JPH05123749A - Method for detecting raw speed in tandem rolling mill - Google Patents

Method for detecting raw speed in tandem rolling mill

Info

Publication number
JPH05123749A
JPH05123749A JP3317402A JP31740291A JPH05123749A JP H05123749 A JPH05123749 A JP H05123749A JP 3317402 A JP3317402 A JP 3317402A JP 31740291 A JP31740291 A JP 31740291A JP H05123749 A JPH05123749 A JP H05123749A
Authority
JP
Japan
Prior art keywords
plate
rolling mill
speed
stand
strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3317402A
Other languages
Japanese (ja)
Other versions
JPH0815619B2 (en
Inventor
Hiroshi Taniguchi
弘志 谷口
Toshihiro Mori
俊弘 森
Shinichi Hirayama
嗔一 平山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3317402A priority Critical patent/JPH0815619B2/en
Publication of JPH05123749A publication Critical patent/JPH05123749A/en
Publication of JPH0815619B2 publication Critical patent/JPH0815619B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To embody a high accuracy of the plate thickness by a tandem rolling mill composed of plural stands. CONSTITUTION:Plate thickness gages 82-85 and plate speed maters 72-75 are arranged at the inlet and outlet sides of all stands 1-3 of the rolling mill, and a standard plate speed meter is attached at the inlet side of rolling mill. The plate speed correcting operation is constructed in the controlling calculator 90, 91. The plate velocity meter 72 is corrected with the standard plate velocity meter at the inlet side of the rolling mill. About the plate velocity maters 73-75 behind the outlet side of the 1st stand, they are corrected orderly based on the up stream side correct finished plate speed gages 72-74.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、タンデム圧延機におけ
る板厚制御等に関して使用される板速度の検出精度を高
め、制御精度の向上や誤制御防止を計るための方法に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for improving the accuracy of detecting a plate speed used for controlling the plate thickness in a tandem rolling mill, improving the control accuracy and preventing erroneous control.

【0002】[0002]

【従来の技術】一般に、タンデム圧延機の重要な製品管
理指標として圧延材の板厚精度がある。この板厚精度の
より一層の向上を目指して種々の制御方法が考えられて
来た。その中に、タンデム圧延機の特定スタンドの入側
と出側のストリップ圧延速度を板速度検出装置を用いて
実測し、且つ当該スタンドの入側に設置された板厚計の
測定信号を含めた三者を使用して、当該スタンドのロー
ル直下で成立すると考えられるマスフロー保存則(体積
一定則)からリアルタイムに当該スタンド出側の板厚を
予測し、この予測値が目標設定値になる様に当該スタン
ドのロールギャップやその一つ上流側のスタンドのロー
ル周速を変更するマスフローAGC(Automati
c Gauge Control)と称される方法があ
る。従って、板厚精度管理上はストリップ圧延速度の測
定精度の向上と精度維持管理が非常に重要な問題とな
る。特に最近では、ユーザーからの板厚精度に対する要
求レベルが厳格化している傾向にあるため、益々測定精
度の許容誤差を極限迄に抑制しなければならない。従来
の板速の測定法としては、以下の様な方法にて対処して
いた。
2. Description of the Related Art In general, as an important product control index for tandem rolling mills, there is accuracy of rolled sheet thickness. Various control methods have been considered for the purpose of further improving the plate thickness accuracy. In it, the strip rolling speeds on the inlet side and the outlet side of the specific stand of the tandem rolling mill were actually measured using a strip speed detection device, and the measurement signal of the strip thickness gauge installed on the inlet side of the stand was included. By using the three parties, the plate thickness on the outlet side of the stand is predicted in real time from the mass flow conservation law (constant volume rule) that is considered to be established just under the roll of the stand, and this predicted value becomes the target set value. A mass flow AGC (Automati) that changes the roll gap of the stand and the roll peripheral speed of the stand on the upstream side.
c Gauge Control). Therefore, in terms of strip thickness precision control, improvement of strip roll speed measurement precision and precision maintenance control are very important issues. Particularly in recent years, the level of demand for plate thickness accuracy from users tends to become stricter, so that the tolerance of measurement accuracy must be suppressed to the utmost limit. The conventional method of measuring the plate speed has been dealt with by the following method.

【0003】接触法(メジャーリングロール法)と称
し、図4のように圧延機入側/出側や圧延機のスタンド
間にストリップcと機械的に接触する無駆動ロールdを
配置し、その回転軸に回転パルス発生器(PLG)を取
り付け、一定時間内のパルス積算数にて板速を検出す
る。
This is called a contacting method (measurement roll method), and as shown in FIG. 4, a non-driving roll d which is in mechanical contact with the strip c is arranged between the rolling mill inlet / outlet side and the rolling mill stand. A rotary pulse generator (PLG) is attached to the rotary shaft, and the plate speed is detected by the number of integrated pulses within a fixed time.

【0004】非接触法(レーザードップラー法)と称
し、図3のように圧延機入側/出側や圧延機のスタンド
間にレーザー発信機aと検出器bを配備し、発信機aか
らストリップcに照射したレーザー光の反射波を検出器
bにて検知する。この時レーザー基本周波数が板速に比
例して周波数シフトする変化量(ドップラー周波数)を
計測することができ、これによって板速を検出する。
This is called a non-contact method (laser Doppler method). As shown in FIG. 3, a laser transmitter a and a detector b are provided between the rolling mill entrance / exit and the stand of the rolling mill, and the stripping from the oscillator a is performed. The reflected wave of the laser light applied to c is detected by the detector b. At this time, the amount of change (Doppler frequency) in which the fundamental frequency of the laser shifts in proportion to the plate speed can be measured, and the plate speed is detected by this.

