JPH03169091A - Manufacture of quantum fine line - Google Patents

Manufacture of quantum fine line

Info

Publication number
JPH03169091A
JPH03169091A JP31037389A JP31037389A JPH03169091A JP H03169091 A JPH03169091 A JP H03169091A JP 31037389 A JP31037389 A JP 31037389A JP 31037389 A JP31037389 A JP 31037389A JP H03169091 A JPH03169091 A JP H03169091A
Authority
JP
Japan
Prior art keywords
quantum
layer
impurities
quantum well
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31037389A
Other languages
Japanese (ja)
Inventor
Etsuji Omura
悦司 大村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31037389A priority Critical patent/JPH03169091A/en
Publication of JPH03169091A publication Critical patent/JPH03169091A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To narrow the width of a quantum fine line enough by stacking semiconductor layers of nondope and semiconductor layers doped in high concentration with impurities alternately on a semiconductor substrate, and forming quantum well layers at the cross sections of these semiconductor layers, and then diffusing impurities into the quantum well layers. CONSTITUTION:Undoped semiconductor layers 102 and semiconductor layers 103 doped with impurities in a high concentration are made alternately on a semiconductor substrate 101, and one part each or the whole parts of the semiconductor layers are exposed. And a quantum well layer 110 is laminated on this exposed part, and impurities diffuse from the semiconductor layers 103 doped with impurities, and they disorder the quantum well layer 110 partially, and form quantum fine lines 130 at the parts being not disordered. Hereby, quantum fine lines having narrow widths can be made easily.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、量子細線輻を狭くできるようにした量子細
線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a quantum wire that allows narrowing of the quantum wire convergence.

〔従来の技術〕[Conventional technology]

量子細線の製造方法としては、第2図(a)〜(Q)に
示す方法がこれまでに知られている。この方法は、Ga
As基板101上にMOCVD法あるいはMBE法によ
り、100六程度の厚みのGaAsウエル層および同程
度の厚みのklGaAs(x=0.3程度)バリャ層か
らなる多重量子井戸層110を形成する〔第2図(a)
).次に、熱CVD法によt)SiN膜201を多重量
子井戸[1110の上に形成する。厚みは500六程度
が適当である。次に、通常の写真製版法,あるいは電子
ビーム露光法により窓202を開ける〔第2図(b))
O量子細線を形成するためには、゛窓と窓の間隔は、数
百λ以下にすることが必要である。
As methods for producing quantum wires, the methods shown in FIGS. 2(a) to 2(Q) are known so far. This method uses Ga
A multiple quantum well layer 110 consisting of a GaAs well layer with a thickness of about 1006 and a klGaAs (x=about 0.3) barrier layer with a similar thickness is formed on an As substrate 101 by MOCVD or MBE. Figure 2 (a)
). Next, a) SiN film 201 is formed on the multiple quantum well [1110] by thermal CVD. Appropriate thickness is about 500 mm. Next, the window 202 is opened using a normal photolithography method or an electron beam exposure method [FIG. 2(b)]
In order to form an O quantum wire, it is necessary to set the interval between windows to several hundred λ or less.

