JPH03167401A - Method for measuring thickness of rolled strip plate - Google Patents

Method for measuring thickness of rolled strip plate

Info

Publication number
JPH03167401A
JPH03167401A JP1307194A JP30719489A JPH03167401A JP H03167401 A JPH03167401 A JP H03167401A JP 1307194 A JP1307194 A JP 1307194A JP 30719489 A JP30719489 A JP 30719489A JP H03167401 A JPH03167401 A JP H03167401A
Authority
JP
Japan
Prior art keywords
thickness
roll
rolling roll
rolling
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1307194A
Other languages
Japanese (ja)
Other versions
JP2829065B2 (en
Inventor
Keisuke Monno
門野 恵介
Hiroshi Nakano
浩 中野
Motohiro Hirata
平田 基博
Etsuji Hino
樋野 悦司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=17966174&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH03167401(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP1307194A priority Critical patent/JP2829065B2/en
Publication of JPH03167401A publication Critical patent/JPH03167401A/en
Application granted granted Critical
Publication of JP2829065B2 publication Critical patent/JP2829065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To enhance measuring accuracy by utilizing a plate-thickness converting expression based on mass-flow constant rule, using the measured values of the peripheral velocities of first and second rolls and preceding rates, and computing the plate thickness of the second roll. CONSTITUTION:Peripheral velocities VRA1 and VRA2 of an input-side roll 9A and a final-stage roll 9B are measured with pulse generators 7. Plate thicknesses H1 and Hout are measured with a gamma-ray thickness gage 5 and an X-ray thickness gage 6 which are attached in front of the roll 9A and at the rear of the roll 9B. Then, an output-side computed plate thickness value hout is obtained based on an actually measured value H1 in an output-end plate-thickness operator 21 by using the peripheral velocities VRA1 and VRA2 and preceding rates f1 and f2 of the rolls 9A and 9B and utilizing a converting expression based on a mass-flow constant rule. In a measured-plate-thickness-value evaluating device 22, the computed plate thickness value hout and an actually measured plate thickness value Hout are compared. When the difference is larger than a plate- thickness allowance error hout which is inputted from a setting device 1, an alarm signal is outputted to an upper process computer 23 as the abnormality of the apparatus.

Description

【発明の詳細な説明】[Detailed description of the invention] 【産業上の利用分野】[Industrial application field]

本発明は、圧延帯板の板厚測定方法に係り、特に、連続
圧延機で圧延される帯板を加工中に板厚測定を行う際に
、厚さ測定データを出力すると共に、厚さ測定器の異常
があった場合には直ちに検出して計測異常アラーム信号
を出力することによって板厚不良の圧延帯板を製造し続
けてしまうことを防止するのに好適な、圧延帯板の板厚
測定方法の改良に関する.
The present invention relates to a method for measuring the thickness of a rolled strip, and in particular, when measuring the thickness of a strip rolled in a continuous rolling mill while processing the strip, the present invention outputs thickness measurement data and measures the thickness of the strip. The thickness of the rolled strip is suitable for preventing the continued production of rolled strips with poor thickness by immediately detecting any abnormality in the equipment and outputting a measurement abnormality alarm signal. Concerning improvements in measurement methods.

【従来の技術】[Conventional technology]

従来、連続圧延機で加工中に圧延帯板の板厚測定方法と
してX線厚み計や放射線厚み計等で測定する方法が行わ
れている. 一方、特公昭49−46270では次のような技術が開
示されている.それは、第5図のように帯板18がデフ
レクタロール31を経由して巻取リール10へ巻取られ
るような構造で、帯板18の進行量に比例した量でデフ
レクタロール31と巻取リール10が回転するようにな
っている.そして、このデフレクタロール31と巻取リ
ール10には回転角を測定する測定器が設けられている
.巻取リール10に帯板18がD2まで巻かれた、ある
時点からスタートして帯板18がL1の長さとL2の長
さだけ送り込まれたときのデフレクタロールの回転角を
それぞれθ1及びθ2、巻収ゾールの回転角をそれぞれ
ψ1及びψ2とすると次式か成り立つ. L + = D 2 / 2・ψ++t/4π・ψ12
= D + / 2・θ1      ・・・(1)L
 2 = D 2 / 2・ψ2+t/4π・ψ22=
D I /2・θ2      ・・・(2)この(1
)、(2)式からD2を消去ずると、t={2πD+(
θ2ψ1−θ1ψ2)}/ψ1ψ2《ψ2−ψ1)  
・・・(3)となり、帯板の平均厚みtが求められる.
一方、特公昭50−22415では次のような抜術が開
示されている.それは、第5図のように帯板18がデフ
レクタロール31を経由して巻取リール10へ巻取られ
るような楕遣で、帯板18の進行量に比例した量でデフ
レクタロール31と巻取リール10が回転するようにな
っている.そして、このデフレクタロール31と巻取リ
ール10には回転角を測定する測定器が取付けられてい
る.帯板18の進行速度が一定のとき、デフクレタロー
ル31は一定の速度で回転するが、一方、巻取リール1
0は帯板18の進行して巻き取られるラップ数が増大す
るのに従って1回転当たり帯板18の厚さの量だけ半径
が増加するため、回転速度は遅くなっていく.それで、
デフレクタロール31と巻取リール10の回転速度の比
の変化の勾配から、帯板18の板厚を求めている.一方
、特開昭54−58462では次のような技術が開示さ
れている.それは、前記特公昭50−22415とほぼ
同様で、前記特公昭50−22415がデフレクタロー
ル31と巻取リール10の回転速度の比の変化の勾配か
ら帯板18の板厚を求めるにあたり、巻取リールの半径
を初期値としているため、測定開始時点を新規の巻取リ
ールに巻取り開始した時に限定されていたものを、特開
昭54−58462では測定開始時点の巻取リールの半
径を用いることで、任意の時刻に測定開始できるように
して板厚の測定を行っている.
Conventionally, the thickness of a rolled strip is measured using an X-ray thickness meter or radiation thickness meter during processing in a continuous rolling mill. On the other hand, the following technology is disclosed in Japanese Patent Publication No. 49-46270. As shown in FIG. 5, the strip plate 18 is wound onto the take-up reel 10 via the deflector roll 31, and the deflector roll 31 and the take-up reel are moved by an amount proportional to the amount of advance of the strip plate 18. 10 is designed to rotate. The deflector roll 31 and the take-up reel 10 are provided with a measuring device for measuring the rotation angle. The rotation angles of the deflector roll when the strip plate 18 is fed by the lengths L1 and L2 starting from a certain point when the strip plate 18 is wound up to D2 on the take-up reel 10 are respectively expressed as θ1 and θ2. If the rotation angles of the winding and collecting sole are respectively ψ1 and ψ2, the following equation holds. L + = D 2 / 2・ψ++t/4π・ψ12
= D + / 2・θ1 ... (1) L
2 = D 2 / 2・ψ2+t/4π・ψ22=
D I /2・θ2 ... (2) This (1
), by eliminating D2 from equation (2), t={2πD+(
θ2ψ1−θ1ψ2)}/ψ1ψ2《ψ2−ψ1)
...(3), and the average thickness t of the strip can be found.
On the other hand, the following extraction technique is disclosed in Japanese Patent Publication No. 50-22415. As shown in FIG. 5, the strip 18 is wound onto the take-up reel 10 via the deflector roll 31, and the deflector roll 31 and the take-up are taken up by an amount proportional to the amount of advance of the strip 18. The reel 10 is set to rotate. A measuring device for measuring the rotation angle is attached to the deflector roll 31 and the take-up reel 10. When the advancing speed of the strip plate 18 is constant, the differential creta roll 31 rotates at a constant speed, but on the other hand, the take-up reel 1
0, as the strip plate 18 advances and the number of wraps to be wound increases, the radius increases by an amount equal to the thickness of the strip plate 18 per revolution, so the rotation speed becomes slower. So,
The thickness of the strip plate 18 is determined from the slope of the change in the rotational speed ratio of the deflector roll 31 and the take-up reel 10. On the other hand, Japanese Patent Laid-Open No. 54-58462 discloses the following technology. This is almost the same as the above-mentioned Japanese Patent Publication No. 50-22415, and when the above-mentioned Japanese Patent Publication No. 50-22415 calculates the plate thickness of the strip plate 18 from the gradient of the change in the rotational speed ratio of the deflector roll 31 and the take-up reel 10, Since the radius of the reel is used as the initial value, the measurement start point was limited to when winding was started on a new take-up reel, but in JP-A-54-58462, the radius of the take-up reel at the time of the start of measurement is used. This allows the measurement of plate thickness to be started at any time.