【0005】[0005]

【発明が解決しようとする課題】上述の測定方法では下
記の様な問題点が有り、測定精度に限界が生じていたた
め、板厚制御に高精度で且つ安定的に使用するのは困難
であった。
The above-mentioned measuring method has the following problems and the measuring accuracy is limited. Therefore, it is difficult to use the plate thickness control with high accuracy and stability. It was

【0006】接触法では、ストリップと無駆動ロール表
面とのスリップが発生し易い。特に、圧延機の加減速圧
延時には無駆動ロールの慣性のため、ストリップ速度と
ロール周速とが異なる現象が必ず発生する。又、測定原
理から一定時間内のパルス数を積算して速度を演算して
いるため、ミクロスリップ等の測定外乱を取り除き測定
精度を向上させるには測定周期を比較的長くとらなけれ
ばならない。その場合、板速信号の検出上限周波数を大
きくすることが出来ない。逆に板速信号の検出上限周波
数を大きく取ると、それに比例して測定精度が悪化す
る。
In the contact method, slipping between the strip and the surface of the non-driving roll is likely to occur. In particular, at the time of accelerating and decelerating rolling of the rolling mill, a phenomenon occurs in which the strip speed and the roll peripheral speed are different due to the inertia of the non-driven roll. Also, since the speed is calculated by integrating the number of pulses within a certain time period from the principle of measurement, the measurement cycle must be made relatively long in order to remove the measurement disturbance such as microslip and improve the measurement accuracy. In that case, the detection upper limit frequency of the plate speed signal cannot be increased. On the contrary, when the detection upper limit frequency of the plate speed signal is set large, the measurement accuracy is deteriorated in proportion thereto.

【0007】非接触法では、検出原理上は上述の接触法
と異なりレーザードップラー効果を使用しており、スト
リップとの機械的接触面が存在しないためスリップ現象
による測定誤差は本質的に存在しない。しかしながら、
この方法では光学系を用いるため、ストリップのパスラ
インと光学系の焦点の合わせ込み等に非常に高い精度が
必要である。そのため、ストリップの圧延中のパスライ
ンレベルと光学系の相対位置により測定誤差が発生す
る。更に、圧延中のストリップのパスライン変動やスト
リップ形状不良の程度が大きい時には測定困難に陥る場
合もある。又、装置の校正に関して、本方法ではオフラ
インにて定速回転を行う基準回転円盤を用いてドップラ
ー周波数と板速との(1)式数1の比例関係を校正する
ことが可能であるが、現状ではオンラインでの校正法が
存在せず、前述のパスラインレベルの光学系に対する相
対位置の変化による測定誤差は除去不可能である。
In the non-contact method, unlike the above-mentioned contact method, the laser Doppler effect is used in the detection principle, and since there is no mechanical contact surface with the strip, there is essentially no measurement error due to the slip phenomenon. However,
Since an optical system is used in this method, very high accuracy is required for focusing the pass line of the strip and the optical system. Therefore, a measurement error occurs due to the relative position of the pass line level during rolling of the strip and the optical system. Further, it may be difficult to measure when there is a large degree of strip pass line fluctuation during rolling and a large strip shape defect. Regarding the calibration of the apparatus, in this method, it is possible to calibrate the proportional relationship of the Doppler frequency and the plate speed in (1) Equation 1 using a reference rotating disk that performs constant speed rotation offline. At present, there is no on-line calibration method, and the measurement error due to the change in the relative position with respect to the optical system at the pass line level cannot be eliminated.

【0008】[0008]

【数1】 fd=2V*sin(θ/2)/λ …(1) fd:ドップラー周波数 V:板速 θ:ビーム交差角度 λ:レーザー発信周波数Fd = 2V * sin (θ / 2) / λ (1) fd: Doppler frequency V: Plate speed θ: Beam crossing angle λ: Laser emission frequency

【0009】接触法或いは非接触法において、検出した
板速をパラメーターとして用いて板厚制御を行うマスフ
ロー制御に関しては、(3)式数3の様に制御則が
(2)式数2の圧延時の板幅の変化が圧延機のスタンド
の入側及び出側で存在しないことを仮定して成立するも
のである。しかしながら、実際にはこの様な仮定は近似
的にしか成立しないものであり、当該条件の誤差は板厚
制御上は板速の測定誤差として観測される。
In the contact method or the non-contact method, with regard to the mass flow control in which the detected plate speed is used as a parameter to control the plate thickness, the rolling of the control rule (2) is 2 as in (3). This is established on the assumption that there is no change in strip width at the entrance and exit of the stand of the rolling mill. However, in reality, such an assumption holds only approximately, and the error of the condition is observed as a measurement error of the plate speed in the plate thickness control.

【0010】[0010]

【数2】 Wi =Wi-1 …(2) Wi :第iスタンド出側板幅 Wi-1 :第iスタンド入側板幅[Equation 2] W i = W i-1 (2) W i : Width of the i- th stand output side plate W i-1 : Width of the i- th stand input side plate

【0011】[0011]

【数3】 (Hi +ΔHi )*Vi =(Hi-1 +ΔHi-1 )*Vi-1 …(3) Hi :第iスタンド出側板厚設定値 ΔHi :第iスタンド出側板厚偏差 Hi-1 :第iスタンド入側板厚設定値 ΔHi-1 :第iスタンド入側板厚偏差 Vi :第iスタンド出側板速 Vi-1 :第iスタンド入側板速(3) (H i + ΔH i ) * V i = (H i-1 + ΔH i-1 ) * V i-1 (3) H i : i-th stand output side plate thickness setting value ΔH i : i-th stand Out-side plate thickness deviation H i-1 : i- th stand-in side plate thickness set value ΔH i-1 : i- th stand-in side plate thickness deviation V i : i-th stand out-side plate speed V i-1 : i- th stand in-side plate speed

【0012】本発明はこの様な従来の問題に鑑み、測定
精度の向上を図り、且つ、測定異常が発生した場合はそ
の箇所を特定し得る手段を提供し、板厚制御に関する精
度向上と安定使用を実現することを目的とする。
In view of such conventional problems, the present invention provides a means for improving the measurement accuracy and for identifying the location when a measurement abnormality occurs, thereby improving the accuracy and stabilizing the thickness control. It is intended to be used.

