JPH03169044A - Semiconductor integrated circuit - Google Patents

Semiconductor integrated circuit

Info

Publication number
JPH03169044A
JPH03169044A JP31012689A JP31012689A JPH03169044A JP H03169044 A JPH03169044 A JP H03169044A JP 31012689 A JP31012689 A JP 31012689A JP 31012689 A JP31012689 A JP 31012689A JP H03169044 A JPH03169044 A JP H03169044A
Authority
JP
Japan
Prior art keywords
film
oxide film
bpsg
groove
insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31012689A
Other languages
Japanese (ja)
Other versions
JP2671529B2 (en
Inventor
Yoshiaki Hisamune
義明 久宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1310126A priority Critical patent/JP2671529B2/en
Publication of JPH03169044A publication Critical patent/JPH03169044A/en
Application granted granted Critical
Publication of JP2671529B2 publication Critical patent/JP2671529B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a silicon substrate from being short-circuited to an interconnection or the like which is formed during a transfer to a next process even when a second-layer insulator used to fill up a groove region surrounded by a first-layer insulator is overteched by a method wherein the first-layer insulator formed on an inner wall of a groove made in an element isolation region of a semiconductor substrate forms a sidewall. CONSTITUTION:Grooves 2 are made in an element isolation region of a P-type silicon substrate 1; inner walls of the grooves 2 are oxidized; after that, an oxide film 7 and a phosphate glass (BPSG) film 8 containing boron are formed one after another; the BPSG film 8 is made to reflow by a heat treatment; the grooves 2 are filled up completely. The BPSG film 8 and the oxide film 7 are etched back one after another by a dry etching operation by using CHF3 gas; an active region of the substrate 1 is exposed. At this etching-back operation, an etch rate of the oxide film 7 is smaller than an etch rate of the BPSG film 8; the oxide film is left as sidewalls 9 in the groove parts in the silicon substrate after the etchingback operation. Thereby, it is possible to prevent that a gate electrode interconnection formed in the next or later process is short-circuited to the substrate 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体集積回路の素子分離法に関し、特に従来
の選択酸化法(LOGOS)に代る溝分離法(トレンチ
・アイソレーション)に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device isolation method for semiconductor integrated circuits, and more particularly to a trench isolation method as an alternative to the conventional selective oxidation method (LOGOS).

〔従来の技術〕[Conventional technology]

従来のトレンチ・アイソレーションは、第2図に示すよ
うに、a)半導体基板1の素子分離領域に?i’l7 
2を形成し、b)r/42の内壁に薄い熱酸化膜3を形
戒した後、化学気相或長法(CVD)あるいは塗布法に
より絶縁膜4を埋込み、C)絶縁物4をリアクティブイ
オンエッチング等の手法を用いてエッチバックすること
により上記半導体基板表面の活性化領域を露呈させると
いう工程から或立っている。エッチバックの制御性を高
めるために、第3図に示すように、半導体基板1上に形
成した多結晶シリコン層5をエッチングのストッパーと
し、エッチバック後に除去するという手段をとる場合も
ある。(例えば、O.Kudo他著, IEDMtec
hnical digest.67−70頁,1984
年:K.Sekiya他著,Symp VLSI Te
ch.Dig.87−88頁,1986年)〔発明が解
決しようとする課題〕 この従来のトレンチ・7イソーレションは、溝を埋込ん
だ絶縁物のエッチバックにおける終点検出が困難なため
、絶縁物がオーバエッチングされ、次工程以降に形或さ
れる配線と基板が短絡するという問題点があった。また
、ストッパーを用い制御性よくエッチバックを行う場合
にも、ストッパー層の形或,除去等の工程が追加され、
プロセスの複雑化や製造コストの上昇という問題点があ
った。
Conventional trench isolation, as shown in FIG. i'l7
b) After forming a thin thermal oxide film 3 on the inner wall of r/42, an insulating film 4 is buried by chemical vapor deposition (CVD) or a coating method; It consists of a step of exposing the active region on the surface of the semiconductor substrate by etching back using a technique such as active ion etching. In order to improve the controllability of the etchback, as shown in FIG. 3, a method may be used in which the polycrystalline silicon layer 5 formed on the semiconductor substrate 1 is used as an etching stopper and is removed after the etchback. (For example, O. Kudo et al., IEDMtec
hnical digest. pp. 67-70, 1984
Year: K. Sekiya et al., Symp VLSI Te
ch. Dig. (pp. 87-88, 1986) [Problems to be Solved by the Invention] In this conventional trench 7 isolation, it is difficult to detect the end point during etchback of the insulator in which the trench is buried, so the insulator may be over-etched. However, there was a problem in that the wiring formed in the next process and the substrate were short-circuited. Furthermore, when performing etchback with good control using a stopper, additional steps are required to shape or remove the stopper layer.
There were problems in that the process became more complicated and the manufacturing cost increased.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の素子分離は、半導体基板の素子分離領域に形戒
された溝が、溝に内接する第1層の絶縁物と第1層の絶
縁物に囲まれた溝領域を埋設する第2層の絶縁物とによ
り、埋込まれていることを特徴とする。ここで、本発明
の素子分離は、1)半導体基板の素子分離領域に溝を形
或し、2)前記溝を第lの絶縁物と第2層の絶縁物とに
より埋込み、3)溝を埋込んだ絶縁物を所望の量だけエ
ッチバックすることにより形成されるが、エッチバック
において第1層の絶縁物のエッチング速度より第2層の
絶縁物のエッチング速度の方が大きくなるような2種類
の絶縁物を選ぶことにより、第1層の絶縁物を溝内壁の
サイドウォールとして形戒できる特徴をもつ。
In the device isolation of the present invention, a trench formed in the device isolation region of a semiconductor substrate is formed into a first layer of insulator inscribed in the trench and a second layer that buries the trench region surrounded by the first layer of insulator. It is characterized by being embedded with an insulator. Here, the element isolation according to the present invention involves 1) forming a groove in the element isolation region of a semiconductor substrate, 2) filling the groove with a first insulator and a second layer of insulator, and 3) forming the groove. It is formed by etching back the buried insulator by a desired amount, but the second layer of insulator is etched back so that the etching rate of the second layer of insulator is higher than the etching rate of the first layer of insulator. By selecting the type of insulator, the first layer of insulator can be used as a sidewall of the inner wall of the groove.