次に、Znなどの不純物を閉管あるいは開管拡散法によ
り窓202を通して選択的に多重量子井戸層110に拡
散する。Znが拡散されたZn拡散領域120では、ウ
エル層とバリャ層の平均化した組成となる無秩序化現象
が起こる。Znが拡散されていない部分は結晶成長時の
組成がそのまま残る。この非拡散領域の幅が数百λ以下
であれば、この領域は量子細林130となる〔第2図(
Q)E.この製造方法では、量子細線1 30の太さは
拡散のための窓202の間隔によって決まる。しかしな
がら、通常の写真!!!版法では、窓202の間隔は1
0000スを切ることが精一杯である。電子ビーム露光
法や干渉露光法によっても1000λ程度の窓間隔を得
ることが難しい。量子細線130の性能を引き出すため
には、量子細線幅(言い替えれば拡散窓の間隔)は10
〇五程度にする必要がある。したがって、従来の製造方
法では、量子細il1 30の特徴を充分発揮させるこ
とができなかった。
Next, impurities such as Zn are selectively diffused into the multiple quantum well layer 110 through the window 202 by a closed tube or open tube diffusion method. In the Zn diffusion region 120 where Zn is diffused, a disordering phenomenon occurs in which the composition of the well layer and the barrier layer becomes average. In the portions where Zn is not diffused, the composition at the time of crystal growth remains as is. If the width of this non-diffused region is several hundred λ or less, this region becomes a quantum forest 130 [Fig.
Q)E. In this manufacturing method, the thickness of the quantum wire 130 is determined by the spacing of the windows 202 for diffusion. However, normal photos! ! ! In the printing method, the interval between windows 202 is 1
The best I can do is stay below 0000 seconds. Even with electron beam exposure or interference exposure, it is difficult to obtain a window spacing of about 1000λ. In order to bring out the performance of the quantum wire 130, the quantum wire width (in other words, the distance between the diffusion windows) must be 10
It needs to be around 05. Therefore, with the conventional manufacturing method, the characteristics of the quantum thin film IL130 could not be fully exhibited.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上の説明で明らかなうように、従来の量子細線の製造
方法では、量子細線幅を十分狭くできないという本質的
な問題点があった。
As is clear from the above description, the conventional method for manufacturing quantum wires has an essential problem in that the width of the quantum wires cannot be made sufficiently narrow.

この発明は、上記のような問題点を解決するためになさ
れたもので、量子細線幅を十分狭くすることができる量
子細線の製造方法を得ることを目的とするものである。
This invention was made to solve the above-mentioned problems, and aims to provide a method for manufacturing a quantum wire that can sufficiently narrow the width of the quantum wire.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係る量子細線の製造方法は、半導体基板上に
、非ドープの半導体層と不純物が高濃度にドーピングさ
れた半導体層とを交互に形成する工程と、各半導体層の
断面の一部あるいは全体を露出せしめる工程と、この露
出部分に量子井戸層を積層する工程と、不純物がドーピ
ングされた半導体層から不純物を拡散せしめ、量子井戸
層を部分的に無秩序化して無秩序化されない部分に量子
細線を形成する工程とからなるものである。
A method for manufacturing a quantum wire according to the present invention includes a step of alternately forming an undoped semiconductor layer and a semiconductor layer doped with a high concentration of impurities on a semiconductor substrate, and A process of exposing the entire quantum well layer, a process of stacking a quantum well layer on this exposed part, and a process of diffusing impurities from the impurity-doped semiconductor layer to partially disorder the quantum well layer and place quantum wires in the non-disordered parts. It consists of a step of forming.

〔作用〕[Effect]

この発明においては、半導体基板上に非ドープの半導体
層と、不純物が高濃度にドーピングされた半導体層とを
交互に積層し、これらの半導体層の断面に量子井戸層を
形成し、前記不純物を前記量子井戸層に拡散せしめるこ
とから、不純物が高濃度にドーピングされた半導体層は
、選択拡散の拡散源として働き、量子井戸層に拡散し幅
の狭い量子細線が形成される。
In this invention, undoped semiconductor layers and semiconductor layers heavily doped with impurities are alternately laminated on a semiconductor substrate, a quantum well layer is formed in the cross section of these semiconductor layers, and the impurity is doped. Since the impurity is diffused into the quantum well layer, the semiconductor layer heavily doped with impurities acts as a diffusion source for selective diffusion, and is diffused into the quantum well layer to form a narrow quantum wire.

〔実施例〕〔Example〕

以下、この発明の一実施例を第1図(a),(b)につ
いて説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1(a) and 1(b).

第1図(a)において、101はGaAs基板、102
は非ドーブのAjGaAg層、103は不純物が高濃度
にドーピングされたp”−GaAs層、104はG a
As層である。
In FIG. 1(a), 101 is a GaAs substrate, 102
103 is an undoped AjGaAg layer, 103 is a p''-GaAs layer heavily doped with impurities, and 104 is a Ga
It is an As layer.