【0013】[0013]

【課題を解決するための手段】本発明の要旨は、レーザ
ードップラー効果を圧延ストリップ速度の検出原理とす
る非接触式板速度計とストリップ厚みを測定する板厚計
を同数個、同一スタンド前後に装備した2スタンド以上
からなるタンデム圧延機に、圧延機入側でストリップに
巻き付けた基準ロールとそのロール周速を一定時間内の
回転パルス数として演算するため当該ロールに取り付け
たPLGと演算装置とからなる校正装置を配置し、この
校正装置により測定した板速度と同じく圧延機入側に取
り付けた非接触式板速度計の測定値とを比較演算処理
し、その結果に基づきリアルタイムに非接触式板速度計
の測定値が前記校正装置の基準速度に一致する様に板速
補正係数の演算処理を行い種々の測定系の蓄積誤差であ
るオフセット誤差を除去し、しかる後に少なくとも二つ
以上圧延機の上流側から連続に圧延機スタンド内に取り
付けられた非接触式板速度計に対しては、その測定値を
使用してマスフロー保存則から算出されるマスフロー板
厚とこれに該当する板厚計の測定結果の差異から当該板
速度計のオフセット誤差を推定し、この結果に基づき、
スタンド上流からシーケンシャル的に順次オフセット誤
差が零になる様に当該板速度計の補正係数を決定し補償
することを特徴とするタンデム圧延機における板速度検
出法である。
The gist of the present invention is that the same number of non-contact type plate velocimeters that use the laser Doppler effect as the principle of detecting the rolling strip velocity and the same number of plate thickness gauges that measure the strip thickness are provided before and after the same stand. A tandem rolling mill equipped with two or more stands was equipped with a PLG attached to the roll and a computing device for computing the reference roll wound around the strip on the rolling mill entrance side and the roll peripheral speed as the number of rotation pulses within a certain period of time. A calibrating device consisting of is arranged, and the plate speed measured by this calibrating device is compared with the measurement value of the non-contact type plate speed meter installed on the inlet side of the rolling mill, and based on the result, the non-contact type is measured in real time. The plate speed correction coefficient is calculated so that the measured value of the plate velocimeter matches the reference speed of the calibration device, and the offset error, which is the accumulated error of various measuring systems, is corrected. After that, for at least two or more non-contact type plate speed meters continuously installed in the rolling mill stand from the upstream side of the rolling mill, the measured values are used to calculate from the mass flow conservation law. The offset error of the plate speed meter is estimated from the difference between the mass flow plate thickness and the measurement result of the plate thickness meter corresponding to this, and based on this result,
This is a strip velocity detection method in a tandem rolling mill characterized by determining and compensating a correction coefficient of the strip velocity meter so that the offset error becomes sequentially zero sequentially from the upstream of the stand.

【0014】[0014]

【作用】本発明においては、図1に示す様に圧延機入側
に接触式板速度計と非接触式板速度計の両者を設置す
る。又、圧延機スタンド間及び圧延機最終出側にも連続
して非接触式板速度計を設置する。更に、板厚計は圧延
機入/出側及び圧延機スタンド間に非接触式板速度計と
同数台設置する。この様な観測系において、圧延機入側
の非接触式板速度計のオフセット誤差は、接触式板速度
計をオンラインでの基準校正装置として両者の板速度検
出値を比較して定量化する。但し、図4の如く両板速度
計において一方は板表面の速度、他方はロール表面の周
速を測定することになり、ストリップ板厚tに起因する
速度差が存在するため両検出値の校正には板厚補正を行
わなければならない。この様に定量化されたオフセット
誤差を零にする様に非接触式板速度計にて検出された検
出値に(4)式数4の補正係数を導入し、この係数値を
決定する。次に、この様にして校正を行った圧延機入側
の非接触式板速度計を今度はNo.1スタンド出側の非
接触式板速度計の基準校正器として使用する。この時、
No.1スタンド出側の非接触式板速度計のオフセット
誤差は、(5)式数5の如くNo.1スタンド入/出側
のそれぞれの板厚検出値と板速検出値の4つのパラメー
ターを用いて、マスフロー差ΔMを導入し定量化する。
従って、No.1スタンド出側の非接触式板速度計は、
このΔMが零になる様に(5)式に相当する補正係数を
決定する。同様にして、No.2スタンド出側の非接触
式板速度計についても、No.1スタンド出側の非接触
式板速度計を使用して今度はNo.2スタンド入/出側
のマスフロー差が零になる様に板速補正係数を決定す
る。この操作を自動的にリアルタイムに順次圧延機の前
段スタンドから後段スタンドに向かって行って行くこと
により、図1の圧延機に装備された非接触式板速度計の
オフセット誤差が除去でき、板速検出値の高精度化が計
られることになる。
In the present invention, as shown in FIG. 1, both the contact type plate speed meter and the non-contact type plate speed meter are installed on the inlet side of the rolling mill. In addition, non-contact type plate speed gauges are continuously installed between the stands of the rolling mill and also on the final exit side of the rolling mill. Further, the same number of plate thickness gauges as the non-contact type plate speed meter are installed between the rolling mill entrance / exit side and the rolling mill stand. In such an observation system, the offset error of the non-contact type plate speed meter on the inlet side of the rolling mill is quantified by comparing the detected plate speed values of both with the contact type plate speed meter as an online reference calibration device. However, as shown in FIG. 4, in both plate velocimeters, one measures the speed of the plate surface and the other measures the peripheral speed of the roll surface. Since there is a speed difference due to the strip plate thickness t, calibration of both detected values is performed. In this case, the plate thickness must be corrected. In order to make the offset error quantified in this way zero, the correction coefficient of the equation (4) is introduced into the detection value detected by the non-contact type plate velocimeter, and this coefficient value is determined. Next, the non-contact type plate speed meter on the entrance side of the rolling mill, which was calibrated in this way, was replaced by No. Used as a reference calibrator for the non-contact plate speedometer on the stand-out side. At this time,
No. The offset error of the non-contact type plate velocimeter on the stand-out side of No. 1 is as shown in Equation (5). The mass flow difference ΔM is introduced and quantified by using the four parameters of the plate thickness detection value and the plate speed detection value for each of the one stand entry / exit side.
Therefore, No. The non-contact type plate speedometer on the stand-out side is
The correction coefficient corresponding to the equation (5) is determined so that this ΔM becomes zero. Similarly, No. Regarding the non-contact type plate speedometer on the 2 stand stand-out side, This time using the non-contact type plate speedometer on the stand 1 exit side, this time No. The plate speed correction coefficient is determined so that the mass flow difference between the two stands in / out side becomes zero. By performing this operation automatically in real time sequentially from the front stand to the rear stand of the rolling mill, the offset error of the non-contact type plate speed meter equipped in the rolling mill of FIG. The accuracy of the detected value will be improved.