【発明が解決しようとする問題点】[Problems to be solved by the invention]

しかしなから、X線厚み計、放射線厚み計等の測定器は
、板厚の微少偏差は正確に測定できるが、板厚の絶対量
を直接測定することができない.又、放射線源の放射!
l量の減衰等による長期ドリフト等の問題があり、絶対
的な信頼性を得ることは難しい.それで、一般に、信頼
性を向上させるため、これらの測定器の他に別の測定手
段によるバックアップを取っている. 又、特公昭49−46270、特公昭50−22415
、特開昭54−58462はいずれもバックアップロー
ル又は最終圧延ロールの回転速度を測定して帯板の圧延
速度を求めているが、これらバックアップロールや最終
圧延ロールが帯板に対してスリップすると正しい圧延速
度を求めることはできない.一般にバックアップロール
は、最終圧延ロールに比べてスリップが多い.又、最終
圧延ロールによる圧延速度の測定についても張力等の圧
延条件が変化すると先進率が変化し圧延ロールの回転速
度と圧延速度の比率が変化してしまい、測定値にばらつ
きが発生してしまう.
However, although measuring instruments such as X-ray thickness gauges and radiation thickness gauges can accurately measure minute deviations in plate thickness, they cannot directly measure the absolute amount of plate thickness. Also, the radiation of radiation sources!
There are problems such as long-term drift due to attenuation of the amount of l, making it difficult to obtain absolute reliability. Therefore, in order to improve reliability, these measuring instruments are generally backed up by other measuring methods. Also, Special Publication No. 49-46270, Special Publication No. 50-22415
, JP-A-54-58462 both measure the rotational speed of the backup roll or the final rolling roll to determine the rolling speed of the strip, but it is correct that the backup roll or the final rolling roll slips with respect to the strip. It is not possible to determine the rolling speed. In general, backup rolls have more slip than the final rolling roll. Furthermore, when measuring the rolling speed using the final rolling roll, if the rolling conditions such as tension change, the advance rate changes and the ratio between the rotational speed of the rolling roll and the rolling speed changes, causing variations in the measured values. ..