次に動作について説明する。Next, the operation will be explained.

まず、(100)面を主面に持っGaAs基板101上
に、第1図(a)のように、非ドープのAIGaAa層
102、および不純物がilrs度にドープされたp 
+−G a A s層103をMBE法などで成長する
。2つの層の組数は、1組でもよいし、必要に応じて多
数組になっても構わない。非ドープのAt’GaAs層
102の厚みが、従来例の拡散のための窓202に相当
することになる。
First, as shown in FIG. 1(a), on a GaAs substrate 101 having the (100) plane as its main surface, an undoped AIGaAa layer 102 and a p layer doped with impurities to an ilrs degree are formed.
The +-GaAs layer 103 is grown by MBE method or the like. The number of pairs of two layers may be one, or there may be many pairs as necessary. The thickness of the undoped At'GaAs layer 102 corresponds to the conventional diffusion window 202.

したがって、この非ドープのAt’GaAs層1o2の
厚みが所望の量子細線の幅を決定するわけである。量子
細線の効果を十分得るためには、非ドーブのAIGaA
s層102の厚みは100ないし500λが適当である
。この程度の厚みであれば、MBE法あるいはMOCV
D法で何等の困難もなく成長できる。p”−GaAs層
103の厚みも非ドープのAjGaAs層102の厚み
と同程度に選べばよい。p”−GaAs層103の不純
物濃度は、この層が拡散源として働くように5×101
婁cm−”ないしIXIO”am−’程度にしておく。
Therefore, the thickness of this undoped At'GaAs layer 1o2 determines the desired width of the quantum wire. In order to fully obtain the effect of quantum wires, it is necessary to use non-doped AIGaA.
The appropriate thickness of the s-layer 102 is 100 to 500λ. If the thickness is around this level, MBE method or MOCV method can be used.
You can grow without any difficulties using method D. The thickness of the p''-GaAs layer 103 may be selected to be approximately the same as the thickness of the undoped AjGaAs layer 102.The impurity concentration of the p''-GaAs layer 103 is set to 5×101 so that this layer acts as a diffusion source.
Set it to about 婁cm-" to IXIO"am-'.

ドーパントとしてはZnが適当である。Zn is suitable as a dopant.

次に、この成長済みのウエ八を<100>方向に沿って
臂開し、第1図(b)のように、(110)面105を
形成する。この新たに形成された(1 1 0)面10
5の上に、再び結晶成長を行い量子細線が形成されるべ
き多重量子井戸層110を成長させる。このウエハを、
例えば砒素圧下のもとで850℃で数時間熱処理を行う
と、Znがいわゆるアウトディフーズし、多重量子井戸
層110内に非ドーブのA4!GaAs層102の厚み
で決定される間隔で、Zn拡散領域120が形成される
。このZn拡散領域120は、無秩序化が起こっている
。Zn拡散領域120で囲まれた領域は無秩序化が起こ
っておらず、幅数百大の量子細線130となる。量子細
線130の幅は、拡散源となる量子井戸層構造中の非ド
ープのA4’GaAs層102の厚み,および量子細P
$1 30が形成されるべき多重量子井戸層110の厚
みで決定されるが、従来の技術では困難であった数百六
の幅を得られることがこの発明によれば容易であること
があきらかである。
Next, this grown wafer is opened at the arms along the <100> direction to form a (110) plane 105 as shown in FIG. 1(b). This newly formed (1 1 0) plane 10
On top of 5, crystal growth is performed again to grow a multiple quantum well layer 110 in which quantum wires are to be formed. This wafer
For example, when heat treatment is performed at 850° C. for several hours under arsenic pressure, Zn undergoes so-called out-diffusion, and non-doped A4! Zn diffusion regions 120 are formed at intervals determined by the thickness of the GaAs layer 102. This Zn diffusion region 120 is disordered. The region surrounded by the Zn diffusion region 120 is not disordered and becomes a quantum wire 130 with a width of several hundreds. The width of the quantum wire 130 is determined by the thickness of the undoped A4'GaAs layer 102 in the quantum well layer structure serving as a diffusion source, and the quantum wire P.
Although the thickness of $1.30 is determined by the thickness of the multi-quantum well layer 110 to be formed, it is clear that according to the present invention, it is easy to obtain a width of several hundred six, which was difficult with conventional techniques. It is.