【0015】[0015]

【数4】 V=α*Vm …(4) V :校正後の板速 Vm:板速計指示値 α :補正係数[Formula 4] V = α * Vm (4) V: Plate speed after calibration Vm: Plate speed indicator value α: Correction coefficient

【0016】[0016]

【数5】 ΔM=(HE +ΔHE )*VE −(HD +ΔHD )*α*Vm=0…(5) HE :第1スタンド入側板厚設定値 ΔHE :第1スタンド入側板厚偏差 HD :第1スタンド出側板厚設定値 ΔHD :第1スタンド出側板厚偏差 VE :第1スタンド出側板速[Number 5] ΔM = (H E + ΔH E ) * V E - (H D + ΔH D) * α * Vm = 0 ... (5) H E: first stand entry side thickness setting value ΔH E: the first stand input side thickness deviation H D: first stand delivery side thickness set value [Delta] H D: first stand delivery side thickness deviation V E: first stand delivery side speed

【0017】本発明においては、非接触式板速度計に本
質的に内在するオフセット誤差を、基準接触式板速度計
と各圧延機スタンドを起点とするマスフロー差という演
算パラメーターを導入することで定量化し、各オフセッ
ト誤差を零にする様に板速補正係数をリアルタイムで自
動的に決定する。従って、非接触板速度計にて検出した
生の板速検出値を用いて板厚制御を行うよりも、この方
法で補正された板速を使用した方が、圧延中に時々刻々
と変化するパスラインレベル変動やストリップ形状によ
る影響を随時除去することが出来、より高精度で且つ安
定な板厚制御が可能となる。又、同時に各非接触式板速
度計の板速補正係数値に許容範囲を設け、前述の一連の
自動校正によって求まった係数値がこの許容範囲を越え
た場合、当該板速度計を異常とみなして板速度計の異常
箇所を特定化することができ、板厚制御上の保護処置及
びバックアップ処置が自動的に可能となる。
In the present invention, the offset error inherent in the non-contact type plate speed meter is quantified by introducing a calculation parameter called mass flow difference starting from the reference contact type plate speed meter and each rolling mill stand. The plate speed correction coefficient is automatically determined in real time so that each offset error becomes zero. Therefore, it is better to use the plate speed corrected by this method than to perform the plate thickness control using the raw plate speed detection value detected by the non-contact plate speed meter, and it changes momentarily during rolling. The influence of the pass line level fluctuation and the strip shape can be removed at any time, and more precise and stable plate thickness control becomes possible. At the same time, an allowable range is set for the plate speed correction coefficient value of each non-contact type plate speed meter, and if the coefficient value obtained by the series of automatic calibration exceeds the allowable range, the plate speed meter is considered to be abnormal. The abnormal position of the plate speedometer can be specified, and the protective measure and the backup measure in the plate thickness control can be automatically performed.

【0018】[0018]

【実施例】以下、本発明の実施例を図面を参照して説明
する。説明の簡略化のため図1の3スタンドから成るタ
ンデム圧延機に対して説明を行うが、本発明は一般化す
ることが出来、Nスタンドのタンデム圧延機についても
同様に成立する。
Embodiments of the present invention will be described below with reference to the drawings. For simplification of the description, the tandem rolling mill having three stands in FIG. 1 will be described, but the present invention can be generalized, and the tandem rolling mill having N stands can be similarly established.

【0019】図1のシステムにおいては、板厚制御とし
てマスフローAGCを全スタンドに、最終スタンド出側
の板厚計の板厚偏差信号に応じた最終スタンドのロール
速度若しくは(最終−1)スタンドのロール速度を修正
する張力モニターAGCを最終スタンドに装備してお
り、これらの機能は制御用計算機90、91内に構築さ
れている。
In the system of FIG. 1, as a plate thickness control, the mass flow AGC is installed in all stands, and the roll speed of the final stand or the (final -1) stand of the final stand according to the plate thickness deviation signal of the plate thickness gauge on the delivery side of the final stand. The final stand is equipped with a tension monitor AGC for correcting the roll speed, and these functions are built in the control computers 90 and 91.