〔作用〕[Effect]

木発明の素子分離は、半導体基板の素子分離領域に形戒
された溝の内壁に形或された第1層の絶縁物がサイドウ
ォールを形或することにより、第1層の絶縁物に囲まれ
た溝領域を哩設する第2層の絶縁物がオーバエッチされ
た場合でも、シリコン基板と次工程以降に形或される配
線等との短絡を防止するという作用がある。
In the device isolation of the invention, the first layer of insulating material formed on the inner wall of a groove formed in the device isolation region of the semiconductor substrate forms sidewalls, so that the device is surrounded by the first layer of insulating material. Even if the second layer of insulating material covering the groove region is overetched, there is an effect of preventing short circuits between the silicon substrate and wiring formed in subsequent steps.

〔実施例〕〔Example〕

次冫こ本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第l図は本発明の一実施例のMOSトランジスタに用い
るトレンチ・アイソレーションのプロセス・フロー断面
図である。まず、a)P型シリコン基板1の素子分離領
域に溝2を形或する。次いでb)溝の内壁を酸化した後
、酸化膜7とBPSG膜8をCVD法により順次形成し
、900℃の熱処理によりBPSG膜8をリフローし溝
2を完全に埋込む。次にc) C H F 3ガスを用
いたドライエッチングによりBPSG膜8と酸化膜7を
順次エッチバックし、シリコン基板lの活性化領域を露
呈する。上記エッチバックにおいては、酸化膜7のエッ
チング速度の方がBPSG膜8のエッチング速度よりも
小さいので、エッチバック後シリコン基板溝部にサイド
ウォール9として残る。第4図に示すように、このザイ
ドウォール9は、付工程以降で形戒されるゲート電極配
線10とP型シリコン基板1との短絡を防止する効果を
持つ。
FIG. 1 is a sectional view of a process flow of trench isolation used in a MOS transistor according to an embodiment of the present invention. First, a) a trench 2 is formed in the element isolation region of the P-type silicon substrate 1; Then b) After oxidizing the inner wall of the trench, an oxide film 7 and a BPSG film 8 are sequentially formed by CVD, and the BPSG film 8 is reflowed by heat treatment at 900° C. to completely fill the trench 2. Next, c) the BPSG film 8 and the oxide film 7 are sequentially etched back by dry etching using C H F 3 gas to expose the active region of the silicon substrate l. In the above etchback, the etching rate of the oxide film 7 is lower than the etching rate of the BPSG film 8, so that sidewalls 9 remain in the silicon substrate trench after the etchback. As shown in FIG. 4, this Zide wall 9 has the effect of preventing a short circuit between the gate electrode wiring 10 and the P-type silicon substrate 1, which will occur after the attachment process.