なお、上記の説明では、高濃度にドーピングされる領域
をGaAsJijとしたが、AjGaAsを高濃度にド
ーピングしてもよい。また、全層をGakSMとして高
濃度にドーピングする領域、非ドープの領域をそれぞれ
形成しても構わない。
In the above description, the region to be doped with a high concentration is GaAsJij, but AjGaAs may be doped with a high concentration. Alternatively, the entire layer may be made of GakSM to form a heavily doped region and an undoped region.

高濃度層をZnドーピングによる一種類としたが、Si
とZnを交互にドーピングしてもよい。
One type of high concentration layer was made by Zn doping, but Si
and Zn may be doped alternately.

この場合、できあがった量子細線は、いわゆるnipi
構造とすることができる。非ドーブのAjGaAs層1
02の厚みは必ずしも一定である必要はなく、周期的に
厚みを変化させてもランダムに変化させてもよい。
In this case, the resulting quantum wire is the so-called nipi
It can be a structure. Undoped AjGaAs layer 1
The thickness of 02 does not necessarily need to be constant, and may be changed periodically or randomly.

また、臂開によって形成された(1 1 0)面に第2
回目の結晶成長を行ったが、必ずしも(110)面であ
る必要はなく、例えば、エッチング等により形成された
面に第2回目の多重量子井戸構造を形成しても同様の効
果が得られる乙とは明白である。また、量子細線130
が形成されるべき量子井戸層は、多重に限定されるもの
ではなく、単一の量子井戸層であっても良い。ここでは
説明の都合上GaAsを例に上げたが、ほかの半導体、
例えばI pP,I nGaAs1S i,Geなどに
も適用できることは明らかである。
In addition, a second
Although the second crystal growth was performed, it does not necessarily have to be the (110) plane; for example, the same effect can be obtained by forming a second multiple quantum well structure on the plane formed by etching etc. It is obvious. In addition, quantum wire 130
The quantum well layer to be formed is not limited to multiple quantum well layers, but may be a single quantum well layer. For convenience of explanation, GaAs is used as an example here, but other semiconductors,
It is clear that the present invention can also be applied to IpP, InGaAs1S i, Ge, etc., for example.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明は、半導体基板上に非ド
ープの半導体層と不純物が高濃度にドーピングされた半
導体層とを交互に形成する工程と、各半導体層の断面の
一部あるいは全体を露出せしめる工程と、この露出部分
に量子井戸層を積層する工程と、不純物がドーピングさ
れた半導体層から不純物を拡散せしめ、量子井戸層を部
分的に無秩序化して無秩序化されない部分に量子細線を
形成する工程とからなるので、数百大あるいはそれ以下
の幅を持つ量子細線が容易に形成できるという効果が得
られる。
As explained above, the present invention includes a process of alternately forming undoped semiconductor layers and semiconductor layers heavily doped with impurities on a semiconductor substrate, and a process of forming a part or the entire cross section of each semiconductor layer. A step of exposing the quantum well layer, a step of stacking a quantum well layer on this exposed portion, and a step of diffusing impurities from the impurity-doped semiconductor layer to partially disorder the quantum well layer and form quantum wires in the non-disordered portions. Since the process consists of the following steps, it is possible to easily form a quantum wire having a width of several hundred or less.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による量子細線の製造方法
を説明する模式図、第2図は従来の量子細線の製造方法
を示す模式図である。 図において、101はGaAs基板、102はAjGa
As層、103はp”−GaAs層、104はG aA
s層、110は多重量子井戸層、120はZn拡散領域
、130は量子細線である。 なお、各図中の同一符号は同一または相当部分を示す。
FIG. 1 is a schematic diagram illustrating a method for manufacturing a quantum wire according to an embodiment of the present invention, and FIG. 2 is a schematic diagram showing a conventional method for manufacturing a quantum wire. In the figure, 101 is a GaAs substrate, and 102 is an AjGa substrate.
As layer, 103 is p''-GaAs layer, 104 is GaA
110 is a multi-quantum well layer, 120 is a Zn diffusion region, and 130 is a quantum wire. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に、非ドープの半導体層と不純物が高濃度
にドーピングされた半導体層とを交互に形成する工程と
、前記各半導体層の断面の一部あるいは全体を露出せし
める工程と、この露出部分に量子井戸層を積層する工程
と、前記不純物がドーピングされた半導体層から不純物
を拡散せしめ、量子井戸層を部分的に無秩序化して無秩
序化されない部分に量子細線を形成する工程とからなる
ことを特徴とする量子細線の製造方法。
A step of alternately forming an undoped semiconductor layer and a semiconductor layer doped with a high impurity concentration on a semiconductor substrate, a step of exposing a part or the entire cross section of each semiconductor layer, and the exposed portion and a step of diffusing impurities from the impurity-doped semiconductor layer to partially disorder the quantum well layer and form quantum wires in the non-disordered portions. Characteristic method for producing quantum wires.
JP31037389A 1989-11-28 1989-11-28 Manufacture of quantum fine line Pending JPH03169091A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31037389A JPH03169091A (en) 1989-11-28 1989-11-28 Manufacture of quantum fine line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31037389A JPH03169091A (en) 1989-11-28 1989-11-28 Manufacture of quantum fine line