【発明の目的1 本発明は、前記従来の問題点に鑑みてなされたものであ
って、板厚測定に必要な帯板の速度の測定を安定した方
法と状態で行い、圧延条件が変化しても適宜測定値を補
正し板厚測定精度の向上を図ると共に、万一、この帯板
の速度測定や板厚測定器等に異常が発生し板厚測定値の
信頼性が低下した場合は、この異常を検出しアラーム信
号を出力することによって、板厚測定の信頼性を向上さ
せることのできる圧延帯板の板厚測定方法を提供するこ
とを第1の目的とする. 本発明は、又、板厚計算に用いる先進率の精度向上を図
り、これによって板厚測定精度を向上することを第2の
目的とする. 【問題点を解決するための手段】 本発明は、連続圧延機で圧延されている帯板の板厚測定
方法において、第1の圧延ロールの近傍で、第1の板厚
を直接測定し、前記第1の圧延ロールで、第1の圧延ロ
ール周速度を測定し、前記第1の圧延ロールとは異なる
第2の圧延ロールで、第2の圧延ロール周速度を測定し
、マスフロー一定則に基づいた板厚換算式を利用して、
前記第1の板厚及び圧延ロール周速度測定値と第1の圧
延ロールの先進率と前記第2の圧延ロール周速度測定値
と第2の圧延ロールの先進率により、第2圧延ロール出
側の板厚を算出することにより、前記第1の目的を達成
したものである. 又、本発明は、連続圧延機で圧延されている帯板の板厚
測定方法での先進率の精度向上方法において、当該圧延
ロールの前方で帯板の前方張カを測定し、当該圧延ロー
ルの後方で帯板の後方張カを測定し、当該圧延ロールの
前方で帯板の入口板厚を測定するか、又は予め設定され
た板厚数値を用いて、入口板厚とし、前記前方張力と前
記後方張力と前記入口板厚を用いて計算し学習させて、
仮先進率とし、前記仮先進率を求めることを複数の圧延
ロールにおいて行い、複数の仮先進率を求め、前記複数
の圧延ロールの周速度をそれぞれ測定し、前記複数の圧
延ロールのそれぞれの前記仮先進率と前記入口板厚と前
記圧延ロール周速度から計算し学習させて、先進率補正
値とし、前記仮先進率と前記先進率補正値とにより、先
進率を求め、該先進率を用いて板厚を計算することによ
り、前記第2の目的を達成したものである.
Purpose of the Invention 1 The present invention has been made in view of the above-mentioned problems of the conventional art. In addition to correcting the measured value as appropriate to improve the accuracy of plate thickness measurement, in the unlikely event that an abnormality occurs in the speed measurement or plate thickness measuring device of this strip and the reliability of the plate thickness measurement decreases. The first object of this invention is to provide a method for measuring the thickness of a rolled strip that can improve the reliability of thickness measurement by detecting this abnormality and outputting an alarm signal. A second object of the present invention is to improve the accuracy of the advance rate used in sheet thickness calculation, thereby improving the accuracy of sheet thickness measurement. [Means for Solving the Problems] The present invention provides a method for measuring the thickness of a strip rolled in a continuous rolling mill, in which the first thickness is directly measured in the vicinity of the first rolling roll; A first rolling roll peripheral speed is measured with the first rolling roll, a second rolling roll peripheral speed is measured with a second rolling roll different from the first rolling roll, and the mass flow is determined according to the constant mass flow law. Using the plate thickness conversion formula based on
Based on the first plate thickness, the measurement value of the circumferential speed of the rolling roll, the advancement rate of the first rolling roll, the measurement value of the circumferential speed of the second rolling roll, and the advancement rate of the second rolling roll, the exit side of the second rolling roll is determined. The first objective was achieved by calculating the thickness of the plate. The present invention also provides a method for improving the precision of the advance rate in a method for measuring the thickness of a strip rolled in a continuous rolling mill, in which the forward tension of the strip is measured in front of the rolling roll, and the tension of the strip is measured in front of the rolling roll. Measure the rear tension of the strip at the rear of the rolling roll, and measure the inlet thickness of the strip at the front of the rolling roll, or use a preset thickness value to determine the inlet thickness, and then calculate the front tension. Calculate and learn using the rear tension and the entrance plate thickness,
A temporary advance rate is determined, and the determination of the temporary advance rate is performed on a plurality of rolls, a plurality of temporary advance rates are determined, the circumferential speed of each of the plurality of rolls is measured, and the circumferential speed of each of the plurality of rolls is determined. Calculate and learn from the provisional advancement rate, the inlet plate thickness, and the rolling roll circumferential speed to obtain an advancement rate correction value, calculate the advancement rate from the provisional advancement rate and the advancement rate correction value, and use the advancement rate. The second objective was achieved by calculating the plate thickness.

【作用】[Effect]

本発明においては、連続圧延機において、通常、板厚制
御のフィードバック用の板厚測定手段としてX線厚み計
や放射線厚み計等が連続圧延機内のF2数箇所に取付け
られていることに着目すると共に、板厚の絶対量を測定
する上でのこれらX線厚み計や放射線厚み計の欠点をカ
バーするため、前記連続圧延機内の複数箇所に取付けら
れた厚み計の数値を相互チェックしなから、これら厚み
計等の異常の有無をチェックし最終的な圧延帯板の板厚
測定値を求める方法である. 従って、従来問題となっていたX線厚み計や放射線厚み
計の信頼性の問題については、2箇以上の前記厚み計の
測定値を相互チェックすることにより解決することがで
きる.又、本発明では、2箇以上の前記厚み計の測定値
の相互チェックをするうえで、圧延ロールの回転速度か
ら得られる圧延帯板の圧延速度値を利用しているが、圧
延ロールと帯板との間にスリップが発生して正しい圧延
速度値を得られなくなった場合においても、厚み計の測
定値の相互チェックの結果から異常を検出することがで
きるので問題とはならない.更に、板厚測定値を求めた
り厚み計相互の異常チェックするうえでの数値計算で圧
延速度としての代替として、圧延ロールの周速度と当該
圧延ロールの先進率を利用しているが、この先進率や計
算のためのパラメータ等を圧延張カや実Mt板厚や圧延
ロール周速度をもとに学習させていくようにすることに
より、板厚測定値の精度や信頼性を向上させることがで
きる. この先進率の学習は、圧延条件の変化のうち先進率への
影響が大きい前方張カ、後方張カの変化を基に行う.一
般に、ある圧延ロールの前方張ヵが増加するとその圧延
ロールの先進率も増加し、後方張力が増加するとその圧
延ロールの先進率は減少することが実験的に知られてい
る.
In the present invention, we focus on the fact that in continuous rolling mills, X-ray thickness gauges, radiation thickness gauges, etc. are usually installed at several locations on the F2 in the continuous rolling mill as means for measuring plate thickness for feedback of plate thickness control. At the same time, in order to cover the shortcomings of these X-ray thickness gauges and radiation thickness gauges in measuring the absolute amount of plate thickness, the values of the thickness gauges installed at multiple locations in the continuous rolling mill should be mutually checked. This method checks for abnormalities in these thickness gauges, etc., and determines the final thickness measurement of the rolled strip. Therefore, the reliability problem of X-ray thickness gauges and radiation thickness gauges, which has been a problem in the past, can be solved by mutually checking the measured values of two or more thickness gauges. Further, in the present invention, the rolling speed value of the rolled strip obtained from the rotational speed of the rolling roll is used to mutually check the measured values of two or more thickness gauges. Even if it becomes impossible to obtain the correct rolling speed value due to slippage between the rolling plate and the plate, this will not be a problem as the abnormality can be detected from the results of mutual checking of the measured values of the thickness gauge. Furthermore, the circumferential speed of the rolling roll and the advance rate of the rolling roll are used as substitutes for the rolling speed in numerical calculations for obtaining plate thickness measurements and checking for abnormalities between thickness gauges. By learning the rate and parameters for calculation based on the rolling tension, actual Mt plate thickness, and rolling roll circumferential speed, it is possible to improve the accuracy and reliability of plate thickness measurements. can. Learning of this advance rate is performed based on changes in the front tension and rear tension, which have a large effect on the advance rate among changes in rolling conditions. In general, it is experimentally known that when the front tension of a certain roll increases, the advance rate of that roll also increases, and when the rear tension increases, the advance rate of that roll decreases.

