n{dA and If{qA are generated and torque is detected by calculating the cross product of these vectors,
Since the conventional mechanical transmission means described above is not required and the synchronous motor SM is directly detected, torque can be detected with extremely high precision compared to the conventional method.

しかも、この検出値はトルク瞬時値であるので、同期電
動機SMを使用する高速応答制御システムのフィードバ
ック値として使用することができる。
Furthermore, since this detected value is an instantaneous torque value, it can be used as a feedback value for a high-speed response control system using the synchronous motor SM.

また、トルク演算器14は電子回路で構威し、上記のよ
うに機械的伝達手段は不要であるから、安価に、かつコ
ンパクトに作ることができ、設置スペースは小さくて済
む。
Furthermore, since the torque calculator 14 is composed of an electronic circuit and does not require a mechanical transmission means as described above, it can be made inexpensively and compactly, and requires only a small installation space.

また、トルク演算器は静止型であり、上記のように機械
的伝達手段は不要であるから、同期電動機SMが高速機
であっても、そのトルク検出に使用することができ、前
記トルクビックアソプのように回転速度による制約を受
けない。
Furthermore, since the torque calculator is of a stationary type and does not require a mechanical transmission means as described above, it can be used to detect the torque of the synchronous motor SM even if it is a high-speed machine. Unlike Sopu, it is not restricted by rotational speed.

〔発明の効果〕〔Effect of the invention〕

本発明は以上説明した通り、ブラシス同期電動機の回転
角検出器の出力信号と電流検出器の出力信号を処理して
ヘク1・ル演算により、同期電動機の発生トルクを検出
する構威としたことにより、従来のトルク検出器を用い
る場合と異なって該トルク検出器に上記発生トルクを伝
達する機械的伝達手段を必要としないので、この機械的
伝達手段に起因する前記検出誤差が無く、従って、極め
て高精度なトルク検出を行うことができるとともに、静
止型であるので、同期電動機の回転速度による使用範囲
の制約を受けることは無く、これらの効果を、安価な費
用で得ることができる利点がある。
As explained above, the present invention is designed to detect the generated torque of the synchronous motor by processing the output signal of the rotation angle detector and the output signal of the current detector of the Brass synchronous motor and performing a hexle calculation. Therefore, unlike when using a conventional torque detector, there is no need for a mechanical transmission means for transmitting the generated torque to the torque detector, so there is no detection error caused by this mechanical transmission means, and therefore, In addition to being able to perform extremely high-precision torque detection, since it is a stationary type, the range of use is not restricted by the rotational speed of the synchronous motor, and the advantage is that these effects can be obtained at a low cost. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示すブロック構威図、第2同
は上記実施例の要部を示す回路図、第3園は同期電動機
の界磁束と電機子アンペアターンのd,q軸ヘクトル図
、第4図および第5図は従来のトルク検出方法を説明す
るための図である。 1一同期電動機、IA一電機子巻線、IF一回転界磁ロ
−ク、12−電流検出器、13−回転角検出器、1 4
−トルク演算器、15−・界磁東設定器、16−3相/
2相変換器、17一磁束ベクトル演算器、l8、l9一
乗算器、20−加算器。
Fig. 1 is a block configuration diagram showing an embodiment of the present invention, Fig. 2 is a circuit diagram showing the main parts of the above embodiment, and Fig. 3 is a diagram showing the field flux of the synchronous motor and the d and q axes of the armature ampere turn. The Hector diagram, FIGS. 4 and 5 are diagrams for explaining the conventional torque detection method. 1 - synchronous motor, IA - armature winding, IF - rotation field loke, 12 - current detector, 13 - rotation angle detector, 1 4
-Torque calculator, 15-・Field east setting device, 16-3 phase/
Two-phase converter, 17 - magnetic flux vector calculator, l8, l9 - multiplier, 20 - adder.

Claims (1)

【特許請求の範囲】[Claims] 同期電動機の回転界磁ロータの磁極角を検出する回転角
検出器が送出する回転角信号と上記磁極の発生磁束とに
基づいて、d軸界磁束信号とq軸界磁束信号を生成し、
同期電動機の電機子電流を検出する電流検出器の出力に
基づいてd軸電機子アンペアターン信号とq軸電機子ア
ンペアターン信号を生成し、上記d軸界磁束信号の値と
q軸電機子アンペアターン信号の値を乗算するととにも
上記q軸界磁束信号の値とd軸電機子アンペアターン信
号の値を乗算し、上記両乗算値を加算してトルク検出を
行うことを特徴とする同期電動機のトルク検出方法。
Generating a d-axis field flux signal and a q-axis field flux signal based on a rotation angle signal sent out by a rotation angle detector that detects a magnetic pole angle of a rotating field rotor of a synchronous motor and the magnetic flux generated by the magnetic pole,
A d-axis armature ampere turn signal and a q-axis armature ampere turn signal are generated based on the output of a current detector that detects the armature current of the synchronous motor, and the value of the d-axis field flux signal and the q-axis armature ampere are calculated. Synchronization characterized in that torque detection is performed by multiplying the value of the turn signal, multiplying the value of the q-axis field flux signal and the value of the d-axis armature ampere turn signal, and adding both of the multiplied values. Electric motor torque detection method.
JP1306587A 1989-11-28 1989-11-28 Torque detection method for synchronous motor Pending JPH03169292A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1306587A JPH03169292A (en) 1989-11-28 1989-11-28 Torque detection method for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1306587A JPH03169292A (en) 1989-11-28 1989-11-28 Torque detection method for synchronous motor

Publications (1)

Publication Number Publication Date
JPH03169292A true JPH03169292A (en) 1991-07-22

Family

ID=17958863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1306587A Pending JPH03169292A (en) 1989-11-28 1989-11-28 Torque detection method for synchronous motor

Country Status (1)

Country Link
JP (1) JPH03169292A (en)

Similar Documents

Publication Publication Date Title
JP3312472B2 (en) Magnetic pole position detection device for motor
US5701065A (en) Method and apparatus for controlling synchronous motor
JPH06165561A (en) Controller for synchronous motor
JP2000102300A (en) Method and device for controlling ac motor
JP3435975B2 (en) Current control unit of rotating electric machine and control device using the same
JP2000166278A (en) Control device of synchronous motor
JP3526846B2 (en) Driving device for stepping motor
JP2003102198A (en) Control method and drive device for stepping motor
JPH03169292A (en) Torque detection method for synchronous motor
JPS5949797B2 (en) AC machine current control method
JP4035991B2 (en) Inverter test device and rotation angle signal generator
JPH03222686A (en) Torque detecting method for synchronous motor
JPH03173388A (en) Torque detector for synchronous motor
US4752725A (en) Control apparatus for three-phase induction motor
JP3674638B2 (en) Induction motor speed estimation method and induction motor drive device
JP3958920B2 (en) Spindle controller
JPH03173387A (en) Controller for synchronous motor
JPH03195385A (en) Torque compensator for iron loss of synchronous motor and torque detector
JPH0632581B2 (en) Induction motor controller
JP3609098B2 (en) Motor constant identification method in vector controller for induction motor
JP2001103799A (en) Control device for synchronous motor
JP3576509B2 (en) Motor control device
Sugimoto et al. Magnetic pole position detection method and control of a brushless DC servomotor with incremental encoder
JP7302140B2 (en) Drive for synchronous reluctance motor
JPH03195387A (en) Individual difference detecting device for field of synchronous motor and torque detector equipped with same device