【0020】説明の都合上、マスフローAGCの原理に
ついて簡単に触れると、当該AGCは第iスタンドの入
側に設置している板厚計の板厚偏差ΔHi-1 を計算機内
で順次一次的に記憶し、その時圧延速度から計算される
ΔHi-1 の第iスタンド到達タイミングで第iスタンド
入/出側の非接触式板速度計からの検出板速Vi-1 、V
i を用いて(6)式数6で第iスタンド出側の板厚偏差
ΔHi を推定し、このΔHi に応じて第(i−1)スタ
ンドのロール速度を修正して板厚変動を除去しようとす
るものである。
For the sake of explanation, the principle of the mass flow AGC will be briefly described. The AGC concerned is such that the plate thickness deviation ΔH i-1 of the plate thickness meter installed on the entrance side of the i-th stand is sequentially primary in the computer. At the timing of arrival at the i-th stand of ΔH i−1 calculated from the rolling speed at that time, the detected plate speeds V i−1 , V from the non-contact plate speed meter on the input / output side of the i-th stand.
i is used to estimate the plate thickness deviation ΔH i on the delivery side of the i-th stand by the equation (6), and the roll speed of the (i−1) -th stand is corrected according to this ΔH i to reduce the plate thickness variation. It is something to be removed.

【0021】[0021]

【数6】 ΔHi =(Hi-1 +ΔHi-1 )*Vi-1 /Vi −Hi …(6) Hi-1 :第iスタンド入側の板厚設定値 Hi :第iスタンド出側の板厚設定値[Equation 6] ΔH i = (H i-1 + ΔH i-1 ) * V i-1 / V i −H i (6) H i-1 : Plate thickness setting value H i on the i-th stand entry side: Plate thickness setting on the output side of i-th stand

【0022】この時、板速度Vi-1 、Vi の測定誤差が
含まれる場合、その誤差の比率が直接的に制御量である
ΔHi の実現精度に影響してくることになる。そこで板
速度の検出精度を目的とする板厚精度以下に抑制するた
め、次の手法で非接触式板速度計のオフセット誤差を圧
延中に自動的に除去する。
At this time, if the measurement errors of the plate velocities V i-1 and V i are included, the ratio of the errors directly affects the realization accuracy of the control amount ΔH i . Therefore, in order to suppress the detection accuracy of the plate speed to the target plate thickness accuracy or less, the offset error of the non-contact plate speed meter is automatically removed during rolling by the following method.

【0023】まず第1に、圧延機入側の非接触式板速度
計72を圧延機入側に設置された接触式板速度計71で
校正する。図4の関係より非接触式板速度計72の指示
値V40と真の板速V20、それに接触式板速度計71の指
示値であるロール周速V10との間には、ロール径をD、
板厚をtとすれば(7)式数7、(8)式数8が成り立
つ。
First, the non-contact type plate speed meter 72 on the rolling mill entrance side is calibrated by the contact type plate speed meter 71 installed on the rolling mill entrance side. From the relationship shown in FIG. 4, between the indicated value V 40 of the non-contact type plate speed meter 72 and the true plate speed V 20 , and the roll peripheral speed V 10 which is the indicated value of the contact type plate speed meter 71, there are roll diameters. D,
When the plate thickness is t, the equation (7) and the equation (8) are satisfied.

【0024】[0024]

【数7】 V40=(D+t)/D*V10 …(7)[Formula 7] V 40 = (D + t) / D * V 10 (7)

【0025】[0025]

【数8】 V20=(D+t/2)/D*V10 …(8)V 20 = (D + t / 2) / D * V 10 (8)

【0026】前述の説明の様に、非接触式板速度計72
の指示値V40には原理上オフセット誤差が存在するた
め、接触式板速度計71、非接触式板速度計72の観測
量の間には直接的には(7)式は成立せず、更には、板
厚制御上で非接触式板速度計72で観測したい物理量は
真の板速V20であるため、補正係数α1を導入して
(9)式数9の自動校正式が成立する様に自動的にα1
を決定し、V0 =α1*V40を板厚制御上に用いる圧延
機入側の板速とする。但し、接触式板速度計71の観測
量V10はスリップの影響による測定誤差を持つため、
(9)式の自動補正は、圧延速度が一定な定常圧延状態
でのみ有効とし、且つ測定精度を向上させるためN回の
測定値の平滑化処理を行ったものを用いる。
As described above, the non-contact plate speed meter 72
Since there is an offset error in the indicated value V 40 in principle, the equation (7) cannot be directly established between the observation amounts of the contact type plate speed meter 71 and the non-contact type plate speed meter 72, Further, since the physical quantity to be observed by the non-contact type plate speed meter 72 in the plate thickness control is the true plate speed V 20 , the correction coefficient α1 is introduced, and the automatic calibration formula of Formula (9) is established. Automatically α1
Is determined, and V 0 = α1 * V 40 is set as the strip speed on the rolling mill entrance side used for strip thickness control. However, since the observed amount V 10 of the contact type plate speed meter 71 has a measurement error due to the influence of slip,
The automatic correction of the equation (9) is effective only in a steady rolling state in which the rolling speed is constant, and is used after smoothing the measured value N times in order to improve the measurement accuracy.

【0027】[0027]

【数9】 (1+t/2D)*ΣV10/N−α1*V40=0 …(9)(1 + t / 2D) * ΣV 10 / N−α1 * V 40 = 0 (9)

【0028】第2に、圧延機入側の自動校正された板速
0 を基準として、No.1スタンド出側の非接触式板
速度計73の自動校正を行う。そのために、No.1ス
タンドの前後のストリップの単位時間当りの流入体積と
流出体積の差として定義できるマスフロー差ΔM1 と言
う概念を導入し、且つ、非接触式板速度計73の自動校
正パラメーターとしての補正係数α2をα1と同様な考
えで用いて、(10)式数10を満足する様に自動的に
α2を決定する。
Secondly, with reference to the automatically calibrated strip speed V 0 on the inlet side of the rolling mill, No. The non-contact plate speed meter 73 on the stand-out side is automatically calibrated. Therefore, No. A concept called mass flow difference ΔM 1 which can be defined as a difference between an inflow volume and an outflow volume of a strip before and after one stand per unit time is introduced, and a correction coefficient α 2 as an automatic calibration parameter of the non-contact plate speed meter 73. Is used in the same manner as α1, and α2 is automatically determined so as to satisfy the equation (10).