【実施例】【Example】

以下、本発明の第1実施例を第1図を用いて詳細に説明
する. この第1実施例では、連続圧延機内で最終段圧延ロール
9Bより前方に、γ線厚み計5を備え当該加工途中箇所
における帯板の板厚の計測を行うと共に、当該加工途中
箇所における圧延速度の近似値を得るため、当該γ線厚
み計5の直後の圧延ロール9Aにパルス発生器7を備え
圧延ロール9Aの周速度の計測を行う. 又、連続圧延機出口にXIl厚み計6を備え連続圧延機
出口である当該箇所における帯板の板厚の計測を行うと
共に、連続圧延機出口箇所における圧延速度の近似を得
るため、当該X線厚み計6の直前の圧延ロール9Bにパ
ルス発生器7を備え圧延ロール9Bの周速度の計測を行
う. 設定器lは押しボタンやキーボード等により板厚計算の
パラメータ等を入力する手段である.出口端板厚演算器
21は、前記γ線厚み計5と2fl所の前記パルス発生
器7の測定値と設定器1で設定された先進率から、出口
@換算の板厚計算値ho u tを求めるものである, 板厚測定値評価器22は、前記出口端換算の板厚計3!
.値ho u tと連続圧延機出口のX線厚み計6の測
定値}{outを比較して設定器1で設定された板厚許
容誤差設定値により評価を行うものである. 以下に本発明の第1実施例の作用を第1図を用いて説明
する. 入口側圧延ロール9Aと最終段圧延ロール9Bには、各
ロールの周速度の測定を行うためのパルス発生器7が取
付けられており、それぞれの圧延0−ル9A、9Bの周
速度V R A lとvRA2の測定を行う.ス、入口
側圧延ロール9Aの前方と最終段圧延ロール9B後方に
取付けられた厚み計5と6にて板厚H1と}loutを
測定する.出口端板厚演算器21では、前記vR^1、
vR^2、hAtと設定器1から入力された入口側圧延
ロール9Aと最終段圧延ロール9Bの先進率f1、f2
により、入口側圧延ロール9人前方の板厚実測値H1か
ら出口側板厚計算値hou tを求める.この計算方法
は次の通りである.連続圧延機において、機械入口から
取り込まれた帯板は圧延等の加工後、全て出口側に排出
されるということで、マスフロ一一定則が成立するため
、次式が戒立する. VRAI (1+ ft )XHt =VRA2 (1+ fz)xHout・・(4)ここ
で、式変形により、出口端測板厚計算値hOUtを求め
る次式を表わすことができる.hout=Vp^t (
1千f+ )Xlt+/VRA 2 (1千ft ) 
 ・・・(5)これにより、出口端側の板厚計X値ha
 u tが求まる.圧延帯板の板厚を測定するこの第1
実施例では、この計算値ho u tを最終的な板厚測
定値とす゜る.この板厚計算値ho u tと最終段圧
延ロール9B後方のX線厚み計6による実測値HOυt
とは一致するはずである. 板厚測定値評価器22では、計算値板厚houtと実測
値板厚}loutと比較し、その差が設定器lより入力
された設定値である板厚許容誤差Δha u tより大
きいとき、装置の異常として上位プロセスコンピュータ
23ヘアラーム信号を出力する.この異常としては、γ
線厚み計5、X線厚み計6の故障や、圧延ロール9A、
9Bのスリップ等によるパルス発生器7の測定値の異常
が考えられる. このようにatの板厚測定値を利用することで圧延帯板
の板厚測定方法の信頼性を上げることができる. 更に、以下で第2実施例を第2図を用いて説明する. この第2実施例は、第1実施例を基本とし、第1実施例
の入口測γ線厚み計5の数値から出口端板厚へ換算する
板厚計算で用いた先進率を実測データに基づいて学習さ
せていくものである.それで第2実施例の説明は、この
先進率の学習方法について行う. この第2実施例の先進率の学習方法では、入口開圧延ロ
ール9Aの前後それぞれに張力計8を、前方にγ線厚み
計5を、又圧延ロール9A自体にパルス発生器7を配置
し、これらの測定値を仮先進率学習器3に取り込み入口
側圧延ロール9Aの仮先進率を求める.又、同様に最終
段圧延ロール9Bの前後それぞれに張力計8を、又圧延
ロール9B自体にパルス発生器7を配置し、これらの測
定値と共に予め設定された最終段圧延ロール9B前方板
厚設定値を仮先進率学習器3に取り込み最終段圧延ロー
ル9Bの仮先進率を求める.又、前記入口側圧延ロール
9Aと最終段圧延ロール9Bに配置したパルス発生器7
と、入口側圧延ロール9A前方に配置したγ線厚み計5
と最終段圧延ロール9B後方に配置したXa!厚み計6
のそれぞれの測定値と前記入口側圧延ロール9Aと最終
段圧延ロール9Bの仮先進率を先進率補正値学習器2へ
取り込み、先進率補正値を求める.以下に本発明の第2
実施例のうち、先進率の学習の作用を第2図を用いて説
明する. 先進率の学習は、圧延ロールの先進率がその圧延ロール
の前方張力及び後方張力の間数として計算できることを
利用したものである.そして、このように計算された複
数の圧延ロールの先進率を相互に比較補正することによ
って、精度をより向上させることができる.ここで、複
数の先進率を相互に比較補正する前の先進率を仮先進率
とする.まず、前記仮先進率のうち入口側圧延ロール9
Aの仮先進率を求めるために、入口側圧延ロール9Aの
前後にそれぞれ張力計8を配置し、測定値をそれぞれt
r 1、tblとする.又、この入口側圧延ロール9人
前方に配置したγ線厚み計5の測定値をH1とする.又
、この入口側圧延ロール9Aの先進率の予想値folは
設定器1にて予め設定されている,ここで、仮先進率の
実測各種測定値による補正は、仮先進*<補正されたち
の)をf^1とすると、次式で表わすことができる.f
A管=fl>1 +(at /a tr ) t ・A tr t+(a
f/afb)  ・Δ tl,t+ (2}f /みH
〉 1 ・ΔH1・・・《6〉それで、仮先進率学習器
3では、前記計算式に基づいて、前記測定値tf l、
tb1、H1と設定(iifo+により入口側圧延ロー
ル9Aの仮先進率f^1を求める. 同様に、最終段圧延ロール9Bの仮先進率を求める.ま
ず、最終段圧延ロール9Bの前後にそれぞれ張力計8を
配置し、測定値をそれぞれtr s、tbsとする.又
、この最終段圧延ロール9B前方の板厚予想値H5とこ
の最終段圧延ロール9Bの先進率の予想値josは、そ
れぞれ設定器1にて予め設定する.ここで、仮先進率の
実測各種測定値による補正は仮先進率(補正されたもの
)をf^5とすると、入口側圧延ロール9Aと同様に次
式で表わすことができる. fA5”f05 +(af /a tr ) s ・A tr 1+(さ
f/atb)s・Δtb+ +(af/aH)s・AHs  ”(7)それで、仮先
進率学習器3では前記計算式に基づいて、前記測定値t
rs、tbsと設定値H5と fOsにより最終段圧延
ロール9Bの仮先進率f^5を求める.・ 更に、最終段圧延ロール9B後方にX線厚み計6を配置
し測定値をHoutとする.ス、設定器1で設定した学
習器で使用する平滑指数をβとする.又、入口開圧延ロ
ール9Aと最終段圧延ロール9Bに配置したパルス発生
器7で測定した圧延ロール周速度をVRAI、VR^2
とする.先進率補正値学習器2では、前記測定値H+、
Hout,VR^1、vRA2と前記計Xfiaf^+
、f^2と前記設定値βから次の2つの式より先進率補
正値f3嘗を求める. fa  +=(1十f^t)/(1+f^5)X(H*
/Hout) X (VRAI/VRA5)  =<8)fcx1=f
at+β(fα+   fa  +)・・・〈9) ここで、fα゛1は定周期で行われるこの先進率補正値
学習器2の処理で求められた前回処理の先進率補正値で
ある.この(9)式の通り、今回求められた先進率補正
値fα 1と前回先進率補正値fα′1との偏差は平滑
指数βでの重み比率により、前回先進率補正値fa  
tへ累積される.一般に、連続圧延機での先進率は、同
じ圧延条件であっても圧延する帯板の製品板厚や材質が
変わると違った数値になることが実験的に知られている
.それで、この先進率補正値fll1は、それぞれの材
質や板厚の製品毎の先進率補正値fα1のデータとして
材料毎先進率補正値テーブルメモリ20へ格納されてい
る.そして、連続圧延機で圧延している帯板の材質や板
厚が変更されたとき、まず、それまでの加工していた帯
板の先進率補正値fα1をデータ更新のため材料毎先進
率補正値テーブルメモリ20の該当材質、板厚部分へ書
き込み、その後、次に加工する帯板の材質、板厚に該当
するデータを材料毎先進率補正値テーブルメモリ20か
ら読み出す. 第2実施例での先進率の学習方法についての作用の説明
は以上の通りであるが、最終段圧延ロール9Bf&方で
の帯板板厚の計算値ho u tは、板厚演算器16で
の次式に基づいた演算によって得られる, hout=(1+  f^t)/(1+  f^s)x
 ( V R A t / V R^5)X (H1/
 fat )     ・”(10)この圧延帯板の板
厚を測定する第2実施例ではこの帯板板厚の計算値ho
 u tを最終板厚測定値とする. この(10)式は第1実施例の(5)式の板厚を求める
式に該当するものであるが、前記(4)式と比較してみ
ると(10)式には1/fa1という先進率補正値の項
が追加になっている.第2実施例では、この帯板の材質
や板厚による製品の違い毎にこの先進率補正値を複数の
圧延ロールの先進率等をもとに求め、これを板厚計算の
ときに利用することによって板厚測定の精度向上と信頼
性の向上を図っている. なお、本第1実施例は、請求項1の内容説明を行うにあ
たり本第2実施例の構成を簡略したものであり、本第1
実施例と本第2実施例は元来同一のものである. 又、第3図に学習器を用いた先進率の補正を行いなから
計算した出口端板厚計算[houtについての実験デー
タの計算表と、第4図に実験で得られた前記計算値ho
 u tとコイル33での該当部分の板厚実測値を示し
たが、この計算値と実測値との差は、製品許容範囲±0
.6%に比べ十分小さく収めることができた.
Hereinafter, a first embodiment of the present invention will be explained in detail using FIG. In this first embodiment, a gamma ray thickness gauge 5 is provided in front of the final rolling roll 9B in the continuous rolling mill to measure the thickness of the strip at a point in the middle of processing, and to measure the rolling speed at the point in the middle of processing. In order to obtain an approximate value, a pulse generator 7 is provided on the rolling roll 9A immediately after the gamma-ray thickness gauge 5, and the circumferential speed of the rolling roll 9A is measured. In addition, an XIl thickness meter 6 is installed at the outlet of the continuous rolling mill to measure the thickness of the strip at the outlet of the continuous rolling mill, and to obtain an approximation of the rolling speed at the outlet of the continuous rolling mill. A pulse generator 7 is provided on the rolling roll 9B immediately before the thickness gauge 6 to measure the circumferential speed of the rolling roll 9B. The setting device l is a means for inputting parameters, etc. for plate thickness calculation using push buttons, a keyboard, etc. The outlet end plate thickness calculation unit 21 calculates a calculated plate thickness value in terms of exit @ from the gamma ray thickness gauge 5, the measured value of the pulse generator 7 at the 2fl position, and the advance rate set by the setting device 1. The plate thickness measurement value evaluator 22 calculates the plate thickness meter 3! in terms of the outlet end.