Publications (1)

Publication Number Publication Date
JPH03169091A true JPH03169091A (en) 1991-07-22

Family

ID=18004470

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31037389A Pending JPH03169091A (en) 1989-11-28 1989-11-28 Manufacture of quantum fine line

Country Status (1)

Country Link
JP (1) JPH03169091A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299881A (en) * 1991-03-28 1992-10-23 Hikari Gijutsu Kenkyu Kaihatsu Kk Quantum thin line laser

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04299881A (en) * 1991-03-28 1992-10-23 Hikari Gijutsu Kenkyu Kaihatsu Kk Quantum thin line laser

Similar Documents

Publication Publication Date Title
DE60034841T2 (en) A semiconductor light-emitting device consisting of a III-V nitride compound
US5051786A (en) Passivated polycrystalline semiconductors quantum well/superlattice structures fabricated thereof
JPS61172381A (en) Inp group compound semiconductor device
JPH033364A (en) Semiconductor device
KR930004240B1 (en) Semiconductor substrate including strained layer supperlattice
US11888090B2 (en) Semiconductor light-emitting element and method of producing semiconductor light-emitting element
JPH03169091A (en) Manufacture of quantum fine line
JPS6394615A (en) Manufacture of vertical type semiconductor super lattice
DE19635571A1 (en) Method for producing a carbon-doped compound semiconductor layer
JP2006505134A (en) Quantum well mixing in semiconductor optical devices
JPH01296673A (en) Iii-v compound semiconductor device
JP3067877B2 (en) Semiconductor laser device and method of manufacturing the same
JP2533777B2 (en) Method for manufacturing one-dimensional quantum wire
JPH0434920A (en) Hetero epitaxial growth method for group iii-v compound semiconductor on different type board
JPH02119195A (en) Processing semiconductor crystal and manufacture of semiconductor device using the same
JPH02113579A (en) Bipolar thermoelectronic transistor
JPS6373583A (en) Manufacture of semiconductor laser
JPH0423471A (en) Manufacture of vertical superplattice element
JPH03219672A (en) Manufacture of quantum thin wire
JPH02306668A (en) Semiconductor device with quantum fine wire and manufacture thereof
JPH06314851A (en) Hetero boundary with reduced resistance
JPH043483A (en) Manufacture of semiconductor quantum well wire and quantum well box and device using said manufacture
JPS63179513A (en) Manufacture of quaternary mixed crystal of immiscible compound semiconductor
JPH07249757A (en) Production of epitaxial wafer for hemt
JPS60189984A (en) Semiconductor laser and manufacture thereof