【0029】[0029]

【数10】 ΔM1 =(H0 +ΔH0 )*V0 −(H1 +ΔH1 )*α2*V11=0 …(10) H0 :No.1スタンド入側の板厚設定値 H1 :No.1スタンド出側の板厚設定値 ΔH0 :No.1スタンド入側の板厚計の出力である板
厚偏差 ΔH1 :No.1スタンド出側の板厚計の出力である板
厚偏差 V11 :非接触式板速度計73の指示値
ΔM 1 = (H 0 + ΔH 0 ) * V 0 − (H 1 + ΔH 1 ) * α 2 * V 11 = 0 (10) H 0 : No. Plate thickness setting on the stand 1 side H 1 : No. Setting value of plate thickness on stand 1 side ΔH 0 : No. Thickness deviation ΔH 1 : No. 1 output from the thickness gauge on the stand-in side. Plate thickness deviation which is the output of the plate thickness meter on the stand 1 stand side V 11 : Indication value of the non-contact plate speed meter 73

【0030】従って、No.1スタンド出側の板厚制御
上の板速値V1 は非接触式板速度計73の観測値を用い
てV1 =α2*V11として求まる。
Therefore, No. The plate speed value V 1 on the plate thickness control on the delivery side of one stand is obtained as V 1 = α2 * V 11 by using the observation value of the non-contact plate speed meter 73.

【0031】第3に、今度はV1 を基準として、No.
2スタンド出側に設置された非接触式板速度計74の自
動校正は、全く同様な手順で(11)式数11を満足す
る様に自動的に非接触式板速度計74の補正係数α3を
決定する。
Thirdly, this time, with reference to V 1 , No.
In the automatic calibration of the non-contact type plate speed meter 74 installed on the outlet side of the two stands, the correction coefficient α3 of the non-contact type plate speed meter 74 is automatically adjusted so as to satisfy the equation (11) by the same procedure. To decide.

【0032】[0032]

【数11】 ΔM2 =(H1 +ΔH1 )*V1 −(H2 +ΔH2 )*α3*V22=0 …(11) H2 :No.2スタンド出側の板厚設定値 ΔH2 :No.2スタンド出側の板厚偏差 V22 :非接触式板速度計74の観測値ΔM 2 = (H 1 + ΔH 1 ) * V 1 − (H 2 + ΔH 2 ) * α 3 * V 22 = 0 (11) H 2 : No. 2 Plate thickness setting value on stand-out side ΔH 2 : No. 2 Thickness deviation of stand stand-out side V 22 : Observation value of non-contact type plate speed meter 74

【0033】そして、No.2スタンド出側の制御上の
板速をV2 =α3*V22とする。
Then, No. The plate speed on the control of the 2 stand stand-out side is V 2 = α3 * V 22 .

【0034】最後に、V2 を基準として自動校正式(1
2)式数12を満足するNo.3スタンド出側の制御板
速V3 を求めることが出来る。
[0034] Finally, automatic calibration formula V 2 as a reference (1
2) No. which satisfies the formula 12 The control plate speed V 3 on the exit side of the three stands can be obtained.

【0035】[0035]

【数12】 ΔM3 =(H2 +ΔH2 )*V2 −(H3 +ΔH3 )*α4*V33=0 …(12) V3 =α4*V333 :No.3スタンド出側の板厚設定値 ΔH3 :No.3スタンド出側の板厚偏差 V33 :非接触式板速度計75の観測値[Equation 12] ΔM 3 = (H 2 + ΔH 2 ) * V 2 − (H 3 + ΔH 3 ) * α4 * V 33 = 0 (12) V 3 = α4 * V 33 H 3 : No. Plate thickness setting value on the stand 3 side ΔH 3 : No. Plate thickness deviation on the stand 3 side V 33 : Observation value of non-contact plate speed meter 75

【0036】以上の一連の過程と手順を制御用計算機9
1で構築することで、圧延中で且つリアルタイムなオン
ライン環境での板速の自動校正が実現できることにな
る。又、前記過程で求めたα1、α2、α3、α4に物
理的に採り得る許容上限及び下限の範囲を設定すること
で、板速計の設備上の異常箇所を特定化することが出来
る。例えば、非接触式板速度計73のレーザー発信機が
故障して板速の検出が不可能となった場合、α2のパラ
メーターが上限値にかかることになるため、逆にα2を
常時監視することで故障の自動発見が可能である。
The above-described series of processes and procedures are performed by the control computer 9
By constructing with No. 1, it is possible to realize automatic calibration of strip speed in a real-time online environment during rolling. Further, by setting the allowable upper and lower limit ranges that can be physically taken for α1, α2, α3, and α4 obtained in the above process, it is possible to identify the abnormal location on the equipment of the plate speedometer. For example, if the laser oscillator of the non-contact type plate speed meter 73 fails and the plate speed cannot be detected, the parameter of α2 will be the upper limit value, so that α2 should be constantly monitored. It is possible to automatically detect the failure.