.. The value hout is compared with the measured value of the X-ray thickness gauge 6 at the outlet of the continuous rolling mill}{out, and evaluation is performed based on the plate thickness tolerance set value set by the setting device 1. The operation of the first embodiment of the present invention will be explained below using FIG. A pulse generator 7 for measuring the circumferential speed of each roll is attached to the inlet side rolling roll 9A and the final rolling roll 9B, and the circumferential speed of each rolling roll 9A, 9B is determined by the pulse generator 7. Measure l and vRA2. Next, the plate thicknesses H1 and }lout are measured using thickness gauges 5 and 6 installed in front of the inlet side rolling roll 9A and behind the final stage rolling roll 9B. In the outlet end plate thickness calculator 21, the vR^1,
vR^2, hAt and advance rates f1, f2 of the inlet side roll 9A and final stage roll 9B input from the setting device 1
From the measured value H1 of the plate thickness in front of the nine rolling rolls on the inlet side, the calculated value hout of the plate thickness on the outlet side is obtained. The calculation method is as follows. In a continuous rolling mill, the strip taken in from the machine entrance is completely discharged to the exit side after processing such as rolling, and the constant mass flow law is established, so the following equation is established. VRAI (1+ ft ) hout=Vp^t (
1,000ft+)Xlt+/VRA 2 (1,000ft)
...(5) As a result, the plate thickness meter X value ha on the outlet end side
Find ut. This first step to measure the thickness of the rolled strip
In the example, this calculated value hout is used as the final plate thickness measurement value. This plate thickness calculation value ho ut and the actual measurement value HOυt by the X-ray thickness meter 6 behind the final rolling roll 9B
should match. The plate thickness measurement value evaluator 22 compares the calculated plate thickness hout and the measured plate thickness} lout, and when the difference is greater than the plate thickness tolerance Δha ut, which is the set value input from the setting device l, An alarm signal is output to the upper process computer 23 as an abnormality in the equipment. This abnormality is caused by γ
Failure of line thickness gauge 5, X-ray thickness gauge 6, rolling roll 9A,
It is possible that the measurement value of the pulse generator 7 is abnormal due to a slip of the 9B. In this way, the reliability of the method for measuring the thickness of rolled strips can be increased by using the measured thickness of at. Further, a second embodiment will be explained below using FIG. 2. This second embodiment is based on the first embodiment, and the advance rate used in the plate thickness calculation to convert the value of the inlet gamma-ray thickness meter 5 of the first embodiment to the outlet end plate thickness is based on actual measurement data. The purpose is to have children learn by learning from each other. Therefore, the second embodiment will be explained with respect to this advanced rate learning method. In the advanced rate learning method of the second embodiment, a tension gauge 8 is placed before and after the roll roll 9A with an open entrance, a γ-ray thickness gauge 5 is placed in front of the roll roll 9A, and a pulse generator 7 is placed on the roll roll 9A itself. These measured values are taken into the temporary advance rate learning device 3 to determine the temporary advance rate of the inlet side rolling roll 9A. Similarly, tension gauges 8 are placed at the front and rear of the final roll 9B, and a pulse generator 7 is placed on the roll 9B itself, and together with these measured values, the front plate thickness of the final roll 9B is set in advance. The value is taken into the temporary advance rate learning device 3 and the temporary advance rate of the final rolling roll 9B is determined. Further, a pulse generator 7 disposed on the inlet side rolling roll 9A and the final stage rolling roll 9B.
and a gamma ray thickness meter 5 placed in front of the inlet side rolling roll 9A.
and Xa! placed behind the final rolling roll 9B! Thickness total 6
The respective measured values and the tentative advance rates of the inlet side roll 9A and the final stage roll 9B are taken into the advance rate correction value learning device 2, and the advance rate correction value is determined. The second aspect of the present invention will be described below.
Among the examples, the effect of advanced rate learning will be explained using FIG. Learning the advance rate utilizes the fact that the advance rate of a roll can be calculated as the number between the front tension and rear tension of that roll. Then, by comparing and correcting the advanced ratios of a plurality of rolling rolls calculated in this way, accuracy can be further improved. Here, the advanced rate before comparing and correcting multiple advanced rates is the provisional advanced rate. First, the inlet side rolling roll 9 of the provisional advance rate is
In order to obtain the tentative advance rate of A, tension gauges 8 are placed before and after the inlet roll 9A, and the measured values are calculated as t.