第5図は本発明の他の実施例のプロセス・フロー断面図
である。本実施例では、浮遊ゲート電極を有する不揮発
性メモリーに適用したもので、浮遊ゲートと制御ゲート
と素子分離領域とが自己整合的に形或されるメガビット
級のEFROMセルを作ることとして、プロセスフロー
を説明スる。
FIG. 5 is a process flow sectional view of another embodiment of the present invention. This example is applied to a non-volatile memory having a floating gate electrode, and the process flow is described to create a megabit class EFROM cell in which a floating gate, a control gate, and an element isolation region are formed in a self-aligned manner. Explain.

まず、a)選択酸化膜(LOCOS酸化膜)20によっ
て、周辺回路部の素子分離を行ったP型シリコン基板1
上に第1ゲート酸化膜21,第l多結晶シリコン膜22
,第2ゲート酸化膜23,第2多結晶シリコン膜24を
順次形或する。次いで、b)前記多層膜24,23,2
2.21およびシリコン基板1を異方性ドライエッチン
グにより連続してエッチングし、溝2をセルアレイ部の
素子分離領域に形或する。かかるエッチングの寸法は、
例えば1 6Mb i t  EPROMを製造する場
合は、素子分離幅0.7μm,深さ1.5μmの溝を形
戊する。
First, a) a P-type silicon substrate 1 with element isolation in the peripheral circuit section using a selective oxide film (LOCOS oxide film) 20;
A first gate oxide film 21 and a first polycrystalline silicon film 22 are formed on the top.
, a second gate oxide film 23, and a second polycrystalline silicon film 24 are sequentially formed. Then, b) the multilayer film 24, 23, 2
2.21 and the silicon substrate 1 are successively etched by anisotropic dry etching to form grooves 2 in the element isolation regions of the cell array section. The dimensions of such etching are
For example, when manufacturing a 16 Mbit EPROM, a trench with an element isolation width of 0.7 μm and a depth of 1.5 μm is formed.

続いて、減圧CVD法により膜厚0.1〜0.2μmの
酸化膜7、0. 5 〜0. 8 p mのBPSG膜
8を形或し、900℃の熱処理によりBPSG膜8をリ
フウーシ、溝2を埋込む。次に、C)前記BPSG膜8
および酸化膜7をドライエッチングによりエッチバック
し、第2多結晶シリコン膜240表面を露呈する。最後
に、d)シリサイド膜25をスパッタリング法により形
或し、制御ゲート電極となるワード線をバターニングす
る。かかるソート線のバターニゾダの際に、下層の第2
多結晶シリコン膜24,第1多結晶シリコン膜22など
が順次エッチングされ自己整合的にワード線,制御ゲー
ト電極,浮遊ゲート電極が形或される。形或されたセル
アレイを第5図に示す。当該手法によれば、エッチバッ
クにおける酸化膜7のエッチング速度の方がEPSG膜
8のエッチング速度より小さいことから、BPSG膜が
オーバエッチングされても満2の内壁に酸化膜7のサイ
ドウォール9が形或される。このサイドウォール9は、
次工程で形成されるワード線26と浮遊ゲート電極27
との短絡を回避させている。
Subsequently, oxide films 7 and 0.0.0 μm in thickness are formed by low pressure CVD. 5 ~ 0. A BPSG film 8 having a thickness of 8 pm is formed, and the BPSG film 8 is refined by heat treatment at 900° C., and the trench 2 is filled. Next, C) the BPSG film 8
Then, the oxide film 7 is etched back by dry etching to expose the surface of the second polycrystalline silicon film 240. Finally, d) the silicide film 25 is formed by sputtering, and word lines that will become control gate electrodes are patterned. When sorting the sorting line, the second layer of the lower layer
The polycrystalline silicon film 24, first polycrystalline silicon film 22, etc. are sequentially etched to form word lines, control gate electrodes, and floating gate electrodes in a self-aligned manner. The shaped cell array is shown in FIG. According to this method, the etching rate of the oxide film 7 during etch-back is lower than the etching rate of the EPSG film 8, so even if the BPSG film is over-etched, the sidewalls 9 of the oxide film 7 are not formed on the inner walls of the BPSG film. be shaped. This side wall 9 is
Word line 26 and floating gate electrode 27 to be formed in the next process
This avoids short circuits.