【0037】[0037]

【発明の効果】以上の様に、この発明によれば、従来は
板厚制御上の板厚実現精度の制約条件となっていた板速
検出精度の飛躍的向上と、従来不可能であった種々の圧
延状況の変化(パスライン変動、ストリップ形状変化)
に伴う板速計指示変動の排除が出来るため、加減速圧延
等で発生する摩擦係数変化、先進率変化等を板速変化と
して検出し、板厚制御に反映することで高精度な板厚精
度が実現できる。図2は本発明による板厚精度の実現例
であり、効果が明確である。又、板速計の故障発見とそ
れに対する処置が自動的に可能となるため、板厚制御に
板速計を使用する際の信頼度の向上が図れる。
As described above, according to the present invention, the plate speed detection accuracy has been remarkably improved, which was conventionally a constraint condition for the plate thickness realization accuracy in the plate thickness control, and it was impossible in the past. Changes in various rolling conditions (pass line changes, strip shape changes)
Since it is possible to eliminate the fluctuation of the plate speed indicator indicated by the change, it is possible to detect the change in the friction coefficient and the change in the advanced rate, etc., which occur during acceleration / deceleration rolling, etc. Can be realized. FIG. 2 is an example of realizing the plate thickness accuracy according to the present invention, and the effect is clear. Further, since it is possible to automatically detect a failure of the plate speed meter and take measures against it, it is possible to improve reliability when the plate speed meter is used for controlling the plate thickness.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明法を実施するための装置の例を示す図で
ある。
1 is a diagram showing an example of an apparatus for carrying out the method of the present invention.

【図2】本発明の効果を従来法との対比で説明する図で
ある。
FIG. 2 is a diagram illustrating an effect of the present invention in comparison with a conventional method.

【図3】従来のレーザードップラー効果を適用する非接
触型速度検出法の説明図である。
FIG. 3 is an explanatory diagram of a conventional non-contact velocity detection method to which a laser Doppler effect is applied.

【図4】従来の接触型の速度検出原理を説明する図であ
る。
FIG. 4 is a diagram illustrating a conventional contact-type speed detection principle.

【符号の説明】[Explanation of symbols]

1〜3 圧延機スタンド 11〜13 圧延機駆動用電動機 21〜23 電動機回転数検出器 31〜33 圧延機圧下装置 41 巻戻しリール 42 ブライドルロール 43、44 巻取りリール 51 巻戻しリール駆動電動機 52 ブライドルロール駆動電動機 53、54 巻取りリール駆動電動機 61 出側シャー 71 接触式板速度計 72〜75 非接触式板速度計 82〜85 板厚計 90、91 制御用計算機 100 ビームスプリッタ 101 ミラー 102 逆光プローブ 103 照射光 104 散乱光 105 受光プローブ 106 受光素子 a レーザー発振機 b 検出器 c ストリップ d 無駆動ロール 1 to 3 Rolling mill stand 11 to 13 Rolling mill driving electric motor 21 to 23 Electric motor rotation speed detector 31 to 33 Rolling mill rolling down device 41 Rewinding reel 42 Bridle roll 43, 44 Winding reel 51 Rewinding reel driving electric motor 52 Bridle Roll drive motor 53, 54 Take-up reel drive motor 61 Exit side shear 71 Contact plate speed meter 72-75 Non-contact plate speed meter 82-85 Plate thickness meter 90, 91 Control computer 100 Beam splitter 101 Mirror 102 Backlight probe 103 Irradiated light 104 Scattered light 105 Light receiving probe 106 Light receiving element a Laser oscillator b Detector c Strip d Non-driving roll

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザードップラー効果を圧延ストリッ
プ速度の検出原理とする非接触式板速度計とストリップ
厚みを測定する板厚計を同数個、同一スタンド前後に装
備した2スタンド以上からなるタンデム圧延機に、圧延
機入側でストリップに巻き付けた基準ロールとそのロー
ル周速を一定時間内の回転パルス数として演算するため
当該ロールに取り付けたPLGと演算装置とからなる校
正装置を配置し、この校正装置により測定した板速度と
同じく圧延機入側に取り付けた非接触式板速度計の測定
値とを比較演算処理し、その結果に基づきリアルタイム
に非接触式板速度計の測定値が前記校正装置の基準速度
に一致する様に板速補正係数の演算処理を行い種々の測
定系の蓄積誤差であるオフセット誤差を除去し、しかる
後に少なくとも二つ以上圧延機の上流側から連続に圧延
機スタンド内に取り付けられた非接触式板速度計に対し
ては、その測定値を使用してマスフロー保存則から算出
されるマスフロー板厚とこれに該当する板厚計の測定結
果の差異から当該板速度計のオフセット誤差を推定し、
この結果に基づき、スタンド上流からシーケンシャル的
に順次オフセット誤差が零になる様に当該板速度計の補
正係数を決定し補償することを特徴とするタンデム圧延
機における板速度検出法。
1. A tandem rolling mill comprising two or more non-contact type plate speedometers using the laser Doppler effect as a principle for detecting the rolling strip speed and two or more stand plates equipped with the same number of plate thickness gauges for measuring the strip thickness. A calibration device consisting of a PLG attached to the roll and a calculation device for calculating the peripheral speed of the reference roll wound on the strip at the entrance side of the rolling mill as the number of rotation pulses within a certain period of time is arranged in the roll. The plate speed measured by the device and the measured value of the non-contact type plate speed meter installed on the inlet side of the rolling mill are compared and calculated, and the measured value of the non-contact type plate speed meter is calculated in real time based on the result. The plate speed correction coefficient is arithmetically processed to match the reference speed of No. 1 and the offset error, which is the accumulated error of various measuring systems, is removed. For a non-contact type plate speed meter continuously installed in the stand of the rolling mill from the upstream side of the rolling mill, the mass flow plate thickness calculated from the law of conservation of mass flow using the measured values and the corresponding Estimate the offset error of the plate speed meter from the difference in the measurement results of the plate thickness meter,
Based on this result, a strip velocity detecting method in a tandem rolling mill is characterized in that a correction coefficient of the strip speed meter is determined and compensated so that the offset error becomes sequentially zero from upstream of the stand.
JP3317402A 1991-11-06 1991-11-06 Plate speed detection method in tandem rolling mill Expired - Lifetime JPH0815619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3317402A JPH0815619B2 (en) 1991-11-06 1991-11-06 Plate speed detection method in tandem rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3317402A JPH0815619B2 (en) 1991-11-06 1991-11-06 Plate speed detection method in tandem rolling mill