Let r 1, tbl. In addition, the measured value of the gamma ray thickness meter 5 placed in front of the nine rolling rolls on the entrance side is defined as H1. Further, the expected value fol of the advance rate of the inlet side rolling roll 9A is set in advance by the setting device 1. Here, the correction of the tentative advance rate by various actually measured values is as follows: tentative advance *<corrected value. ) can be expressed by the following formula. f
A tube = fl>1 + (at /a tr ) t ・A tr t+(a
f/afb) ・Δtl,t+ (2}f/miH
〉 1 ・ΔH1...《6〉Then, in the provisional advanced rate learning device 3, based on the calculation formula, the measurement value tf l,
Set tb1 and H1 (use iifo+ to determine the temporary advance rate f^1 of the inlet side roll roll 9A. Similarly, determine the temporary advance rate of the final stage roll 9B. First, set the tension before and after the final stage roll 9B, respectively. A total of 8 rolls are arranged, and the measured values are tr s and tbs, respectively.Furthermore, the expected value H5 of the plate thickness in front of this final stage rolling roll 9B and the expected value jos of the advance rate of this final stage rolling roll 9B are set respectively. It is set in advance in the machine 1.Here, the correction of the provisional advancement rate using various actually measured values is expressed by the following formula, similar to the inlet side rolling roll 9A, assuming that the provisional advancement rate (corrected) is f^5. It is possible to do this. Based on the calculation formula, the measurement value t
The provisional advance rate f^5 of the final stage rolling roll 9B is determined from rs, tbs, set value H5, and fOs. - Further, an X-ray thickness gauge 6 is placed behind the final rolling roll 9B, and the measured value is set as Hout. Let β be the smoothing exponent used in the learning device set in configurator 1. In addition, the rolling roll circumferential speed measured by the pulse generator 7 placed on the inlet open rolling roll 9A and the final stage rolling roll 9B is expressed as VRAI and VR^2.
Suppose that In the advanced rate correction value learning device 2, the measured value H+,
Hout, VR^1, vRA2 and the total Xfiaf^+
, f^2 and the set value β, the advanced rate correction value f3 is calculated using the following two equations. fa +=(10f^t)/(1+f^5)X(H*
/Hout) X (VRAI/VRA5) =<8) fcx1=f
at+β(fα+fa+)...<9) Here, fα゛1 is the advanced rate correction value of the previous process obtained by the process of this advanced rate correction value learning device 2 performed at regular intervals. As shown in equation (9), the deviation between the currently determined advanced rate correction value fα 1 and the previous advanced rate correction value fα'1 is determined by the weighting ratio of the smoothing index β.
It is accumulated to t. In general, it is experimentally known that the advance rate in a continuous rolling mill will be different depending on the product thickness and material of the strip being rolled, even under the same rolling conditions. Therefore, this advance rate correction value fll1 is stored in the material-by-material advance rate correction value table memory 20 as data of the advance rate correction value fα1 for each product of each material and plate thickness. When the material or thickness of the strip being rolled in a continuous rolling mill is changed, first, the advance rate correction value fα1 of the strip that has been processed up to that point is corrected for each material in order to update the data. Write data into the corresponding material and plate thickness portion of the value table memory 20, and then read data corresponding to the material and plate thickness of the strip to be processed next from the material-by-material advance rate correction value table memory 20. The operation of the advanced rate learning method in the second embodiment is as described above. hout=(1+f^t)/(1+f^s)x, obtained by calculation based on the following formula:
(V R AT / V R^5)X (H1/
(10) In the second example of measuring the thickness of this rolled strip, the calculated value ho of the strip thickness is
Let ut be the final plate thickness measurement. This equation (10) corresponds to the equation (5) in the first embodiment for calculating the plate thickness, but when compared with the equation (4) above, equation (10) has the value 1/fa1. A term for advanced rate correction value has been added. In the second embodiment, this advance rate correction value is calculated based on the advance rate of a plurality of rolling rolls, etc. for each product that differs depending on the material and plate thickness of the strip, and is used when calculating the plate thickness. By doing this, we aim to improve the accuracy and reliability of plate thickness measurements. Note that this first embodiment is a simplified version of the configuration of the second embodiment for explaining the content of claim 1;
The working example and this second example are originally the same. In addition, Fig. 3 shows a calculation table of the experimental data for the outlet end plate thickness [hout] calculated without correcting the advance rate using a learning device, and Fig. 4 shows the calculated value hout obtained in the experiment.
The actual measured value of the plate thickness of the corresponding part of u t and coil 33 is shown, but the difference between this calculated value and the actual measured value is within the product tolerance ±0
.. We were able to keep it sufficiently small compared to 6%.