第5図(b)に示した溝の埋込み工程を、BPSG単層
膜のみにより行う従来の方法では、メモリセルトランジ
スタの歩留りが70%である。これに対して、本実施例
で示した酸化膜およびBPSG膜の二層膜によって埋込
みを行うと、上記歩留りは95%以上となり飛躍的に向
上する。
In the conventional method in which the trench filling step shown in FIG. 5(b) is performed using only a BPSG single layer film, the yield of memory cell transistors is 70%. On the other hand, when the embedding is performed using the two-layer film of the oxide film and the BPSG film as shown in this embodiment, the yield is dramatically improved to 95% or more.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、トレンチ素子分離におけ
る溝の埋込み絶縁物を2層とし、溝内壁に接した絶縁物
層でサイドウォールを形成したので、後工程で形成され
る電極,配線等と前記溝内壁との短絡を回避し製品歩留
りを向上するという効果を有する。
As explained above, in the present invention, the insulating material buried in the trench in trench element isolation is two-layered, and the sidewall is formed of the insulating material layer in contact with the inner wall of the trench, so that the electrodes, wiring, etc. formed in the later process This has the effect of avoiding short circuit with the inner wall of the groove and improving product yield.

4

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a’)〜(c)は本発明の一実施例のプロセス
・フロー断面図、第2図(a)〜(c)、第3図(a)
〜(d)は従来のプロセス・フロー断面図、第4図は第
1図に示したトレンチ分離法を用いて形戒したトランジ
スタ見取図、第5図(a)〜(d)は本発明の他の実施
例のプロセスフロー断面図、第6図は第5図に示したプ
ロセスフローによリ形成したEPROMセルアレーの見
取図である。 l・・・・・・半導体基板(P型シリコン基板)、2・
・・・・・溝、3・・・・・・熱酸化膜、4・・・・・
・絶縁物、5・・・・・・多結晶シリコン、6・・・・
・・熱酸化膜、7・・・・・・CVD酸化膜、8・・・
・・・BPSG膜、9・・・・・・サイドウォール、1
0・・・・・・ゲート電極配線、11・・・・・・N+
拡散層(ソース)、l2・・・・・・N+拡散層(ドレ
イン)、20・・・・・・LOCOS,21・・・・・
・第1ゲート酸化膜、22・・・・・・第1多結晶シリ
コン膜、23・・・・・・第2ゲート酸化膜、24・・
・・・・第2多結晶シリコン膜、25・・・・・・シリ
サイド膜(ワード線)、26・・・・・・ワード線、2
7・・・・・・浮遊ゲート電極、28・・・・・・制御
ゲート電極、29・・・・・・ビット線。
Figures 1 (a') to (c) are cross-sectional views of the process flow of an embodiment of the present invention, Figures 2 (a) to (c), and Figure 3 (a).
- (d) are cross-sectional views of conventional process flow, Fig. 4 is a schematic diagram of a transistor formed using the trench isolation method shown in Fig. 1, and Fig. 5 (a) - (d) are cross-sectional views of conventional process flow. FIG. 6 is a cross-sectional view of the process flow of the embodiment. FIG. 6 is a sketch of an EPROM cell array formed according to the process flow shown in FIG. l... Semiconductor substrate (P-type silicon substrate), 2.
...Groove, 3...Thermal oxide film, 4...
・Insulator, 5... Polycrystalline silicon, 6...
...Thermal oxide film, 7...CVD oxide film, 8...
...BPSG film, 9...Side wall, 1
0...Gate electrode wiring, 11...N+
Diffusion layer (source), l2...N+ diffusion layer (drain), 20...LOCOS, 21...
・First gate oxide film, 22...First polycrystalline silicon film, 23...Second gate oxide film, 24...
...Second polycrystalline silicon film, 25...Silicide film (word line), 26...Word line, 2
7...Floating gate electrode, 28...Control gate electrode, 29...Bit line.