Publications (2)

Publication Number Publication Date
JPH05123749A true JPH05123749A (en) 1993-05-21
JPH0815619B2 JPH0815619B2 (en) 1996-02-21

Family

ID=18087847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3317402A Expired - Lifetime JPH0815619B2 (en) 1991-11-06 1991-11-06 Plate speed detection method in tandem rolling mill

Country Status (1)

Country Link
JP (1) JPH0815619B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315649A (en) * 1994-05-23 1995-12-05 Sumitomo Metal Ind Ltd Slip prevention method of strip
JP2006326647A (en) * 2005-05-26 2006-12-07 Nippon Steel Corp Plate speed meter
JP2010210382A (en) * 2009-03-10 2010-09-24 Yamatake Corp Tension/speed measuring device and method
JP2010230358A (en) * 2009-03-26 2010-10-14 Yamatake Corp Device and method for measuring tension and speed
WO2011093595A3 (en) * 2010-01-28 2011-11-10 현대제철 주식회사 Device for measuring speed of material
KR101148948B1 (en) * 2010-01-28 2012-05-22 현대제철 주식회사 Looper having velocity measuring apparatus
KR101148949B1 (en) * 2010-01-28 2012-05-22 현대제철 주식회사 Apparatus for measuring velocity
KR101462334B1 (en) * 2013-03-21 2014-11-14 주식회사 포스코 Device and method for predicting speed of steel plate in rolling process
CN115046722A (en) * 2022-08-16 2022-09-13 中国航空工业集团公司沈阳空气动力研究所 Method for calibrating mach number of cross-supersonic-velocity wind tunnel nozzle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07315649A (en) * 1994-05-23 1995-12-05 Sumitomo Metal Ind Ltd Slip prevention method of strip
JP2006326647A (en) * 2005-05-26 2006-12-07 Nippon Steel Corp Plate speed meter
JP4530915B2 (en) * 2005-05-26 2010-08-25 新日本製鐵株式会社 Plate speedometer
JP2010210382A (en) * 2009-03-10 2010-09-24 Yamatake Corp Tension/speed measuring device and method
JP2010230358A (en) * 2009-03-26 2010-10-14 Yamatake Corp Device and method for measuring tension and speed
WO2011093595A3 (en) * 2010-01-28 2011-11-10 현대제철 주식회사 Device for measuring speed of material
KR101148948B1 (en) * 2010-01-28 2012-05-22 현대제철 주식회사 Looper having velocity measuring apparatus
KR101148949B1 (en) * 2010-01-28 2012-05-22 현대제철 주식회사 Apparatus for measuring velocity
CN102470413A (en) * 2010-01-28 2012-05-23 现代制铁株式会社 Device for measuring speed of material
US8773647B2 (en) 2010-01-28 2014-07-08 Hyundai Steel Company Device for measuring speed of material
KR101462334B1 (en) * 2013-03-21 2014-11-14 주식회사 포스코 Device and method for predicting speed of steel plate in rolling process
CN115046722A (en) * 2022-08-16 2022-09-13 中国航空工业集团公司沈阳空气动力研究所 Method for calibrating mach number of cross-supersonic-velocity wind tunnel nozzle
CN115046722B (en) * 2022-08-16 2022-10-25 中国航空工业集团公司沈阳空气动力研究所 Method for calibrating mach number of cross-supersonic-velocity wind tunnel nozzle

Also Published As

Publication number Publication date
JPH0815619B2 (en) 1996-02-21

Similar Documents

Publication Publication Date Title
US4052599A (en) Method and apparatus for determining coil sheet length
JPH01281269A (en) Method and device for detecting bobbin periphery of waywinding bobbin and evaluating result thereof
EP2073020B1 (en) Method and apparatus for monitoring the rotational speed of the shaft of a gas turbine
CN103913140A (en) Casting blank length precision measuring device and method
JPH05123749A (en) Method for detecting raw speed in tandem rolling mill
EP2073022B1 (en) Method and apparatus for monitoring the rotational speed of a gas turbine shaft
EP2073021B1 (en) Method and apparatus for monitoring the rotational speed of a shaft
US3602598A (en) Method and apparatus for accurately measuring the size of a moving object in the direction of,and during its movement
JP2829065B2 (en) Method of measuring thickness of rolled strip
JP6835049B2 (en) Tension control method in metal strip processing line
JPS5841926B2 (en) Rolling length measurement method
KR100920578B1 (en) An apparatus for measuring the thickness of coil
JPH05104123A (en) Hot continuous rolling method
KR100508510B1 (en) Method for controlling thickness of tandem cold mill
JP2691243B2 (en) Process abnormality monitoring method and apparatus thereof
JP4351598B2 (en) Steel sheet elongation rate measuring apparatus and elongation rate measuring method
JPH04166704A (en) Apparatus for measuring length and speed of conveyed material
JPH01193604A (en) Thickness measuring thickness of filmy object
JPH04197511A (en) Mass flow controller tandem mill
SU877494A1 (en) Device for checking technical parameters
JPS63203208A (en) Tracking method for flying strip thickness change point in cold tandem rolling mill
JPS6150047B2 (en)
JPS62197210A (en) Method and device for controlling continuous rolling mill
SU659220A1 (en) Rolling mill braking automatic control
JPS5841608A (en) Tracking device for optional position of material to be rolled

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960827