【発明の効果】【Effect of the invention】

以上説明した通り、本発明によれば、取付位置が同じで
ない2箇以上のX線厚み計や放射線厚み計等の厚み計の
測定値の相互チェックを実現したことによって、圧延帯
板の板厚測定の信頼性の向上をすることができた.又、
板厚測定にあたり、バックアップロールよりもスリップ
の少ない圧延ロールの回転速度の測定にて圧延速度の測
定を行い、又、張力等の圧延条件が変化しても随時圧延
ロールの先進率を学習することでより正確な圧延速度の
測定ができるようになったため、圧延帯板の板厚測定の
精度の向上をすることができた.このように帯板の製造
において、製品の板厚測定の信頼性と精度の向上を行う
ことができた産業上の意義は大きい.
As explained above, according to the present invention, by mutually checking the measured values of two or more thickness gauges such as X-ray thickness gauges and radiation thickness gauges that are not installed at the same position, the thickness of the rolled strip can be improved. We were able to improve the reliability of measurements. or,
When measuring plate thickness, measure the rolling speed by measuring the rotational speed of the rolling roll, which has less slip than the backup roll, and learn the advance rate of the rolling roll at any time even if rolling conditions such as tension change. As the rolling speed can now be measured more accurately, the accuracy of thickness measurements of rolled strips has been improved. In this way, the ability to improve the reliability and accuracy of product thickness measurements in the manufacture of strips has great industrial significance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の第1実施例の板厚測定方法の構成図
、 第2図は、本発明の第2実施例の板厚測定方法の構成図
、 第3図は、同第2実施例による学習器を用いた板厚測定
の実験データの計算表、 第4図は、学習器を用いた板厚測定の実験データの板厚
測定値とコイルでの実測値の比較線図、第5図は、従来
の技術についての説明図である.1・・・設定器、 2・・・先進率補正値学習器、 3・・・仮先進率学習器、 5・・・γ線厚み計、 6・・・X線厚み計、 7・・・パルス発生器、 8・・・張力計、 9A・・・入口測圧延ロール、 9B・・・最終段圧延ロール、 10・・・巻取リール、 11・・・デフレクタロール、 12・・・比較演算器、 13・・・アラーム発生器、 14・・・表示装置、 15・・・指示計、 16・・・板厚演算器、 17・・・演算タイミング設定器、 18・・・帯板(被加工物)、 20・・・材料毎先進率補正値テーブルメモリ、21・
・・出口端板厚演算器、 22・・・板厚測定値評価器、 23・・・プロセスコンピュータ、 33・・・コイル. 第 2 図 33 第 3 図 第 4 図 ;JJ見吟}リ 第 5 図 31 Q一
Fig. 1 is a block diagram of a plate thickness measuring method according to a first embodiment of the present invention, Fig. 2 is a block diagram of a plate thickness measuring method according to a second embodiment of the present invention, and Fig. 3 is a block diagram of a plate thickness measuring method according to a second embodiment of the present invention. Calculation table of experimental data of plate thickness measurement using the learning device according to the example; FIG. FIG. 5 is an explanatory diagram of the conventional technology. 1... Setting device, 2... Advanced rate correction value learning device, 3... Temporary advanced rate learning device, 5... γ-ray thickness meter, 6... X-ray thickness meter, 7... Pulse generator, 8... Tension meter, 9A... Inlet measurement rolling roll, 9B... Final stage rolling roll, 10... Winding reel, 11... Deflector roll, 12... Comparison calculation 13...Alarm generator, 14...Display device, 15...Indicator, 16...Plate thickness calculator, 17...Calculation timing setter, 18...Strip plate (covered plate) workpiece), 20... Material-by-material advanced rate correction value table memory, 21.
... Outlet end plate thickness calculator, 22... Plate thickness measurement value evaluator, 23... Process computer, 33... Coil. 2nd figure 33 3rd figure 4; JJ review 5th figure 31 Q1

Claims (2)