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板表面に選択的に形成された溝に絶縁物
が埋込まれている素子分離を有する半導体集積回路にお
いて、前記絶縁物が材質の異なる2層の絶縁物からなり
、かつ前記2層の絶縁物のうち前記溝の内壁に接した絶
縁物が側壁を形成していることを特徴とする半導体集積
回路(2)前記2層の絶縁膜が酸化シリコン膜(SiO
_2)およびホウ素含有燐ガラス(BPSG)であるこ
とを特徴とする請求項1記載の半導体集積回路
(1) In a semiconductor integrated circuit having element isolation in which an insulator is embedded in a groove selectively formed on the surface of a semiconductor substrate, the insulator is composed of two layers of insulators made of different materials; (2) The semiconductor integrated circuit is characterized in that the insulator in contact with the inner wall of the groove among the insulators in the layer forms the sidewall. (2) The two insulator layers are silicon oxide films (SiO
_2) and boron-containing phosphorous glass (BPSG), the semiconductor integrated circuit according to claim 1.
JP1310126A 1989-11-28 1989-11-28 Semiconductor integrated circuit Expired - Lifetime JP2671529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1310126A JP2671529B2 (en) 1989-11-28 1989-11-28 Semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1310126A JP2671529B2 (en) 1989-11-28 1989-11-28 Semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPH03169044A true JPH03169044A (en) 1991-07-22
JP2671529B2 JP2671529B2 (en) 1997-10-29

Family

ID=18001489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1310126A Expired - Lifetime JP2671529B2 (en) 1989-11-28 1989-11-28 Semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JP2671529B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226466A (en) * 1992-02-10 1993-09-03 Nec Corp Manufacture of semiconductor device
JPH05251552A (en) * 1992-03-09 1993-09-28 Nec Corp Manufacturing for semiconductor device
KR100236720B1 (en) * 1997-04-10 2000-01-15 김영환 Element separating method of semiconductor device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115344A (en) * 1984-06-29 1986-01-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming semiconductor structure
JPS6249643A (en) * 1985-04-19 1987-03-04 Nec Corp Semiconductor device and its manufacture
JPS63237542A (en) * 1987-03-26 1988-10-04 Toshiba Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115344A (en) * 1984-06-29 1986-01-23 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of forming semiconductor structure
JPS6249643A (en) * 1985-04-19 1987-03-04 Nec Corp Semiconductor device and its manufacture
JPS63237542A (en) * 1987-03-26 1988-10-04 Toshiba Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226466A (en) * 1992-02-10 1993-09-03 Nec Corp Manufacture of semiconductor device
JPH05251552A (en) * 1992-03-09 1993-09-28 Nec Corp Manufacturing for semiconductor device
KR100236720B1 (en) * 1997-04-10 2000-01-15 김영환 Element separating method of semiconductor device

Also Published As

Publication number Publication date
JP2671529B2 (en) 1997-10-29

Similar Documents

Publication Publication Date Title
US7329575B2 (en) Semiconductor device and semiconductor device manufacturing method
US7674673B2 (en) Semiconductor device and manufacturing method thereof
US6168984B1 (en) Reduction of the aspect ratio of deep contact holes for embedded DRAM devices
JP3703885B2 (en) Semiconductor memory device and manufacturing method thereof
US6734060B2 (en) Semiconductor integrated circuit device and process for manufacturing
KR19990023196A (en) Trench insulating structure forming method and semiconductor device and manufacturing method thereof
JP4550185B2 (en) Method for manufacturing DRAM device
US4514233A (en) Method of making improved aluminum metallization in self-aligned polysilicon gate technology
US5998249A (en) Static random access memory design and fabrication process featuring dual self-aligned contact structures
JP2006261193A (en) Semiconductor memory device and its manufacturing method
KR100325472B1 (en) Manufacturing Method of DRAM Memory Cells
US6414375B1 (en) Semiconductor device with metal silicide film on partial area of substrate surface and its manufacture method
US6812092B2 (en) Method for fabricating transistors having damascene formed gate contacts and self-aligned borderless bit line contacts
JPH10223858A (en) Semiconductor memory device and manufacture thereof
JP2000208729A5 (en)
JP2002299281A (en) Semiconductor device and manufacturing method therefor
US6071773A (en) Process for fabricating a DRAM metal capacitor structure for use in an integrated circuit
JPH03169044A (en) Semiconductor integrated circuit
JPH11330431A (en) Manufacture for nonvolatile semiconductor memory device
JPH1197529A (en) Manufacture of semiconductor device
JP2003297951A (en) Manufacturing method of semiconductor integrated circuit device
KR0141949B1 (en) Manufacturing method of semiconductor device
JP2002151664A (en) Manufacturing method for semiconductor integrated circuit device
JPH11145460A (en) Manufacture of semiconductor device
JPH11354737A (en) Semiconductor device and its manufacture