【特許請求の範囲】[Claims] (1)連続圧延機で圧延されている帯板の板厚測定方法
において、 第1の圧延ロールの近傍で、第1の板厚を直接測定し、 前記第1の圧延ロールで、第1の圧延ロール周速度を測
定し、 前記第1の圧延ロールとは異なる第2の圧延ロールで、
第2の圧延ロール周速度を測定し、マスフロー一定則に
基づいた板厚換算式を利用して、前記第1の板厚及び圧
延ロール周速度測定値と第1の圧延ロールの先進率と前
記第2の圧延ロール周速度測定値と第2の圧延ロールの
先進率により、第2圧延ロール出側の板厚を算出するこ
とを特徴とする圧延帯板の板厚測定方法。
(1) In the method for measuring the thickness of a strip being rolled in a continuous rolling mill, the first strip thickness is directly measured in the vicinity of the first rolling roll, and the first strip thickness is directly measured in the vicinity of the first rolling roll. measuring a circumferential speed of a rolling roll, a second rolling roll different from the first rolling roll;
The circumferential speed of the second rolling roll is measured, and using a plate thickness conversion formula based on the constant mass flow law, the first plate thickness and the measured value of the circumferential rolling roll speed, the advance rate of the first rolling roll, and the A method for measuring the thickness of a rolled strip, comprising calculating the thickness at the exit side of the second rolling roll based on the measured value of the circumferential speed of the second rolling roll and the advance rate of the second rolling roll.
(2)連続圧延機で圧延されている帯板の板厚測定方法
での先進率の精度向上方法において、当該圧延ロールの
前方で帯板の前方張力を測定し、 当該圧延ロールの後方で帯板の後方張力を測定し、 当該圧延ロールの前方で帯板の入口板厚を測定するか、
又は予め設定された板厚数値を用いて、入口板厚とし、 前記前方張力と前記後方張力と前記入口板厚を用いて計
算し学習させて、仮先進率とし、 前記仮先進率を求めることを複数の圧延ロールにおいて
行い、複数の仮先進率を求め、 前記複数の圧延ロールの周速度をそれぞれ測定し、 前記複数の圧延ロールのそれぞれの前記仮先進率と前記
入口板厚と前記圧延ロール周速度から計算し学習させて
、先進率補正値とし、 前記仮先進率と前記先進率補正値とにより、先進率を求
め、該先進率を用いて板厚を計算することを特徴とする
圧延帯板の板厚測定方法。
(2) In a method for improving the accuracy of the advance rate in the method of measuring the thickness of a strip rolled in a continuous rolling mill, the forward tension of the strip is measured in front of the rolling roll, and the tension of the strip is measured behind the rolling roll. Measure the rear tension of the plate and measure the inlet thickness of the strip in front of the rolling roll, or
Or, use a preset plate thickness value as the entrance plate thickness, calculate and learn using the front tension, the rear tension, and the entrance plate thickness to obtain a provisional advancement rate, and obtain the provisional advancement rate. is carried out on a plurality of rolling rolls, obtaining a plurality of provisional advancement rates, measuring the circumferential speed of each of the plurality of rolling rolls, and determining the provisional advancement rate, the inlet plate thickness, and the rolling roll of each of the plurality of rolling rolls. Rolling characterized by calculating and learning from the circumferential speed to obtain an advancement rate correction value, determining the advancement rate from the provisional advancement rate and the advancement rate correction value, and calculating the plate thickness using the advancement rate. How to measure the thickness of a strip.
JP1307194A 1989-11-27 1989-11-27 Method of measuring thickness of rolled strip Expired - Lifetime JP2829065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1307194A JP2829065B2 (en) 1989-11-27 1989-11-27 Method of measuring thickness of rolled strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1307194A JP2829065B2 (en) 1989-11-27 1989-11-27 Method of measuring thickness of rolled strip

Publications (2)

Publication Number Publication Date
JPH03167401A true JPH03167401A (en) 1991-07-19
JP2829065B2 JP2829065B2 (en) 1998-11-25

Family

ID=17966174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1307194A Expired - Lifetime JP2829065B2 (en) 1989-11-27 1989-11-27 Method of measuring thickness of rolled strip

Country Status (1)

Country Link
JP (1) JP2829065B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255952A (en) * 2006-03-22 2007-10-04 Keyence Corp Contact type displacement detector and tolerance specifying method in same
CN110548769A (en) * 2019-08-29 2019-12-10 武汉钢铁有限公司 Method for early warning thickness deviation of strip steel on line
CN115625217A (en) * 2022-10-27 2023-01-20 江苏沙钢集团有限公司 Cold rolling thickness online detection method and detection system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007255952A (en) * 2006-03-22 2007-10-04 Keyence Corp Contact type displacement detector and tolerance specifying method in same
CN110548769A (en) * 2019-08-29 2019-12-10 武汉钢铁有限公司 Method for early warning thickness deviation of strip steel on line
CN115625217A (en) * 2022-10-27 2023-01-20 江苏沙钢集团有限公司 Cold rolling thickness online detection method and detection system

Also Published As

Publication number Publication date
JP2829065B2 (en) 1998-11-25

Similar Documents

Publication Publication Date Title
CN101678418A (en) Strip thickness control system for reverse rolling mill
CA2325328C (en) Strip thickness control apparatus for rolling mill
US4159572A (en) Dynamic gage averaging and length determining device and method for continuous sheet material
JPH03167401A (en) Method for measuring thickness of rolled strip plate
US3610005A (en) Roll positioning system calibration method and apparatus
JPH05123749A (en) Method for detecting raw speed in tandem rolling mill
JPH03285719A (en) Measuring method for friction coefficient and deformation resistance of rolling mill
JP3067879B2 (en) Shape control method in strip rolling
US3892112A (en) Rolling mill gauge control
JPS6277110A (en) Dimension and shape straightening apparatus for hot rolling steel plate
JPH0225210A (en) Wedge control method in hot rolling
JP2751275B2 (en) How to determine rolling parameters
JPS62192209A (en) Plate thickness control method for rolling mill
JPH05104123A (en) Hot continuous rolling method
JP4288757B2 (en) Seamless steel pipe manufacturing method
JP4351598B2 (en) Steel sheet elongation rate measuring apparatus and elongation rate measuring method
JPS61202711A (en) Method and device for learning-controlling rolling mill
KR100508510B1 (en) Method for controlling thickness of tandem cold mill
JPS60238010A (en) Device for estimating mill spring constant and plastic coefficient of material in continuous rolling mill
JPH0255608A (en) Method for measuring advancing ratio in continuous rolling mill
JPS62197210A (en) Method and device for controlling continuous rolling mill
JPH0471606B2 (en)
JP3553552B2 (en) On-line identification method of strip width deformation model in hot finishing mill
JPH0220606A (en) Method for deciding changing position of flying gage in rolling
JPS5865506A (en) Controlling method for adaptive correction for rolling device